
       SOLVING COMPLETE ELLIPTIC INTEGRALS OF THE FIRST                          
    KIND BY THE AGM METHOD OF GAUSS 
 
A very neat method to quickly evaluate elliptic integrals of the first kind is by use of 
the algebraic-geometric mean. The procedure works as follows. Starting with the 
definition- 
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we  introduce the variables t= sinθ= u/√(1+u2 ) to get the alternate forms- 
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Now , as first noted by Gauss , the algebraic-geometric mean (AGM) of a0=1 and  
b0=1/sqrt(1-m)  will approach an identical value of M as one carries out the 
iterations- 
 
                       an+1  = (an+bn)/2, and bn+1 = √(anbn) 
 
Using the substitution 2v=u-(a0b0)/u  one finds the last integral above can be 
rewritten and then integrated exactly as follows- 
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To demonstrate, consider the special case of K(0.5). Here we have a0=1 and b0=√2 
and after four iterations we find the 19 place accurate result 
a4=b4=1.1981402347355922075. We thus have- 
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The  15 place accurate math tables of Abramowitz and Stegun give the identical 
value  K(0.5)=1.854074677301372.  
 
Note that this AGM approach , which also works for complete elliptic integrals of 
the second kind, has found applications in recent years in the numerical 
determination of π to over 100 billion places with aid of supercomputers.  

  


