EML2322L - MAE Design and Manufacturing Laboratory Turner's Cube Practice Part

1. Measure raw material to ensure it is suitable for the part $\left(1.000 \pm 0.010^{\prime \prime}\right)$
2. Cut a piece of 1 " x 1 " AL rectangular bar stock roughly $1-1 / 8$ " long (± 0.062 ") in the bandsaw
3. Gently debur edges using file
4. Clamp workpiece in milling machine using parallels (workpiece surface should extend roughly 1/4" above top of vise jaws)
a. NOTE: Parallels should normally be removed prior to cutting the workpiece, however, due to the precision required, leave the parallels in the vise
5. Set part datum (zero) in Z direction using an $1-1 / 4$ " end mill
a. Load the 1-1/4" endmill in a collet (refer to proper rules for changing tools: machine off; spindle positioned over plastic cover; quill raised and locked in its upper-most position)
b. Carefully zero z-axis ($\sim 800 \mathrm{rpm}$; remember to adjust speed with spindle running)
6. Face workpiece ($\sim 800 \mathrm{rpm}$) by removing as little material as possible (typ. $0.003-0.005$ ")
7. Zero and face remaining 5 sides
a. Make each edge the same length (to within ± 0.003 " if possible)
b. CAUTION: When using calipers, ensure machine is off and spindle has ceased rotating
8. Install vise-stop on rear vise jaw with machine off and use it when clamping part henceforth
9. Set part datums (zeros) in X and Y directions using the cylindrical edge finder
a. Load the drill chuck (refer to proper rules for changing tools: machine off; spindle positioned over plastic cover; quill raised and locked in its upper-most position)
b. Load cylindrical edge finder and adjust to proper spindle speed ($\sim 1000 \mathrm{rpm}$)
c. Zero to centerline of part along x-axis and y-axis
10. Center drill part (~ 1600 rpm; remember to adjust speed with spindle running)
a. Drill until about half of the SMALL cylindrical portion of the center drill is in the part. Stop drilling if the center drill's chamfer begins to cut.
11. Drill the Ø0.250" hole thru ($\sim 800 \mathrm{rpm}$; remember to adjust speed with spindle running)
a. Apply oil and peck drill with pecks approximately equal to the drill radius
12. Center drill and drill the Ø0.250" hole thru (size: $1 / 4$) on remaining two sides

Turner's Cube Practice Part (cont)

13. Counterbore $3 / 4$ " holes on all 6 faces
a. Load the $3 / 4$ " cbore in a collet (refer to proper rules for changing tools: machine off; spindle positioned over plastic cover; quill raised and locked in its upper-most position)
b. Lower the depth stop (spring loaded spindle lock) to $\sim 3 / 4$ " without touching part
c. Carefully zero z-axis with spindle locked against the depth stop ($\sim 250 \mathrm{rpm}$ ask a TA to place the mill in LOW RANGE and remember to rotate the power switch to LOW RANGE and adjust speed with spindle running)
d. Raise spindle fully
e. Raise Z-axis the depth of the $3 / 4$ " cbore (0.188 ")
f. Cbore hole using quill handle, cutting oil, and GENTLE cutting force
g. Lightly debur and rotate part to new face and repeat cbore for remaining faces
14. Counterbore $1 / 2{ }^{\prime \prime}$ holes on all 6 faces
a. Load the $1 / 2$ " cbore in a collet (refer to proper rules for changing tools: machine off; spindle positioned over plastic cover; quill raised and locked in its upper-most position)
b. Lower the depth stop (spring loaded spindle lock) to $\sim 3 / 4$ " without touching part
c. Carefully zero z-axis with spindle locked against the depth stop ($\sim 500 \mathrm{rpm}$; ask a TA to place the mill back in HI RANGE and adjust speed with spindle running)
d. Raise spindle fully
e. Raise Z-axis the depth of the $1 / 2$ " cbore ($0.300-0.188=0.112$ ")
f. Cbore hole using quill handle, cutting oil, and GENTLE cutting force
g. Lightly debur and rotate part to new face and repeat cbore for remaining faces
15. Remove the counterbore from the spindle (refer to proper rules for changing tools: machine off; spindle positioned over plastic cover; quill raised and locked in its upper-most position)
16. Remove part from mill vise
17. Lightly debur holes using hand-held countersink tool
18. Clean up milling machine
a. Always have a TA or instructor inspect your machine for cleanliness before leaving
b. CAUTION: PLEASE DO NOT wipe off machine guideways (the oil on these surfaces is essential for proper machine function)
c. Check the machine has been returned to HI RANGE, and if not, ask a TA to please do so for the next student who uses it

NOTES:
1.DIMS IN INCHES
2. MAT'L: 6061-T6 ALUMINUM
3. FINISH ALL SURFACES TO 1000 Ra
4.BREAK ALL EDGES
5. QUANTITY: 1

SolidWorks Student License Academic Use Only

EML2322L - MAE Design and Manufacturing Laboratory
 Turner's Cube Base Practice Part

1. Measure raw material diameter to ensure it is suitable for the part ($\varnothing 0.75 \pm 0.020$ ")
2. Cut a piece of $3 / 4$ " diameter AL round bar stock in the bandsaw with a TA's help (if there isn't a piece < 30" already on the material rack \qquad
3. Debur edges using file
4. Clamp workpiece in lathe chuck with 2" of material protruding from chuck jaws
a. CAUTION: NEVER leave the chuck key in the chuck
5. Install turning/facing tool onto tool post
a. Use the tool with a silver colored insert (not gold)
b. Ensure the tool is aligned vertically with the part centerline using the ruler or lathe gage
c. Check for proper relief angles ($\sim 5^{\circ}$) and adjust as necessary
6. Touch off and set zeros in X and Z directions
a. CAUTION: any time you interact with anything on the left side of the machine (like the DRO), use your left hand; NEVER reach over the spindle
7. Face end of workpiece and re-zero Z axis ($\sim 600 \mathrm{rpm}$)
a. Remove 0.020 " of material using the automatic feed
b. After removing the material and before moving the cutting tool away from the part, re-zero the DRO using your left hand; although not specified as requiring a finished surface, precise measurements must be made from this surface, so it should be finished
8. Finish turn part OD
9. Cut chamfer ($\sim 600 \mathrm{rpm}$)
a. Use the tool with a silver colored insert (not black or gold)
b. Gently touch off on corner to be chamfered and zero the Z-axis
c. Move 0.030 along Z-axis
10. Remove chamfer tool
a. Turn machine off
b. Clean and inspect tool prior to putting it away
11. Center drill hole using tailstock ($\sim 600 \mathrm{rpm}$)
a. Drill until about half of the SMALL cylindrical portion of the center drill is in the part. Stop drilling if the center drill's chamfer begins to cut.
12. Drill hole thru with $1 \not 4^{\prime \prime}$ drill to a depth between 0.568 " and 0.630 " ($\sim 600 \mathrm{rpm}$)
a. Use oil and peck drill with pecks equal to the tool radius
b. Zero the tailstock when the drill begins to cut at its full diameter

Turner's Cube Base Practice Part (cont)

13. Countersink to a diameter of $0.55^{\prime \prime}$ using the special 110° csink tool with the purple stripe ($\sim 200 \mathrm{rpm}$)
a. Use oil and peck
b. CAUTION: turn the machine off prior to measuring part
14. Ask TA to part-off workpiece (2)
15. Remove material from lathe chuck (remember to be careful with the chuck key)
16. Debur holes using hand-held countersink tool
17. Clean up lathe
a. Always have a TA or instructor inspect your machine for cleanliness before leaving
b. CAUTION: DO NOT wipe metal surfaces! Only wipe painted and plastic surfaces (the oil on the metal surfaces is essential for proper machine function)

TA NOTES:

(1) Material Selection: Use $3 / 4$ " AL rod from the material rack. Look for the piece which has been cut to roughly 30 " for making the Turner's Cube Bases to minimize waste.
(2) Parting Off: Since a flat base is required and the part is too small to effectively clamp in the lathe chuck jaws, the part should be parted-off on the lathe by a TA or Mike. If you have not been trained to part-off, ask Mike or another trained TA to perform the part-off for you. Begin the part-off, stop and file the back-side chamfer, and complete the part-off.

NOTES:

1. DIMS IN INCHES
2.MAT'L: 6061-T6 ALUMINUM
2. FINISH ALL SURFACES
3. BREAK ALL EDGES
4. QUANTITY: 1

