EML2322L Calculations Review

Answer the following questions based on the information presented in class.

Given a motor shaft speed of 100 rpm a $\mathbf{6 " \prime}^{\prime \prime}$ diameter wheel and 75% efficiency, what is the linear (loaded) velocity of the robot [ft/sec]?

$$
\begin{aligned}
& V=\pi \times D \times N \times \eta \\
& V=\pi \times \ldots \times \ldots \times \ldots \quad \times \quad \times \quad \mathrm{ft} / \mathrm{in} \times \ldots \quad \times \quad \mathrm{min} / \mathrm{sec}
\end{aligned}
$$

$V \approx 2.0 \mathrm{ft} / \mathrm{sec}$

Calculate the spindle speed [rpm] and feedrate [in/min] for a $1 / 2$ inch HSS drill bit in mild steel (0.2-0.3 C) when using a manual milling machine:
from Table 1: $V \approx$ \qquad $\mathrm{ft} / \mathrm{min}$
$N=12 \mathrm{in} / \mathrm{ft} \times V \mathrm{ft} / \mathrm{min} /(\pi \times D \mathrm{in} / \mathrm{rev})$
$N=12 \mathrm{in} / \mathrm{ft} \times$ \qquad $\mathrm{ft} / \mathrm{min} /(\pi \times$ \qquad $\mathrm{in} / \mathrm{rev}$)
$N=$ \qquad rpm
from Table 2: $f_{r} \approx$ \qquad in/rev
$f=N \mathrm{rev} / \mathrm{min} \times f_{r} \mathrm{in} / \mathrm{rev}$
$f=764 \mathrm{rev} / \mathrm{min} \times$ \qquad in/rev
$f=$ \qquad in/min
scale back 60% since oil is being applied manually: $\underline{N \approx 460 \mathrm{rpm}, f \approx 3.7 \mathrm{in} / \mathrm{min}}$

Calculate the spindle speed [rpm] and feedrate [in/min] used when milling an aluminum part with a $1 / 2$ inch diameter, 2 flute HSS endmill on a manual milling machine in lab.
from Table 1: $V \approx$ \qquad $\mathrm{ft} / \mathrm{min}$
$N=12 \mathrm{in} / \mathrm{ft} \times V \mathrm{ft} / \mathrm{min} /(\pi \times D \mathrm{in} / \mathrm{rev})$
$N=12 \mathrm{in} / \mathrm{ft} \times$ \qquad $\mathrm{ft} / \mathrm{min} /(\pi \times$ \qquad in/rev)
$N=$ \qquad rpm
from Table 3: $f_{t} \approx$ \qquad in/rev
$f=N \mathrm{rev} / \mathrm{min} \times f_{t}$ in/tooth $\times m$ teeth $/ \mathrm{rev}$
$f=1910 \mathrm{rev} / \mathrm{min} \times$ \qquad in/tooth \times \qquad teeth/rev
$f=$ \qquad in/min
scale back 60% since oil is being applied manually: $N \approx 1150 \mathrm{rpm}, f \approx 9.2 \mathrm{in} / \mathrm{min}$

Calculate the torque [lb-ft] required to lift 10 pounds of sand with a motor connected to a $4^{\prime \prime}$ radius pulley?

$T=F \times d$
$T=$ \qquad lb \times \qquad in $\times 1 \mathrm{ft} / 12$ in

$$
T \approx 3.3 \mathrm{lb-ft}
$$

Calculate the tightening torque [lb-ft] for a grade 5, 1/4-20 fastener using the following information (not all may be applicable):
proof (yield) strength $=85,000 \mathrm{psi}$
tensile (ultimate) strength $=120,000 \mathrm{psi}$
tensile stress area $=0.0318$ in 2
shank stress area $=0.0491$ in 2
$T=0.2 \times F_{i} \times d$
$\sigma_{t}=0.9 \times \sigma_{y}=0.9 \times$ \qquad psi
$F_{i}=\sigma_{t} \times A_{t}=$ \qquad psi \times \qquad in 2
$F_{i}=$ \qquad lb
$T=0.2 \times F_{i} \times d$
$T=0.2 \times$ \qquad lb \times \qquad in $\times 1 \mathrm{ft} / 12$ in

