EML2322L – MAE Design and Manufacturing Laboratory Final Design Checklist

Group Number:	TA Performing Evaluation	1:
	Evaluation Grade:	(up to 40% of DR3 1^{st} Submission Grade)

MOBILE PLATFORM DESIGN.

\Box YES \Box NO	Is there an accurate subassembly model for mobile platform, including frame, attachment
	brackets, motors and mounts, wheel hubs, wheels, control box, and associated fasteners?
\Box YES \Box NO	Is the simplified 80/20 part model used to speed up rendering and improve print quality?
\Box YES \Box NO	Are motor mounts and wheel hubs designed using the provided design guides?
	(Please don't ask for feedback if you didn't read our provided resources.)
\Box YES \Box NO	Are material choice, geometry, attachment method, torque transmission method
	(if applicable), and general design justified for each relevant component?
\Box YES \Box NO	Does each component model have a concise and meaningful name?
\Box YES \Box NO	Are appropriate mates employed so each component is <u>fully</u> constrained?
\Box YES \Box NO	Was the final assembly model used to check clearances and identify interferences? (These
	types of problems are MUCH more difficult to fix in the prototyping phase of the project.)
\Box YES \Box NO	Is design feasible and realizable with lab resources? Ask questions before
	submitting a design you aren't sure can be made within the allotted time frame (or at all).

REMAINING SUBSYSTEMS DESIGN. (Not all items apply to all subsystems.)

\Box YES \Box NO	Is there an accurate subassembly model, including all components (custom and OTS),
	attachment brackets, and fasteners?
\Box YES \Box NO	Are material choice, geometry, attachment method, torque transmission method
	(if applicable) and general design justified for each relevant component?
\Box YES \Box NO	Is each component adequately constrained against unintended degrees of freedom?
	(i.e. is each stationary part rigidly attached in a proper manner?)
\Box YES \Box NO	Does each component model have a concise and meaningful name?
\Box YES \Box NO	Are appropriate mates employed so each component is fully constrained?
\Box YES \Box NO	Are saved configurations created for all moving components? (lifting arms, ball gates, etc.)
\Box YES \Box NO	Was the final assembly model used to check clearances and identify interferences? (These
	types of problems are MUCH more difficult to fix in the prototyping phase of the project.)
\Box YES \Box NO	Is design feasible and realizable with lab resources? Ask questions before
	submitting a design you aren't sure can be made within the allotted time frame (or at all).

FASTENERS AND THREADS.

\Box YES \Box NO	Are all fasteners included in the assembly model?
\Box YES \Box NO	Are included fasteners appropriate in size and accurate in scale? (Download appropriate
	CAD models from Mcmaster-Carr or other sources, and rename in a meaningful manner)
\Box YES \Box NO	Are threaded holes designed with AT LEAST FIVE threads of engagement?
\Box YES \Box NO	Do fastener head types allow for adequate motion with required assembly tools? (i.e.
	screwdrivers, allen wrenches, sockets and ratchets, rivet guns, etc.)
\Box YES \Box NO	When possible are thru bolted holes used instead of threaded holes to reduce mfg. time?
\Box YES \Box NO	Are selected fasteners routinely stocked in lab? (Smaller fasteners can be ordered by
	submitting a <u>purchase order form</u> , but doing so creates more work for your team.)
\Box YES \Box NO	Do motor mounting brackets use all of the provided motor mounting holes?
	(The Globe motor is the only exception)

SHEETMETAL PARTS.

\Box YES \Box NO	Is part modeled using SolidWorks sheetmetal tools?
\Box YES \Box NO	Is thickness appropriate for application? (Too thick is hard to bend; too thin is flimsy.)
\Box YES \Box NO	Is part designed for manufacturing according to the Sheetmetal Design Guide ?
	(Complex parts need to be split into multiple simpler parts, integrated weld tabs, etc.)
\Box YES \Box NO	If a part is to be welded, is it specified as steel? (Aluminum is much harder to weld.)

REMAINING DESIGN FOR MANUFACTURING (DFM) TIPS.

\Box YES \Box NO	Is each part as small as possible without affecting intended function?
\Box YES \Box NO	Have alternative designs been investigated which may lower manufacturing and assembly
	times? (e.g. designs which combine or split parts; or designs which use sheetmetal versus billet?)
\Box YES \Box NO	Have unnecessary features that increase mfg. time been eliminated? (fillets, etc.)
\Box YES \Box NO	Are similar parts designed to be identical instead of mirror images? (e.g. motor mounts)
\Box YES \Box NO	Is each part feature designed around nominal (commonly produced) cutter sizes?

GENERAL POINTS.

\Box YES \Box NO	Does final design meet all design objectives? (i.e. size, storage in box, team number, etc.)
\Box YES \Box NO	Has each design concept been tested using some type of meaningful prototype?
	(It's risky to place your hopes in a completely untested design concept.)
\Box YES \Box NO	Is final design proven capable of entering the arena by importing the ramp model
	provided in the <u>Project Description</u> into the final assembly?
\Box YES \Box NO	Is design feasible and realizable with lab resources? Ask questions before
	submitting a design you aren't sure can be made or made within the allotted time frame.

COMMENTS.

