Approximations in structural optimization

- Local algebraic approximations
- Global and midrange algebraic approximations
- Fast reanalysis techniques
- Sequential approximate optimization
Local algebraic approximations

• Linear Taylor series
 \[g_L(x) = g(x_0) + \sum_{i=1}^{n} (x_i - x_{mi}) \left(\frac{\partial g}{\partial x_i} \right)_{x_0} \]

• Intervening variables
 \[y_i = y_i(x) \quad i = 1, \ldots, m \]

• Transformed approximation
 \[g_I(y) = g(y_0) + \sum_{i=1}^{m} (y_i - y_{0i}) \left(\frac{\partial g}{\partial y_i} \right)_{y_0} \]

• Most common: \(y_i = 1/x_i \)
Beam example

Example 6.1.1

- Displacement constraint

\[g = w_{\text{all}} - \left(\frac{23}{6} \right) \frac{pl^3}{EI_1} - \left(\frac{5}{6} \right) \frac{pl^3}{EI_2} . \]

- Intervening variables \(y_i = 1/I_i \)

\[g = w_{\text{all}} - \left(\frac{23}{6} \right) \frac{pl^3}{E} y_1 - \left(\frac{5}{6} \right) \frac{pl^3}{E} y_2 . \]
Reciprocal approximation

- Exact for displacement and stresses in statically determinate trusses
- Exact for scaling of all cross-sectional areas of trusses under mechanical loading

\[y_i = 1 / x_i \]

\[g_R(x) = g(x_0) + \sum_{i=1}^{n} (x_i - x_{mi}) \left(\frac{x_{0i}}{x_i} \left(\frac{\partial g}{\partial x_i} \right) \right)_{x_0} \]
Conservative-concave approximation

- At times we benefit from conservative approximations

\[g_L - g_R = \sum_{i=1}^{n} \frac{(x_i - x_{m_i})}{x_i} \left(\frac{\partial g}{\partial x_i} \right)_{x_0} \]

\[g_C(x) = g(x_0) + \sum_{i=1}^{n} G_i (x_i - x_{0i}) \left(\frac{\partial g}{\partial x_i} \right)_{x_0} \]

\[G_i = \begin{cases}
1 & \text{if } x_{0i} \frac{\partial g}{\partial x_i} \leq 0 \\
\frac{x_{0i}}{x_i} & \text{otherwise}
\end{cases} \]

- All second derivatives of \(g_C \) are negative
- Convex linearization obtained by applying reverse to objective function
Other local approximations

- Quadratic approximations
- Approximations in x^p
- Method of moving asymptotes

\[
\bar{f}_i^{(k)}(x) = \sum_{e=1}^{k} \left(\frac{P_{ie}}{U_e - x^e} + \frac{q_{ie}}{x^e - L_e} \right) + r_i
\]

(4.17)

If \(\frac{\partial \bar{f}_i}{\partial x^e} > 0 \) at \(x^{(k)} \) then: \(p_{ie} = (U_e - x^{e(k)})^2 \frac{\partial \bar{f}_i}{\partial x^e} \) \& \(q_{ie} = 0 \)

If \(\frac{\partial \bar{f}_i}{\partial x^e} < 0 \) at \(x^{(k)} \) then: \(q_{ie} = -(x^{e(k)} - L_e)^2 \frac{\partial \bar{f}_i}{\partial x^e} \) \& \(p_{ie} = 0 \)
Schematic representation
Three-bar truss example

Figure 6.1.2 Three bar truss.
Stress constraint on member C

- Stress in terms of areas
 \[\sigma_C = p \left(-\frac{\sqrt{3}}{3A_A} + \frac{2}{A_B + 0.25A_A} \right) \]

- Stress constraint
 \[g = 1 - \frac{\sigma_C}{\sigma_0} = 1 - \frac{p}{\sigma_0} \left(-\frac{\sqrt{3}}{3A_A} + \frac{2}{A_B + 0.25A_A} \right) \]

- Using non-dimensional variables
 \[x_1 = A_A \sigma_0 / p, \quad x_2 = A_B \sigma_0 / p, \]
 \[g = 1 + \frac{\sqrt{3}}{3x_1} - \frac{2}{x_2 + 0.25x_1} \]
Results around (1,1)

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>g</th>
<th>g_L</th>
<th>g_R</th>
<th>g_C</th>
<th>g_Q</th>
<th>g_{QR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.75</td>
<td>-0.3635</td>
<td>-0.2783</td>
<td>-0.3635</td>
<td>-0.3850</td>
<td>-0.3422</td>
<td>-0.3635</td>
</tr>
<tr>
<td>1.00</td>
<td>0.75</td>
<td>-0.4227</td>
<td>-0.3426</td>
<td>-0.4493</td>
<td>-0.4493</td>
<td>-0.4066</td>
<td>-0.4209</td>
</tr>
<tr>
<td>1.25</td>
<td>0.75</td>
<td>-0.4205</td>
<td>-0.4070</td>
<td>-0.5008</td>
<td>-0.5137</td>
<td>-0.4070</td>
<td>-0.4280</td>
</tr>
<tr>
<td>0.75</td>
<td>1.00</td>
<td>0.0856</td>
<td>0.0417</td>
<td>0.0631</td>
<td>0.0417</td>
<td>0.0738</td>
<td>0.0915</td>
</tr>
<tr>
<td>1.25</td>
<td>1.00</td>
<td>-0.0619</td>
<td>-0.0870</td>
<td>-0.0741</td>
<td>-0.0871</td>
<td>-0.0549</td>
<td>-0.0639</td>
</tr>
<tr>
<td>0.75</td>
<td>1.25</td>
<td>0.3786</td>
<td>0.3617</td>
<td>0.3191</td>
<td>0.2977</td>
<td>0.3617</td>
<td>0.3919</td>
</tr>
<tr>
<td>1.00</td>
<td>1.25</td>
<td>0.2440</td>
<td>0.2974</td>
<td>0.2334</td>
<td>0.2334</td>
<td>0.2334</td>
<td>0.2435</td>
</tr>
<tr>
<td>1.25</td>
<td>1.25</td>
<td>0.1819</td>
<td>0.2330</td>
<td>0.1819</td>
<td>0.1690</td>
<td>0.1691</td>
<td>0.1819</td>
</tr>
</tbody>
</table>
Questions to think about

• What are intervening variables? There are also cases when we use “intervening function” in order to improve the accuracy of a Taylor series approximation. Can you give an example?

• What is conservative about the conservative approximation? Why is that a plus? Why is it useful that it is concave?
Reading assignment

• Section 6.3: Sequential linear programming, including examples!