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1. Abstract  

This paper presents a parameter-free free-form optimization method for the strength design of shell structure. The 

maximum von Mises stress is minimized subject to the volume constraint. The optimum design problem is 

formulated as a distributed-parameter shape optimization problem under the assumptions that a shell is varied in 

the out-of-plane direction to the surface and the thickness is constant. The issue of non-differentiability inhered in 

this minmax problem is avoided by transforming the local measure to a smooth differentiable integral functional 

by using the Kreisselmeier-Steinhauser function The shape gradient function and the optimality conditions derived 

using the material derivative method are applied to the free-form optimization method for shells. With this method, 

the smooth optimal free-form of a shell structure is obtained without any shape design parameterization, while 

minimizing the maximum stress. The validity of this method is verified through two design examples. 

2. Keywords: Optimum Design; Shape Optimization; Shell; Free-form; KS Function. 

 

3. Introduction 

Shell structures with thinness and lightness are extensively used as the structural components in various industrial 

products, structures and constructions. In the design of shell structures, it is important to optimize their forms, or 

curvature distributions to achieve required mechanical performances such as stiffness, natural frequency, 

maximum stress and buckling load. In our previous works, we proposed a non-parametric free-form optimization 

method of shell structures, and applied it to stiffness design problems [1][2][3] and vibration design problems[4]. 

With the method, an optimum shell with smooth free-form surface can be obtained without any shape 

parameterization which is inevitable process in general parametric shape optimization methods.  

Focusing on shape optimization of shell structures, the methods can be categorized into parametric and 

non-parametric methods in terms of design variables. Although most previously proposed shape optimization 

methods for shells [5][6] are parametric methods, which require parameterization of the shape in advance and the 

obtained shape is strongly influenced by the parameterization process, our method is classified as a non-parametric 

method. The proposed method and its features will be described in the following sections. Another non-parametric 

method with a filter for smoothing was presented by Bletzinger et al. [7]. 

In this paper, we newly apply this method to a maximum stress minimization problem as a strength design problem 

of shell structures. The issue of non-differentiability is inherent to this stress minmax problem because of the 

singularity of maximum stress, making it theoretically difficult to determine directly the sensitivity function of the 

local objective functional. This issue is avoided by transforming the local measure to an integral functional by 

using the Kreisselmeier-Steinhauser (KS) function [8] to transform the local objective functional into the smooth 

differentiable integral functional.  

This stress minmax problem is formulated in a function space. The maximum von Mises stress extracted by the KS 

function and a volume are defined as the objective and constraint functional, respectively. It is assumed that the 

shell is varied in the normal direction to the surface and the thickness is constant. The shape sensitivity function for 

this problem is theoretically derived using the material derivative method and the adjoint variable method. The 

shape sensitivity function derived is applied to the shell surface as the traction force to vary the shape under 

elastically supported condition. Two design examples calculated by this method are demonstrated. The optimum 

shapes with beads and the iteration histories show the effectiveness of the proposed method as a solution to the 

stress minmax problem. 

 

4. Governing equation of shell structure 

As shown in Fig. 1 and Eqs. (1)-(3), consider a shell having an initial bounded domain 3   ( boundary of 

  ), mid-area A (boundary of A  ), side surface S and plate thickness h. The notations 1 2 3( , , )x x x and 

1 2 3( , , )X X X  in Fig. 1 indicate the local coordinate system and the global coordinate system, respectively. 
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Fig. 1 Coordinate system and DOF of shell 

 The Mindlin-Reissner plate theory is applied concerning plate bending, and coupling of the membrane stiffness 

and bending stiffness is ignored. The weak form equation in terms of  0 ,u , θw can be expressed as Equation (4). 

 
0 0 0 0 0(( , , ),( , , )) (( , , )),   ( , , ) ,   ( , , ) ,u θ u u u u   a w w l w w U w U      (4) 

where where  0 1,2 
u  

, w and  
1,2 

  



express the in-plane displacement, out-of-plane displacement and 

rotational angle of the mid-area of the plate, respectively. ( )


 expresses a variation, and U expresses admissible 

space in which the given constraint conditions of 0( , )u , θw  is satisfied. In addition, the bilinear form (·,·)a  and 

the linear form (·)l are defined respectively as shown below.  

 
0 0 0 , 3 , 0 , 3 ,(( , , ), ( , , )) { ( )( ) }u u            


       

Sa w w C u x u x C d    (5) 

 0 0 0(( , , )) ( ) ( ) ,u         


      A A
l w f u m qw dA N u ds M Qw ds   (6) 

where 
, , , 1,2{ }C       and 

, 1,2{ }SC      express an elastic tensor including bending and membrane components, 

and an elastic tensor with respect to the shearing component, respectively.  Moreover,  
1,2

f 
f , 

 
1,2

m 
m , q express an out-of-plane load per unit area, an in-plane load and an out-of-plane moment per unit 

area, respectively.  
1,2

N 
N ,  

1,2
M 

M , Q express an in-plane load, a shearing force and a bending 

moment per unit length, respectively. The tensor subscript notation uses Einstein's summation convention and a 

partial differential notation for the spatial coordinates ,( ) ( ) /i ix     . 

 

5. Optimum strength design problem of shell structure 

5.1. Domain variation 

Consider that a linear elastic shell structure having an initial domain  , mid-area A, boundary A  and side 

surface S undergoes domain variation V (design velocity field) in the out-of-plane direction such that its domain, 

mid-area, boundary and side surface become s , sA , sA , and sS , respectively as shown in Fig. 2. It is 

assumed that the plate thickness h remains constant under the domain variation. The subscript s expresses the 

iteration history of the domain variation. The free-form optimization method explained later is a method for 

determining the optimal domain variation V of shell structures. 
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Fig. 2 Domain variation by V 

 

5.2. Stress minmax problem  

The non-parametric shape optimization problem with the objective of minimizing the maximum value of von 

Mises stress on both sides of a shell structure can be formulated as shown below, subject to constrains of volume 

and the state equation in Eq. (2). 

                                                   Given    ˆ
0A , M,                                                                                                          (7) 

                                                      find    r ,o sV                                                                                                  (8) 

                                       that minimize     max
( )

,
x







M

a
x

                                                                                               (9) 

                                              subject to      Equation (2) and  (= ) ,ˆA
M hdA M                                          (10)(11) 

where M and M̂  denote the volume and its constraint value, respectively.  ( )M x is von Mises stress defined as 

Eq. (12) and a  is a constant for the normalization. 

     22 2 2 2 2 2
11 22 11 22 12 23 31

1
6

2
             M ,   (12) 

The issues of non-differentiability are inherent to stress minmax problems because of the singularity of maximum 

stress, making it theoretically difficult to determine directly the sensitivity of the local objective functional in Eq. 

(9). Therefore, the Kreisselmeier-Steinhauser (KS) function is used to transform the local objective functional into 

the following smooth differentiable integral functional.   

 
1 1( ) ( )x x



 


  

 
  

   
  

 




M M

x A

A

a a

max ln exp dA

dA

  (13) 

Where 1 2A A A  , 1A and 2A express the top and the bottom surface of shell, respectively. Moreover, when a 

constant ρ is sufficiently large, the maximum stress can be extracted.  

 

5.3. Derivation of the shape gradient function 

Letting 0( , )u , θw  and   denote the Lagrange multipliers for the state equation and volume constraints, 

respectively, the Lagrange functional L associated with this problem can be expressed as 

           00

1 1
, .ln exp ,

0 0 0 0
u θ u , ,θ, u , ,θ u , ,θ u , ,θ




 

 
  

     
  

 




, , M

a
A

A

L w w dA l w a w w
dA

Λ Λ M M  (14) 

For the sake of simplicity, it is assumed that the sub-boundaries acted on by the non-zero external forces N, Q and 

M do not vary (i.e., V=0), that the forces acting on the shell surface qf, m,  do not vary with regard to the space 

and the iteration history s (i.e., 0f m q   ). The material derivative L  of the Lagrange functional can be 

derived as shown in Eq. (15) below using the velocity field V. 
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Where C  is the suitably smooth function space that satisfies the constraints of domain variation. H denotes twice 

the mean curvature. 

The optimality conditions of the Lagrangian function L with respect to 0 0( , , ), ( , , )u uw w   and  are expressed 

as shown below. 
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         ˆ ˆ( ) = 0,    0 0Λ M M Λ ,    M M .                                                  

(19)(20)(21) 

When the optimality conditions with respect to the state variable 
0( , , )wu  , the adjoint variable ( )0 ,w,u θ  and Λ 

are satisfied, Eq. (15) becomes 

                               L Gn,V .                                                                                      (22) 

The shape gradient function Gn (=G) is applied to the free-form optimization method to determine the optimal 

design velocity field V. 
 

6. Free-form optimization method for shell structure 

The free-form optimization method described here is initially proposed by Shomoda for the shape optimization 

problem for shells [1]. The method is based on the 1H  gradient method in a Hilbert space [9][10]. It is a 

node-based shape optimization method that can treat all nodes as design variables and does not require any design 

variable parameterization.  

With this method the negative shape gradient function  G X- is applied as a distributed force to a pseudo-elastic 

shell structure in the normal direction to the surface under a Robin boundary condition(distributed spring constant 

0  ), and shape design constraint conditions as shown in Fig. 3. The shape gradient function is not applied 

directly to the shape variation but rather is replaced by a force. This makes it possible both to reduce the objective 

functional and to maintain the smoothness, i.e., mesh regularity. The analysis for the shape variation V  is called 

velocity analysis, and the obtained V is used to update the shape. The governing equation of the velocity analysis 

for  01 02 3, ,V  V V V is expressed as Eq. (23).  
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Fig. 3 Schematics of free-form optimization method for shell 

 0 3 0 0 0 0 3 0(( , , ),( , , )) + ( ) ( , , ) ( , , ) ,   ( , , ) ,   ( , , )  ,V u V n n, u n, u V u      a V w w G w V C w C       (23) 

In problems where convexity is assured, this relationship definitely reduces the Lagrange functional in the process 

of updating the frame shape using the design velocity field V determined by Eq. (23)[1]. 

 

The optimal free-form frame structure is obtained by repeating the process consisting of (1) stiffness analysis, (2) 

adjoint analysis, (3) a sensitivity analysis for calculating the shape gradient functions, (4) velocity analysis and (5) 

shape updating. The analyses in the process (1), (2) and (4) are conducted using a standard general-purpose FEM 

code.   

The advantages offered by this method are summarized as follows: (1) a smooth and natural surface can be 

obtained because the elastic tensor in the pseudo-elastic analysis serves as a mapping function and as a smoother 

for maintaining mesh smoothness, and its positive definitiveness is the necessary condition for minimizing the 

objective functional. (2) An optimal free-form surface is created because all the nodes can be moved as the design 

variable. (3) Mesh smoothing is simultaneously implemented in the shape changing process. (4) It can be easily 

implemented in combination with a commercial FEM code. 

 

7. Calculated Results by the Free-form Optimization Method 

In order to confirm its validity and practical utility for designing the optimal free-form of shell structures, the 

proposed method was applied to two design problems. As the Robin boundary condition in the velocity analysis, 

the earth spring constant was given as 20000  in each design problem, which was equivalent to 1.2D (D: 

bending rigidity). Moreover, each FE model was discretized by constant strain triangular elements. 

 

7.1. U-shaped bracket design problem 

The first design example considered is a U-shaped bracket. The initial shape and the boundary condition of the 

stress analysis are illustrated in Fig. 4(a), in which nodal forces were applied in the inward direction of both edges. 

Fig. 4(b) shows the boundary condition of the velocity analysis, where all the edges were simply supported. The 

obtained optimal shape is shown in Fig. 5. Iteration convergence histories of the volume, the objective function 

(eqn. (13)) and the maximum value of von Mises stress are shown in Fig. 6. The values were normalized to those of 

the initial shape. Fig. 7(a) and (b) show the von Mises stress distribution of the initial shape and the optimized 

shape, respectively. It is clear that several beads were obtained along with the longitudinal direction of bending 

part, and the stress was reduced efficiently by the optimized shape. As shown in Fig. 6, the objective function was 

reduced by approximately 46%, and the maximum stress was reduced about 64% while satisfying the given 

volume constraint. 

 

 
 

  (a) Stress analysis           (b) Velocity analysis 

Fig. 4 Initial shape and boundary conditions of U-shaped bracket  

 

Simply supported 
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Fig. 5 Calculated result of U-shaped bracket    Fig. 6 Iteration histories of U-shaped bracket 

 

 

     
    (a)Initial                                (b) Optimal 

Fig. 7 Comparison of von Mises stress distribution of U-shaped bracket 

 

7.2. Torsion arm design problem 

A box-type shell structure with holes in the two flanks, as shown in Fig. 8, was optimized as an example of the 

practical structures. The initial shape is shown in Fig. 8(a) along with the boundary conditions of the stress analysis. 

In the stress analysis, the two through holes were clamped and downward distributed nodal forces were applied on 

the right side. The constraint conditions for the velocity analysis are shown in Fig. 8(b), where shapes of  two 

flanks were assumed to do not vary. Moreover, the volume constraint was set at 1.05 times the initial value. As 

shown in Fig.9(a), the maximum stress occurs around the hole in the initial shape. The optimal shape obtained and 

the von Mises stress distribution is shown in Fig. 9(b). The shape variation in the upper and lower surfaces 

including the R parts of the box reduced the the maximum stress around the holes. The maximum stress was 

reduced by approximately 7% was reduced, and the practical utility of this method was verified. 

 
                                 (a) Stress analysis                (b) Velocity analysis 

Fig. 8 Initial shape and boundary conditions of torsion arm problem 

 

 
 

(a)Initial                            (b) Optimal 

Fig. 9 Calculated result with von Mises stress distribution of torsion bar 
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8. Conclusions 

This paper described the free-form optimization method for designing the optimal shapes of shell structures 

subject to a strength criterion. With the aim of minimizing the maximum von Mises stress under a volume 

constraint was formulated as a non-parametric shape optimization problem under the assumptions that the surface 

of shell is varied in the out-of-plane direction and the thickness is constant. In the proposed method, the issue of 

non-differentiability is avoided by transforming the local measure to an integral functional by using the KS 

function to transform the local objective functional into the smooth differentiable integral functional. The shape 

gradient function for this problem was theoretically derived and the method for the optimal design velocity using 

the adjoint variation was presented. As a result of analyzing the optimal shapes of two design problems, it was 

confirmed that the maximum von Mises stress was minimized and the optimal free-form shell with several beads 

was created, while maintaining the smoothness in each problem as expected. 
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