
10th World Congress on Structural and Multidisciplinary Optimization 
May 19 -24, 2013, Orlando, Florida, USA 
 
 
 
 

1 

On the optimal topologies considering uncertain load positions  
 

János Lógó1, Erika Pintér2, Anna Vásárhelyi3  
 

Department of Structural Mechanics, Budapest University of Technology and Economics  
H-1111 Budapest, Műegyetem rkp. 3, Hungary 

1 logo@ep-mech.me.bme.hu, 2 epinter@mail.bme.hu, 3 anna.vasarhelyi@freemail.hu 
 
1. Abstract  
A new numerical method is presented for the continuum type topology optimization problems in the case of 
uncertain loading positions. The optimization problem is a volume minimization one subjected to probabilistic 
compliance constraints.  In addition to the optimization procedure a parametric study is presented to investigate the 
layout theory. It is proved that not only statically determinate but statically undeterminate structure can be the 
optimal layout. 
2. Keywords: Optimal layout, topology optimization, probabilistic loading, uncertain point of application, 
multiply load case. 
 
3. Introduction 
The more than century old topology optimization has a relatively young new research direction, namely 
considering probabilistic data in the topology design. Uncertainty is typically limited to the loading, although 
recent works have considered extensions to support conditions, and material properties, etc..  [6-8]. 
In this paper the loading positions are taken as stochastic variables and all the other data are deterministic. The 
linearly elastic discretized structure is modelled mechanically by plane stress disk elements. To make the 
optimization method robust an equivalent deterministic problem is derived [1-3,5]. The elaborated technique can 
be described as follows: it is assumed that the load positions are given by either their distribution function, mean 
value and covariance matrix or by the simple values of the probability of the occurrence of a force at a certain 
location. The first case, where the statistical information (distribution functions, mean values and variations) are 
given, is always finished by a simple calculation which results in the probability values of the occurrence of a force 
at a certain location, that is practically in the second case. Hence each load is considered in an extended loading 
domain. Since the loading positions are not known precisely, an equivalent loading system should also be created 
around the expected location of each force to perform a "simulation". According to the original distribution 
assumption, mean value and variation of the point applications, an extended force system is set up for each 
possible loading domain with the original magnitude of the force and given (or calculated) probability values. Each 
load is independent and acts as an independent load case in the original loading domain. Applying these forces at 
these "base" points as loads the stochastic design problem becomes a deterministic one. By the use of the elements 
of this force system one by one, the displacement vectors can be calculated from the usual linear equilibrium 
equations with several load cases. Since the material is linearly elastic, isotropic and homogenious, the additive 
properties of the displacements and the reciprocity theorem can be applied. Using these vectors and the assigned 
probability values the expected displacement and its variation can be calculated. By the use of these data the 
original compliance value, which is probabilistic due to the position uncertainties, can be substituted with a 
deterministic one applying the Kataoka theorem [4]. Using this compliance formulation either a min-max 
objective function is formed, which is composed by the expected compliance and a certain type of variance of the 
compliance due to the independent load cases or a volume minimization problem is created what is subjected to 
several compliance constraints. Here the later one is used as base problem. At first case the constraints are the 
volume limitation and the side values of the design variables. In the case of Gaussian distribution of the 
displacement field the unconstraint problem objective function is simplified to a function minimization also due to 
the Kataoka theorem [4]. An extended SIMP type algorithm is elaborated for the solution method. To validate the 
model a deterministic minimum compliance truss design is performed analytically and numerically. 
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Several numerical examples are presented. 
 
4. Notes on the layout theory 
The minimum weight design as an objective was a rather popular topic during “golden ages” of the optimization 
(e.g. during the 50-s to 70-s of the last century). The authors investigated whether the statically determinate or 
undeterminate structure gives the optimal layout [8-10] with minimum weight. It is known in engineering design 
that a statically determinate structure is not sensitive for kinematic loading, but any change in static loading may 
produce an unexpected collapse. In this way the statically undeterminate structures can be more safe for 
unexpected load cases (see: the structure of the bones).  This question is rather difficult whenever the loading 
uncertainity is investigated. In this case the load can be considered as a quantity given in an interval.  
In this paper at first it is proved trough two simple examples that one can construct several (infinite number) 
alternative statically undeterminate structures having the same volume and compliance value if a statically 
determinate structure exists.  
 
4.1. Simple examples for equivalent determinate versus undeterminate structures 
The first example is a 3-bar truss -as a base structure- with a vertical force at the top (Fig.1). The material is linearly 
elastic (for sake of simplicity the Young’s modulus E=1) and the vertical load is 100. The members are supported 
by hinges at the bottom. The total compliance is calculated as follow: 
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where Fi = the elastically calculated force in member i, Li = length of member i, Ai = cross-sectional area of 
member i.  
One can see in Table 1. that mechanically same (same volume and same compliance) structures can be composed 
by simple modification of the number of the members (doubled the bars and mechanically equivalently decrease 
the cross-sectional areas of the members). Here a 6 and 12-bar structures were calculated as examples. 

 

 
 

Figure 1: Alternative truss laouts in the case of a vertical point load at the top 
 

Table 1: Comparative values of the optimal 3, 6 and 12-bar structures in the case of a vertical point load at the top 
 

length pc 
section 
(cm2) volume 

Normal 
force stress 

top 
displacement 

Compliance 
(external 

Pot. energ.) 

Compliance of 
the bars 

(strain energy) 
2,82842 3 1,57 1332,189 47,14 -3,0025 0,0572 5,72 5,719083764 
2,82842 6 0,785 1332,189 23,57 -3,0025 0,0572 5,72 5,719083764 
2,82842 12 0,3925 1332,189 11,785 -3,0025 0,0572 5,72 5,719083764 
σ=2100         

Young's 210000N/mm2       
 



 
 

3 

A very similar example can be calculated if the top vertical force (100) is modified and a horizontal force (57,74) is 
added ( see Fig 2.) All the other data and the way of the calculations are the same. The results of the calculations 
can follow from the details of Table 2. 
 

 
 

Figure 2: Alternative truss problems in the case of two point loads at the top 
 

Table 2: Comparative values of the optimal 3, 6 and 12-bar structures in the case of two point loads at the top 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

length pc 
section 
(cm2) volume 

Normal 
force stress

top 
displacement

Compliance 
(external 

Pot. energ.) 

Compliance of 
the bars 

(strain energy)
2,828427 1 1,57 444,0631 101,58 100 0,0572 5,72 8,852022 
2,828427 2 1,57 888,1261 19,92 57,74 0,0572 3,812957 0,680824 

  total 1332,189   0,033 9,532957 9,532845 
      6 bar truss   

2,828427 1 0,785 222,0315 3,65 100 0,0572 5,72 0,022858 
2,828427 2 0,785 444,0631 9,96 57,74 0,0572 3,812957 0,340412 
2,828427 2 0,785 444,0631 37,18  0,033  4,743564 
2,828427 1 0,785 222,0315 50,79    4,426011 

  total 1332,189    9,532957 9,532845 
      12 bar truss   

2,828427 1 0,3925 111,0158 1,82 100 0,0572 5,72 0,011367 
2,828427 2 0,3925 222,0315 0 57,74 0,0572 3,812957 0 
2,828427 2 0,3925 222,0315 4,98  0,033  0,170206 
2,828427 2 0,3925 222,0315 11,79    0,95399 
2,828427 2 0,3925 222,0315 18,59    2,371782 
2,828427 2 0,3925 222,0315 23,57    3,812723 
2,828427 1 0,3925 111,0158 25,39    2,212134 

  total 1332,189    9,532957 9,532201 
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As a conclusion of the calculation above one can state if a statically determinate structure exists as a solution of a 
deterministic problem with a single load case, several (infinite number) statically equivalent  undeterminate 
structures can be derived with the same weight and the compliance. 
 
4.2. Minimum volume design of structures according to the optimal layout theory 
In the case of probabilistic loading the magnitude, the line of action, the direction and the point of application of 
the load can be uncertain. Here trough a simple example it is proved that not only one type of layout can be 
optimal. There will be singular layout solutions for certain case or the optimal layout can be changed if the 
magnitude of the horizontal load  is uncertain.  
 

 
Figure 3: Three-bar truss problem in the case of two point loads at the top 

 
Table 3.a: Comparative values of the optimal 3, 6 and 12-bar structures in the case of two point loads at the top 

 

  
3 bar 
truss   

V |H| A1  A2 A3 Vol 3-bar truss 
8,660254 0 0 2,598 0 4,499867998 
8,660254 0,5 0,258 2,585 0,258 5,509351338 
8,660254 1 0,581 2,434 0,581 6,539811666 
8,660254 1,5 0,967 2,152 0,967 7,595373338 
8,660254 2 1,407 1,753 1,407 8,664285066 
8,660254 2,5 1,90 1,237 1,9 9,742546849 
8,660254 3 2,451 0,591 2,451 10,82764203 
8,660254 3,5 2,964 0,038 2,964 11,92181793 
8,660254 4 3,278 0 3,278 13,112 
8,660254 4,5 3,619 0 3,619 14,476 
8,660254 5 3,999 0 3,999 15,996 
8,660254 5,5 4,419 0 4,419 17,676 
8,660254 6 4,879 0 4,879 19,516 
8,660254 6,5 5,379 0 5,379 21,516 
8,660254 7 5,919 0 5,919 23,676 
8,660254 7,5 11,981 0 11,981 47,924 
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Table 3.b: Comparative values of the optimal 3-6 and 12-bar structures in the case of two point loads at the top 

 
   2 bar truss   
V |H| A1  Volu of 2-bar truss A2 A3 

8,660254 0 2 8 0 2 
8,660254 0,5 2,019 8,076 0 2,019 
8,660254 1 2,079 8,316 0 2,079 
8,660254 1,5 2,179 8,716 0 2,179 
8,660254 2 2,319 9,276 0 2,319 
8,660254 2,5 2,50 9,996 0 2,499 
8,660254 3 2,72 10,88 0 2,72 
8,660254 3,5 2,98 11,92 0 2,98 
8,660254 4 3,28 13,12 0 3,28 
8,660254 4,5 3,619 14,476 0 3,619 
8,660254 5 3,999 15,996 0 3,999 
8,660254 5,5 4,419 17,676 0 4,419 
8,660254 6 4,879 19,516 0 4,879 
8,660254 6,5 5,379 21,516 0 5,379 
8,660254 7 5,919 23,676 0 5,919 
8,660254 7,5 11,981 47,924 0 11,981 

 
According to the papers of Rozvany and Maute [12] or Silva et al [11] the optimal layout is a two leg structure with 
a well-defined inclination angle if the horizontal force is uncertain. Here a very special case is studied where the 
initial layout is based on the optimal layout coming from the above cited papers. In addition to the two legs 
structure an additional vertical leg is considered forming a statically undeterminate structural layout. The problem 
is a minimum volume design of a three legs structure with constrained compliance – the formulation (eq.1.) is the 
same and smaller than a given bound)-. The member forces are calculated from the equilibrium equations taking 
into account the compatibility equations as well. The top load is deterministic with given value, while the top 
horizontal force is probabilistic. It is modeled on the way that this force can be any value in a given interval (Fig. 3) 
as it is indicated in the above cited papers [11, 12]. The optimality condition to determinate the layout is that the 
horizontal force can not exceed the expected lower and upper bounds (±7,5). 

  
 

Figure 4: Optimal cross-sectional areas and minimum volumes of three and two bar truss problems 
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The constrained mathematical programming problem is form with the idea that the unknowns are the 
cross-sectional areas of the members  and the two side legs are in 30 degree inclination angle. There are two load 
cases (the horizontal force in each case can change its direction). The problem numerically is solved by a 
sequential quadratic programming algorithm of MATCAD 15. 
One can follow the numerical values of the optimal cross-sectional areas in the case of three-bar truss (Table 3.a) 
and the numerical values of the optimal cross-sectional areas in the case of two-bar structure (Table 3.b), 
respectively. Graphically these results are presented in Figure 4. One can see that in case of H=0 a vertical bar is 
the optimal layout while -3.5<H<0<H<3.5 the optimal layout is a three-bar structure. Otherwise the optimal layout 
is a two legs structure. 
A very similar suspicion was presented in the almost forgotten paper of  Nagtegaal and  Prager [13]. Here the 
authors investigated the question of the optimal layout in the case of two alternative loads with same point of 
application. A necessary and sufficient condition for global optimality was derived for the plane truss where the 
loadings were created on the way that the load factors for plastic collapse under one or the other load were not to 
exceed a given value. The results were one, two or three bar trusses depending on the loading domains. 
The optimal layout problem of a minimum weight truss design problem with a single vertical force load presented 
by Save [10] in the case of stress constraints. The conclusions of his results and optimal layouts coming from the  
results obtained from our examples are in good agreement.  

 
5. Probabilistic Compliance Design in the Case of Uncertain Loading Positions  
The deterministic compliance design procedure of a linearly elastic 2D structure (disk) in plane stress is known 
from literature. This topology optimization problem is given for single load as follows: 
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Here the ground element thicknesses gt  are the design variables with lower bound mint  and upper bound maxt , 
respectively. By the use of the FE (finite elements) discretization, each ground element (g= 1,…, G) contains 
several sub-elements (e=1,…, sE ), whose stiffness coefficients are linear homogeneous functions of the ground 
element thickness gt . Furthermore gγ  is the specific weight and gA the area of the ground element g. Tu  is the 
nodal displacement vector associated with the loading F. The displacements u can be calculated from Ku = F , 
where K is the system stiffness matrix. p is the penalty parameter ( 1p ≥ ) and the given compliance value is 
denoted by C. The above constrained mathematical programming problem can be solved by the use of an 
appropriate SIMP algorithm (e.g. Lógó[1]). 
 
5.1. Multiply load cases and uncertain loading magnitudes 
The above problem in case of several load cases should be extended by additional compliance constraints 
representing the independent loadings ( ( )iF ). By the use of a generalized compliance design concept (Lógó [1]) 
the new constraints  

 ( )( ) ( )P 0i T i C q− ≤ ≥u F  (3) 

can be introduced instead of eq.(2.b). Here 0 1q〈 〈  is a given expected probability value what gives information 
about the possibility of a failure. Following the upperbound theorem of Kataoka [4] eq.(3) can be substituted by the 
following deterministic expression which is convex and determined for each independent load case: 

 ( )( ) ( ) -1 ( ) ( ) ( )
ov

1
+ 0.

n
i i i i i

j j
j

f u C q
=

− Φ ≤∑ Tb K b  (4) 

Here ( ) ( )( ),  1,...,i i
j ju E u j n= =  is the expected value of the displacement under the independent force 
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( )(i)  1,...,i m=F  in the direction of this load, ( ) ( ) ( ) ( ) ( )
1 2, ,..., ,...,i i i i i

k nf f f f⎡ ⎤= ⎣ ⎦
Tb , 

( )i

ovK  is the covariance matrix of 
these displacements. The number of the independent load cases depends on the  
Then the penalized minimum weight problem subjected to probabilistic compliance constraint due to the uncertain 
loading magnitude has the form: 
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This type of constrained mathematical programming problem can be solved by using an appropriate optimality 
criteria algorithm (see e.g. Lógó[5]). 
 
5.2. Uncertain loading positions 
Here a simplified mechanical model is created on basis of the original loading domain. Let us consider the design 
problem given in Figure 5. Since the loading positions are not known precisely an equivalent loading system 
should be also created around the expected location ix  of each force if  to perform the simulation. According to 
the original distribution assumption, the mean value and the standard deviation of the point application are 
determined by the force system  ( 1,.., )ijf j k=  with the original magnitude if  - for sake of simplicity and to 
describe the loading domains- seven points – as “base” points are used with symmetrical adjustment 

1 2 3 4( , , , )i i i if f f f . (The minimum number of the points is three.) Each load is independent and a well-defined 
probability value  ( 1,.., 7)ijw j k= =  is assigned to them (in practice it can take as design information). The 
determination of this probability value  ( 1,.., )ijw j k=  is based on the original distribution and it can be calculated 
with a simple computation. In this way the loading is given by these doubled parameters -  ( 1,.., 7)ijw j k= = , 

1 2 3 4( , , , )i i i if f f f - and applied as independent load cases. The modified topology design problem is given in Figure 
5 if the original load and the supports are located on the same line. 

 
 

Figure 5:  The design domain with the modified loadings and the corresponding probabilities 
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If the application points and the supports can not be connected with a single line the surrogate model of the loading 
is based on a force and uncertain moment system at the expected location of the original load.Applying these 
forces at these “base” points as loads the stochastic design problem becomes a deterministic one after this 
transformation. By the use of the element ( 1,.., )ijf j k=  of these force system one by one, the displacement 
vectors  ( 1,.., )ij j k=u  can be calculated from the ij ijKu = f  linear equations. Since the material is linearly elastic 
the additive properties of the displacements and the reciprocity theorem can be applied. Using these vectors and 
the assigned probability values  ( 1,.., )ijw j k=  the expected displacement iu  and its variation ( )2

iD u  can be 
calculated in the following form: 
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These computed values are used to compose the element of the mathematical programming problem eq.(5).  Due to 
the nature of this type of loading the covariance matrix is diagonal. 

 ( ) ( ) ( )2 2 2
ov 1 1 2 2, ,..., n nD u D u D u=K  (7) 

Interchanging the expected compliance calculation by the generalized expected strain energy formulation the 
penalized minimum weight problem subjected to probabilistic compliance constraint has the form:  
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6. Numerical example 
To demonstrate the method introduced above the example problem of Rozvany and Maute [12] is used to create 
the base problem (Figure 6.a). The point of application of the vertical load is uncertain. The geometry is given by  

  
Figure 6.a: Base problem for the SIMP-type solution                             Figure 6.b: Surrogate loading  
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L=40 while the deterministic magnitude of load is V=50. The values (-e to +e) demonstrate the deviation of the 
point of application of the force V. The surrogate loading is represented by an additional  horizontal force system H 
corresponding to the “eccentricity e”. (Here for demonstrative reason H is 50.) Due to the nature of this problem 
three independent load cases have to considered. These load cases are: (V=50, H=-50), (V=50, H=0) and  
(V=50, H=50) –Figure 6.b-. The compliance limit is 60000. The expected probability is q=0,9. 
The obtained optimal topology can be seen in Figure 7. One can see that a statically undeterminate structure is the 
optimal layout. The white lines demonstrate the center line of the truss members. The inclination angle is 36°.  

 

 
 

Figure 7: Optimal layout  
 
 

7. Conclusions 
If the load is probabilistic, surrogate deterministic load cases are suggested to model the uncertain point of 
applications. Minimum three independent load cases need to model the uncertainty connected to an uncertain point 
of application of the original load. The surrogate loading system is problem dependent. 
In case of probabilistic loading the optimal layout can be statically undeterminate structure. 
To make more appropriate models need some additional investigations on the topic. 
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