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1. Abstract
Optimal cross-sectional shapes of whispering-gallery ring resonators with prescribed emission wavelength
and resonance mode are generated using topology optimization based on the finite element method con-
sidering the application of the laser resonators and optical biosensors. In the laser resonator optimization,
the two critical performance indices, the quality factor (Q factor) and mode volume of a resonator, are
treated as the objective functions in the optimization. In the optical biosensor optimization, the Q factor
and energy density of the specified domain are treated as the objective functions. The sensitivity of
the objective function is derived based on the adjoint variable method. Based on these formulations,
an optimization algorithm is constructed using the method of moving asymptotes (MMA) . We provide
numerical examples to illustrate the validity and utility of the proposed methodology.
2. Keywords: Topology optimization, optical resonators, whispering gallery modes, modal sensitivity
analysis

3. Introduction
Micro-ring resonators have tremendous potential in optics with applications to low threshold microcavity
lasers and optical sensors. [1, 2]. The optical modes, set up in these devices by emissions from input
light, form circular continuous closed beams governed by internal reflections along the boundary of the
resonator. The circular mode shape is called a whispering-gallery mode (WGM). Optical resonators
exploiting WG modes have been attaining high levels in the important typical-performance criteria for
resonators, i.e., high quality factor (Q factor) which measures the inverse of the decay rate of the energy
and low mode volume which signifies the spatial confinement of the light [3]. In other words, the light
wave is trapped within a very small volume during WG mode emission. Since the behavior of the trapped
light is very sensitive to changes in the device’s shape or surroundings, the use of the WGM resonator as
a sensor was studied. The representative example used here is label-free bio-sensing. The optical path
in the WGM device can be changed even by the binding of molecules. The variation in the optical path
can be detected as a shift in the resonance wavelength [4, 2].

In this research, the optimization methodology to enhance the performance of the WGM resonator
is studied in the application of the laser resonators and optical biosensors. Topology optimization [5]
has contributed to optimal designs in novel wave propagation devices in photonics [6, 7, 8, 9]. In the
approach, the designed devices are represented as distributions of the dielectric material or metal in the
analysis model. By updating the distribution by the gradient-based optimization method, the generated
distribution represents the shape of devices that attain specific performance criteria.

In this research, we study and identify optimal shapes for WG micro-ring resonators using FEM-based
topology optimization. The systematic procedure helps to find optimal device shapes with fixed design
performance given a prescribed emission wavelength and WG resonance mode. The analysis domains
and the equations of state for the WG mode ring resonators are first considered. In the laser resonator
optimization, the two critical performance indices, the quality factor (Q factor) and mode volume of a
resonator, are treated as the objective functions in the optimization. In the optical biosensor optimization,
the Q factor and energy density of the specified domain are treated as the objective functions. The
emission wavelength is formulated as an equality constraint. The methodology is implemented as a
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distribution optimization of the dielectric material using the solid isotropic material with the penalization
(SIMP) method of topology optimization. The optimization algorithm is constructed based on the two-
times FEM analysis, sensitivity analysis for each objective function and density function constraint, and
sequential linear programming (SLP) with a phase field method [10]. Finally, numerical examples are
provided as a validation of the proposed methodology.

4. Problem settings
4.1 Analysis model
Using cylindrical coordinates, we model a WG ring resonator centered on the origin in free space as
illustrated in Fig. 1. The coordinate system composed of components (z, ϕ, r) are the axial, azimuthal,
and radial coordinates respectively. The vertical cross-sectional shape of the device in the z-r plane, is
treated as the design target; we obtain the final axisymmetric form by generating the solid of revolution.
The domain is enclosed by a perfect matched layer (PML) domain.
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Figure 1: The analysis and design domain as described by cylindrical coordinates

4.2 Equations of state
The equations of state representing resonance-mode wave propagation within the domain are the 3D
vector Helmholtz equations. If the resonator medium is isotropic, the Helmholtz equation for the magnetic
field H, as derived from Maxwell’s equation, is written as follows:

∇×
(
1

ϵ
∇×H

)
− 1

c2
∂2H

∂t2
= 0 (1)

where ϵ is the relative permittivity and c the speed of light. Here, the time harmonic function is assumed
in the form H(x, t) = H(x)eiωt and the above equation is solved as an eigenvalue problem by FEM,
where ω = 2πf is the angular resonance frequency given resonance frequency f . To suppress spurious
modes in the analysis, a weak penalty term [11] is introduced to yield the following modified equation
used in [12]:

∇×
(
1

ϵ
∇×H

)
− α∇ (∇ ·H) +

ω2

c2
H = 0 (2)

where α is a coefficient. The following two types of boundary conditions for the above equation are
considered:

H × n̂ = 0 on Γpmc (3)

n̂×∇×H + ikn̂× n̂×H = 0 on Γabc (4)

where k is the wave number in free-space and n̂ is the unit vector normal to the boundary; the former
describing perfect magnetic conduction and the latter first-order absorption on the boundary.

The state variable is the set comprising the time-dependent radial, azimuthal, and axial components
of the magnetic field vector H(r, t). We factorize the azimuthal-dependence from the variable using the
cylindrical coordinate system; that is,

H(r) = eiMϕ[Hr(r, z), iHϕ(r, z),Hz(r, z)]
T (5)
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where M is the azimuthal mode order.

4.3 Performance criteria
In our analysis, the performance criteria in designing WGM laser resonator are the Q factor and the mode
volume. In calculating the Q factor, we consider only the radiation loss for which, Qrad is calculated as
follows [3, 13]:

Qrad =
Re(f)

2Im(f)
(6)

where Re(·) and Im(·) represent respectively the real and imaginary parts of the variable. In the analysis
for the domain surrounded by the PLM domain, the real part of the frequency represents the total energy
of the domain, whereas the imaginary part represents the rate of energy absorption by the PLM domain,
i.e. the radiation loss (Chapter 5 in [14]).

In addition, the mode volume is formulated as follows [3, 13]:

Vmode =

∫
Ω
ϵ|E|2dx

max(ϵ|E|2)
(7)

where Ω denotes the analysis domain and E is the electric field vector.
In addition to the Q factor, the performance criteria for the sensor design are the energy density of

the detection domain formulated as follows:

U =

∫
Ωdet

ϵ|E|2dx∫
Ωdet

dx
(8)

4.4 Topology optimization
Topology optimization is performed based on density or SIMP interpolation schemes; here SIMP stands
for solid isotropic material with penalization [5]. The relative permittivity over the design domain is
expressed in terms of a density function ρ, (0 ≤ ρ ≤ 1):

ϵ = ϵAir + ρ(ϵGaAlAs − ϵAir). (9)

The optimal cross-sectional shape of the device can then be specified as a distribution in ρ.
During optimization, we target the following three tasks in the laser resonator optimization:

1. Maximization of the Q factor associated with emissions as expressed by equation 8.

2. Minimization of the mode volume as expressed by equation 7.

3. Specification of the emission wavelength λ = c/Re(f),.

Task 3) is first assumed to be satisfied by introducing the corresponding equality constraint. In the
eigenfrequency analysis, assuming normalized eigenmodes H (

∫
Ω
|H|2dx = 1), the total electric energy

over the analysis domain equals the square of the angular eigenfrequency (
∫
Ω
ϵ|E|2dx = Re(ω)2) [15,

16]. That is, by pre-specifying emission wavelength and azimuthal mode order, both numerators in the
expressions for the Q-factor and mode volume are constant during optimization. Thus, the objective
functions for Task 1, JQ, and Task 2, JV , and the equality constraint h for Task 3 are formulated as
follows:

minimize
ρ

JQ(ρ) = Im(f) (10)

or

minimize
ρ

JV (ρ) = −max(ϵ|E|2) (11)

subject to

h(ρ) = λ− λ0 = 0 (12)

with λ0 denoting the specified wavelength.
In the sensor optimization, we target the following three tasks in the laser resonator optimization:
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1. Maximization of the energy density of the specified domain.

2. Maximization of the Q factor associated with the emissions as expressed by 8.

3. Specification of the emission wavelength λ = c/Re(f).

Handling the Q factor as the same way with the laser resonator optimization, the following objective
functions are formulated:

minimize
ρ

JU (ρ) = −
∫
Ωdet+Ωec

ϵ|E|2dx (13)

or

minimize
ρ

JQ(ρ) = Im(f) (14)

subject to

h(ρ) = λ− λ0 = 0 (15)

4.5 Numerical implementation and optimization algorithm
We solve the eigenvalue problem in equation 2 by FEM. To perform the iterating numerical optimization
based on the FEM result, the target WG eigenmode is required to be automatically selected from the
numerous resulting eigenmodes. The two-step analysis proposed in [12] is introduced to specify the target
mode during the optimization iteration. First, we solve the small closed finite-element model composed
of the device surrounded by a perfect magnetic wall to obtain the eigenfrequency of the target WG mode.
The first eigenmode of the model corresponds to the target WG mode. Second, we solve for the original
model surrounded by PLM domains, as drawn in Fig. 2, specifying the target eigenfrequency obtained
by the closed model.

Since the density function is updated by gradient-based algorithms, sensitivities for both objective
function and constraint must be calculated. The sensitivity of the objective function in equation (13)
and the equality constraint in equation (15) can be calculated from only state variables without solving
the adjoint equation because the optimization problem of the eigenfrequency is self-adjoint [17]. The
sensitivity of the objective function in equation (14) is expressible in terms of the functions of the state
variable and its adjoint; the adjoint equation is as formulated in [18].
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Figure 2: The analysis domains used in FEM for (a) laser optimization and (b) sensor optimization.

5. Numerical examples
To confirm the validity of the proposed methodology, some numerical examples are studied. The detail
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of the computational model is first explained. Optimizations are performed with specified TE modes
(p = 1, M = 10or11). The size of each is as follows: the air domains of both closed and open models
are 1.8 µm × 3 µm and 4 µm × 6 µm respectively; the design domain which is identical in both models
is 1.5 µm × 2 µm. The PLM domains are set for the upper, lower and right-side of the open model and
their thickness are all 0.25 µm. The design domain is meshed by 75 × 100 square elements. The other
domains are meshed by triangular elements. The design variable is discretized as a piecewise-constant
function on the square finite elements of the design domain. Assuming horizontal mirror symmetry of the
optimal shapes, only the upper half of the design domain is optimized. Thus, the 7500 design variables
are updated during optimization in this problem. The media constituting the resonator and surrounding
domain are assumed to be respectively isotropic GaAlAs with ϵ = 11.2896 and air with ϵ = 1. All FEMs
are performed using a commercial software, COMSOL Multiphysics.

5.1 Optimization of laser resonator
The first optimization is performed with the specified wavelength λ0 = 1200nm and azimuthal mode
order M = 11 targeting to improve the Q factor using the objective function in equation 13. Fig. 3
shows the optimal configuration, the distribution of the electric energy density ϵ|E|2 and the electric field
intensity |E|2. These figures are shown in 1.5 µm × 2 µm boxes for which the left side corresponds to
the center axis. The resulting Q factor and mode volume are Qrad = 5.809× 107, Vmode = 1.716× 10−19.
The optimal shape has a large smooth convex form covering the electric-field hot spot to reduce radiation
losses.

(b)(a) (c)

Figure 3: Optimal result obtained by maximization of Qrad with λ0 = 1200nm and M = 11. (a) Optimal
shape. (b) Electric field intensity |E|2 distribution, with the white arrows indicating the electric field’s
magnitude and direction in the medial plane. (c) Electric energy density ϵ|E|2 distribution.

The optimizations are performed with the view to increasing Q factor and decreasing mode volume as
far as possible. The following objective function is introduced by integrating equations 13 and 14 using
weighting factor w:

minimize
ρ

J(ρ) = w ∗ Im(f)− (1− w) ∗max(ϵ|E|2) (16)

Varying the weighting coefficient from 0 to 1, six optimal results are encountered; see Fig. 4. Result (a)
corresponds to that shown in Fig. 3. As a trade-off exists between Q-factor and mode volume, the set of
optimal solutions forms a Pareto-optimal set [19]; better Qrad values must lead to worse Vmode and vice
versa given the same wavelength and the azimuthal mode order. Fig. 5 shows the electric field intensity
corresponding to shape (f). In contrast to high Q factor shape, the low-mode-volume optimal shape has
a small concave form near the center to enhance the maximum electric energy. The interpolated shapes
(b)-(e) have both characteristics. The concentrations of the electric field and the electric energy at the
center of the device are observed in shape (f) whereas shape (a) has a wider hot spot. Moreover, to
maintain the emission wavelength for the same azimuthal mode order but different shapes, the location
of the cross-section moves off-center as the cross-sectional area becomes smaller. With normalization of
the eigenmode, the square of the emission frequency equals the total electric energy of the resonator and
fixed. Thus, the total energy of the cross-section, which relates the area and the diameter at the center
of the cross-section, are inversely related.

5.2 Optimization of optical sensor
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Figure 4: Optimal shapes and their performances, obtained by maximizing Qrad and minimizing Vmode

with different weighting factor settings in equation (16).

The first optimization of the optical sensor is performed to improve the energy density at the specified
detection domain by using the objective function in 13. Optimizations are performed with a specified
wavelength λ0 = 1300nm. Fig. 6 shows the optimal configuration obtained at iteration 39, the distribution
of the electric energy density ϵ|E|2 and the electric field intensity |E|2. These figures are shown in 1.5 µm
× 2 µm boxes, where the left side corresponds to the center axis. The small squares shown in Fig. 6(a)
and (b) represent the detection domain Ωdet and the energy concentration domain Ωec. Both domains
are shown side by side in each figure; however, one of them is less visible because of the surrounding
colors in Fig. 6(a) and (b). The resulting energy density and Q factor are U = 6.50 × 1014 and
Qrad = 1.04× 105, respectively. The optimal shape is concave near the energy concentration domain to
enhance the maximum electric energy. As a result, a strong electric field can be observed in the detection
domain. This shape is very similar to the optimal shape for minimization of the mode volume shown in
the previous example.

Finally, the optimization is performed with a view to increasing both the energy density and the Q
factor as far as possible. The following objective function is introduced by integrating (13) and (14) using
the weighting factor w (0 ≤ w le1):

minimize
ρ

J(ρ) = −w ∗
∫
Ωdet+Ωec

ϵ|E|2dx+ (1− w) ∗ Im(f) (17)

The location and size of the detection domain are the same as those in the first optimization example.
By varying the weighting coefficient from 0 to 1, five optimal results are found; see Fig. 7. Result (a)
corresponds to that shown in Fig. 6. A trade-off relationship between the Q-factor and the mode volume
can be seen from these results, i.e., that better energy density must lead to a worse Q factor and vice
versa, given the same wavelength and azimuthal mode order. The characteristics of these shapes can
be found by analysis of the energy distribution. In Fig. 7 (b), a similar energy distribution to that of
result (a) can be obtained, because the Q factor term in the objective function was weaker. In Fig. 7
(c), although the energy hot spot is next to the detection domain, relatively high energy concentrations
can be observed in both the upper and lower sides of the cross-section. In Fig. 7 (d) and (e), the hot
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(a) (b)

Figure 5: (a) Electric field intensity |E|2 distribution with black arrows indicating the electric field’s
magnitude and direction in the medial plane and (b) Electric energy density ϵ|E|2 distribution of optimal
result shown in Fig. 4(f)

Ωdet

(a)

Ωec

(b) (c)

Figure 6: (a) Optimal shape. (b) Electric energy density ϵ|E|2 distribution. (c) Logarithmic electric field
intensity |E|2 distribution, where the white arrows indicate the electric field magnitude and direction in
the medial plane.

spot moved away from the detection domain to reduce the energy losses. The dielectric is connected
between the hot spot and the detection domain to transfer the electric energy. These results show that
optimization for both high energy density and a high Q factor could be performed using the proposed
methodology.

6. Conclusion
In this research, we optimized cross-sectional shapes for WGM resonators for the application of laser
resonators and optical sensors using topology optimization. The systematic procedure helps to find
optimal device shapes with certain designed performance given prescribed emission wavelength and WG
resonance mode. As a basic principle for designing WGM laser resonators, we found that large convex
shapes produced high Q factors; small concave shapes produced low mode volumes. We also found
that concave shapes produced high energy density levels near the cross-sectional center of the devices in
the design of optical sensors. The multi-objective optimizations were succeeded in both optimizations.
Through these studies, we confirmed the utility of the topology optimization in the design of WGM
devices.
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