
10th World Congress on Structural and Multidisciplinary Optimization
May 19 - 24, 2013, Orlando, Florida, USA

A Matrix-Free Approach to Large-Scale Structural Optimization

Andrew B. Lambe1 and Joaquim R. R. A. Martins2

1University of Toronto, Toronto, Canada, lambe@utias.utoronto.ca
2University of Michigan, Ann Arbor, Michigan, USA, jrram@umich.edu

1. Abstract
In many problems within structural and multidisciplinary optimization, the computational cost is

dominated by computing gradient information for the objective and all constraints. If the problem
contains both a large number of design variables and a large number of constraints, analytic gradient
computation methods become inefficient. Constraint aggregation may be used together with the adjoint
method to reduce the cost of the gradient computation at the expense of problem conditioning and the
quality of the final solution. An alternative approach is proposed in which a specialized optimizer is
employed that only requires products of the constraint Jacobian with appropriate vectors rather than
the full Jacobian itself. These matrix-vector products can be formed for a fraction of the cost of forming
the full matrix, allowing the original set of constraints to be used without aggregation. We regard the
resulting optimizer as “matrix-free” in that it does not require the Hessian or Jacobian matrices of the
optimization problem to be explicitly formed. Results on two simple structural optimization problems
are presented.

2. Keywords
structural optimization, large-scale optimization, matrix-free optimization, augmented Lagrangian

methods, quasi-Newton methods

3. Introduction
We state the constrained optimization problem of interest as follows:

minimize f(x, y(x))

with respect to x

subject to c(x, y(x)) ≤ 0

xL ≤ x ≤ xU
where y solves R(x, y) = 0

(1)

In this problem statement, x is the set of design variables with bounds xL and xU , y is the set of state
variables, and R is the set of governing equations of the structural analysis. Note that Problem (1) can
be extended to describe multidisciplinary systems by defining multiple groups of design variables, state
variables, design constraints, and analysis equations. (Martins and Lambe [18] give a detailed discussion of
the problem formulations in multidisciplinary design optimization.) In the literature, Problem (1) is often
referred to as the Nested Analysis and Design (NAND) problem [1]. In this form, the state variables y are
treated as functions of the design variables x by solvingR(x, y) = 0 every time x is updated. Simultaneous
Analysis and Design [13] problems, in which R(x, y) = 0 are treated as optimization problem constraints
and y become independent variables, will not be considered here.
When gradient-based methods are used to solve Problem (1), most of the computational effort is spent
evaluating the objective and constraint functions and their derivatives. The derivatives constitute the
majority of the cost if the problem has a large number of constraints. Therefore, optimization algorithms
that require few function and gradient evaluations to solve the problem are desirable. In the wider
optimization community, sequential quadratic programming (SQP) methods of various types are the
tool of choice. In structural optimization, convex approximation methods that exploit specific nonlinear
problem structures are also very popular. These methods are implemented in software packages like
CONLIN [8], MMA [22], and SAOi [12]. Each of these optimization codes use intervening variables
to form high-quality nonlinear approximations to the objective and constraints of the original design
problem. (See also [14] for a general introduction to structural optimization.)

1

While these optimization methods can all be used to solve Problem (1), their performance will necessarily
suffer if Problem (1) contains both a large number of design variables and a large number of constraints.
In SQP, for example, the full constraint Jacobian dc/dx must be computed and returned to the optimizer
to solve the quadratic subproblem. In the convex approximation methods, even if a dual method can
be employed to solve the convex subproblem, the full Jacobian is needed to compute coefficients that
define the approximation functions. In a problem with many variables and many constraints, where
the cost is dominated by the gradient computation, this requirement for the full Jacobian becomes the
computational bottleneck for the whole problem.
Problems with both many design variables and many constraints are common in structural optimization.
In particular, minimum-mass structural design problems subject to failure constraints will naturally
require a large number of constraints — the stress on each finite element in the structural model will
need to be constrained to prevent failure everywhere in the structure. A common remedy for the large
number of constraints is to aggregate them to reduce the size of the Jacobian and therefore reduce the
computational cost. However, constraint aggregation can cause the optimization problems to become
nonsmooth or poorly conditioned. Even if the problem can be solved by gradient-based optimization, the
extra effort required offsets the reduced cost of computing the Jacobian. Furthermore, if the aggregation
is conservative, the final designs obtained when using constraint aggregation can have a higher mass than
those obtained without aggregation.
In this work, we present an alternative approach to solving structural optimization problems with both
many variables and many constraints that avoids the problems associated with constraint aggregation.
The key idea is to use an optimizer that requires only matrix-vector products between the constraint
Jacobian and some vectors of interest. Because the optimizer does not require problem Hessian or
Jacobian information directly, we refer to such an optimizer as “matrix-free.” [7, 10] Section 4. reviews
how to compute the Jacobian analytically and how matrix-vector products can be computed efficiently.
Section 5. briefly discusses our matrix-free optimization algorithm. Particular emphasis is placed on how
we use quasi-Newton methods to keep the number of matrix-vector products low. Section 6. discusses
the optimization results on two structural test problems and compares the cost with SQP. Section 7.
offers concluding remarks and speculates about the future prospects of this optimization approach.

4. Gradient Computation Methods
The most efficient way to compute the gradients for Problem (1) is analytically. To do so requires

knowledge of specific sets of partial derivatives of the governing equations with respect to design and
state variables. While it is not a trivial task to obtain these derivatives, we will assume that they are
available for the purpose of our discussion.
Under Problem (1), we can compute the derivative of constraint ci with respect to variable xj as

dci
dxj

=
∂ci
∂xj

+

M∑
k=1

∂ci
∂yk

dyk
dxj

=
∂ci
∂xj

+
∂ci
∂y

dy

dxj
,

(2)

where M is the total number of state variables. We also use the shorthand notation

∂c

∂x
=
∂(c1, ..., cm)

∂(x1, ..., xn)
∈ Rm×n

to describe the Jacobian of a set of functions with respect to a set of variables. For example, the ∂ci/∂y
term in Equation (2) is a row vector of length M containing all ∂ci/∂yk values.
The dy/dxj term is computed by recognizing that the system R(x, y) = 0 has been solved for xj and no
change in xj alters this fact. Therefore, we can state that

dR
dxj

= 0 =
∂R
∂xj

+
∂R
∂y

dy

dxj
. (3)

Rearranging the terms in Equation (3) yields

dy

dxj
= −

[
∂R
∂y

]−1
∂R
∂xj

. (4)

2

By direct substitution of Equation (4) into Equation (2), we obtain

dci
dxj

=
∂ci
∂xj
−
[
∂ci
∂y

] [
∂R
∂y

]−1
∂R
∂xj

. (5)

Finally, we drop the subscripts on c and x to obtain an expression for the full constraint Jacobian.

dc

dx
=
∂c

∂x
−
[
∂c

∂y

] [
∂R
∂y

]−1
∂R
∂x

(6)

Note that Equation (6) describes an m × n matrix, where m is the number of constraints and n is the
number of design variables.
The direct and adjoint methods [17] for computing gradient information follow immediately from Equa-
tion (6). In the direct method, a sequence of linear systems of the form[

∂R
∂y

]
dy

dxj
= − ∂R

∂xj
(7)

is solved to form a dy/dx matrix that is then used to compute dc/dx. In the adjoint method, an alternative
sequence of linear systems of the form [

∂R
∂y

]T
ψci = −

[
∂ci
∂y

]T
(8)

is solved to compute a matrix, ψT
c , that is then multiplied by ∂R/∂x to compute dc/dx. Note that the

number of linear systems to be solved in the direct method is n, while the number of linear systems to be
solved in the adjoint method is m. Another way to think about these methods is that the direct method
assembles dc/dx one column at a time while the adjoint method assembles it one row at a time. Because
the number of state variables is often much larger than the number of design variables and constraints,
the most expensive part of forming the Jacobian is solving the linear systems (7) or (8). Therefore, either
the direct or adjoint method may be selected based on which method requires the fewest linear systems
to be solved. For example, if n > 100 but m < 10 for the problem of interest, we would expect the adjoint
method to be an order of magnitude more efficient.
We now turn to the subject discussed in the introduction: what if the optimization problem were to
contain many (potentially thousands) of design variables and many constraints? While we may choose to
select either the direct or adjoint method, the similar magnitudes of m and n suggests that the relative
gain in efficiency will be small. Even if m and n are widely separated in magnitude but min(m,n) is large,
the cost of computing a single Jacobian can be very high. Constraint aggregation approaches reduce this
cost by lumping groups of constraints together to reduce the size of m. However, a major side effect of this
approach is that it creates optimization problems that are nonsmooth or poorly conditioned. For example,
constraining the maximum constraint violation leads to a nonsmooth problem because the gradient of
the maximum function is not defined everywhere in the domain. The Kreisselmeier–Steinhauser (KS)
aggregation technique [16]

KS[c(x)] = cmax +
1

ρ
ln

[
m∑
i=1

exp (ρ(ci(x, y(x))− cmax))

]
(9)

enjoys the advantage of smoothness, but can cause the resulting optimization problem to become ill-
conditioned if the controlling parameter ρ is chosen to be too large. The ill-conditioning comes from
the sharp curvature that results when the KS function tries to model the intersection of two or more
constraints. [20] Effectively, the KS function behaves more like the maximum function as ρ increases.
Furthermore, the conservative property of the KS function means that the optimal solution of the KS-
constrained problem will not be the same as that of the original problem. While the error in the final
constraint feasibility is bounded, [20] it is especially pronounced in regions where multiple constraints are
active. Therefore, using a constraint aggregation approach will necessarily lead to a compromise between
the computational effort and the quality of the final solution.
We propose to avoid the problems associated with aggregation by avoiding computation of the full
Jacobian at each iteration. Instead, we rely on products of the Jacobian with appropriate vectors to

3

extract the gradient information necessary to solve the problem. Consider Equation (6) again, but
multiply the Jacobian by an n-length vector v.[

dc

dx

]
v =

[
∂c

∂x

]
v −

[
∂c

∂y

] [
∂R
∂y

]−1 [
∂R
∂x

]
v (10)

Similarly, consider multiplying the transpose of the Jacobian by an m-length vector w.[
dc

dx

]T
w =

[
∂c

∂x

]T
w −

[
∂R
∂x

]T [
∂R
∂y

]−T [
∂c

∂y

]T
w (11)

Note that to compute the final matrix-vector product, we never need to form dc/dx. We simply perform a
set of matrix-vector multiplications from right to left in Equations (10) and (11). Furthermore, we do not
even need explicit representations of the partial derivative matrices in order to compute the corresponding
matrix-vector products. Most importantly, the cost of computing a single matrix-vector product becomes
virtually independent of m and n. Because of the right-to-left multiplication scheme, the number of large
linear systems to solve to compute a single product is exactly one. Thus, unlike the direct or adjoint
methods, the optimization problem size no longer dictates the number of large linear systems to solve.
This approach does present other issues. First, few algorithms and, to our knowledge, no optimization
software packages solve general nonlinear problems and accept only matrix-vector product information.
We have therefore developed our own software to test out this idea. Second, by relying on matrix-
vector products, the resulting algorithm is necessarily working with less information about the underlying
problem. Therefore, we expect to trade-off the number of iterations of the optimization algorithm against
the amount of information that the algorithm requires at each iteration. This is a favourable trade-off
to make in structural optimization given the large imbalance in the computational work between the
analysis and the optimization. Finally, to ensure that the trade-off works in our favour, we need to focus
on keeping the total number of matrix-vector products per iteration small.

5. A Matrix-Free Optimization Algorithm
For our optimization algorithm, we have chosen to implement a matrix-free version of an augmented

Lagrangian penalty method. Penalty methods are easy to make matrix-free due to the fact that the
gradient of the penalty function includes a matrix-vector product involving the Jacobian. The augmented
Lagrangian was chosen in particular because it is a differentiable penalty function and the optimal solution
can be computed with a finite penalty weight [2]. Given a nonlinear optimization problem with variable
bounds

minimize f(x)

with respect to x

subject to c(x) ≤ 0

xL ≤ x ≤ xU ,

(12)

the problem is reformulated as

minimize φ(x, r;λ, ρ) = f(x)− λT (c(x) + r) +
ρ

2
(c(x) + r)T (c(x) + r)

with respect to x, r

subject to xL ≤ x ≤ xU
r ≥ 0,

(13)

where λ is a vector of Lagrange multipliers, r is a set of slack variables, and ρ is a penalty parameter.
Each iteration of the augmented Lagrangian method (also known as the method of multipliers) consists
of solving problem (13) and updating ρ and λ based on the infeasibility of the final solution x and r. We
use the updating scheme proposed by Conn, Gould, and Toint [6], but choosing λ based on the solution
to the least-squares problem

minimize ||∇f − J̃Tλ||2, (14)

where J̃ is the Jacobian of equality constraints with respect to both r and x. This scheme allows
problem (13) to be solved inexactly, yet still converge rapidly near a local minimum. Problem (13) is
solved by a nonmonotone, l∞ trust-region method in which the quadratic subproblems were solved by the

4

algorithm of Moré and Toraldo [19]. Complete details of our algorithm will be presented in a forthcoming
paper. For the rest of this section, we focus on how the optimizer keeps the required number of matrix-
vector products low while maintaining fast convergence.
Because we do not have analytic second derivative information available, we approximate the Hessian
of the augmented Lagrangian using a limited-memory quasi-Newton method. However, we have found
through experimentation that approximating ∇2φ directly generally results in poor performance, even
on test problems of ten variables or less. Much better results can be obtained by exploiting the structure
of ∇2

xφ while still maintaining the matrix-free nature of the algorithm. Observe that

∇2
xφ = ∇2f −

m∑
i=1

λi∇2ci +

m∑
i=1

ρ(ci(x) + ri)∇2ci + ρJTJ, (15)

where J is used to denote the Jacobian of c with respect to x only. The first two terms are just the
Hessian of the Lagrangian, while the last term is a product of Jacobians. Because the algorithm we use
to solve the quadratic trust-region subproblems is based on the conjugate gradient (CG) method, we
require Hessian-vector products rather than the Hessian itself. Therefore, we can account for the JTJ
term directly using Jacobian-vector products. To approximate the second-order terms in (15), we use
a limited-memory symmetric rank-one [5] approximation to the Hessian of the Lagrangian and simply
truncate the additional constraint Hessian term. (It is difficult to approximate this term well with only
Jacobian-vector product information. We have observed no ill effects from truncating this term in our
test problems.) The Hessian terms that incorporate the slack variables can be similarly decomposed and
approximated. Our tests have shown this approximation scheme yields a large reduction in the number
of iterations to solve (13) compared to a näıve application of a quasi-Newton approximation to ∇2φ.
One issue remains with the above approximation scheme: while the number of trust-region iterations to
solve (13) was greatly reduced, the total number of Jacobian-vector products was still very high. Because
we use Jacobian-vector product information to help compute approximate Hessian-vector products in
the CG iteration, each CG iteration requires two Jacobian-vector products. Many CG iterations are
needed within each trust-region iteration so the total number of Jacobian-vector products remains high.
Preconditioning the CG method to reduce the number of iterations is a possibility but we do not know
any preconditioner that would be suitable for the Moré and Toraldo algorithm. Instead, we work around
the problem by avoiding matrix-vector products with the true Jacobian within the CG algorithm. We
do so by forming a quasi-Newton approximation to the Jacobian and using this approximation to solve
the trust-region subproblem. While we pay a small penalty by increasing the number of trust-region
iterations, (due to the inaccuracy of our Jacobian estimate,) we decouple the number of Jacobian-vector
products from the number of CG iterations. This decoupling yields the vast reduction in matrix-vector
products that we desire.
Quasi-Newton approximations to nonsquare matrices have been known in the literature for many years [4,
3] but have not frequently been applied to optimization problems. Our algorithm tests two quasi-Newton
approximations proposed by Schlenkrich et al. [21] The first method is referred to as the adjoint Broyden
method. For a given approximate Jacobian Ak the adjoint Broyden update is given by

Ak+1 = Ak +
σkσ

T
k

σT
k σk

(Jk+1 −Ak) (16)

where Jk+1 is the current Jacobian matrix and σk is an adjoint search direction. Note that this update
requires only a single matrix-vector product: JT

k+1σk. While several choices of σk are possible, we use

σk = c(xk+1) + rk+1 − c(xk)− rk −Ak(xk+1 − xk) (17)

in this study. This choice is the same as option (B) in Schlenkrich et al. [21] The second method is the
two-sided rank-one (TR1) method. While this method was first proposed by Griewank and Walther [11],
our tests use the version discussed by Schlenkrich et al. [21] The TR1 update formula is given by

Ak+1 = Ak +
(Jk+1 −Ak)skσ

T
k (Jk+1 −Ak)

σT
k (Jk+1 −Ak)sk

. (18)

where sk = xk+1 − xk. We choose (17) to be the adjoint search direction in the TR1 update. Unlike the
adjoint Broyden update (16), the TR1 update requires two matrix-vector products: JT

k+1σk and Jk+1sk.
Nevertheless, we have found both updates to be effective in reducing the number of Jacobian-vector
products required by the augmented Lagrangian algorithm.

5

10 kN

L = 10 m

xj

Figure 1: Layout of cantilever beam design problem

6. Structural Test Results
We now present results of our matrix-free augmented Lagrangian algorithm on two structural test

problems. We also compare these results with those from the SQP optimizer SNOPT [9]. The basis for our
comparison will be the total number of times we solve a linear system involving the matrix ∂R/∂y. This
metric allows us to directly compare matrix-free optimizers with more traditional optimizers that require
computation of the full Jacobian. Furthermore, a common technique to solve the system R(x, y) = 0 is
Newton’s method, which relies on the linear system[

∂R
∂y

]
∆y = −R(x̄, ȳ) (19)

where x̄ and ȳ are particular choices of the design and state variables. Both of our test problems use
the linear finite element method, which is equivalent to a single solution of linear system (19). (In the
structural context, y is the set of displacements and ∂R/∂y is just the stiffness matrix.) Therefore, by
totalling the number of linear system solves, we create a cost metric that accounts for both the number of
function evaluations and the number of gradient evaluations at the same time. As the structural model
and optimization problem sizes increase, solving these linear systems becomes the dominant computa-
tional cost.
The first problem is to minimize the mass of a cantilever beam. The beam has a solid, circular cross-
section and is loaded only at the free end. Figure 1 gives the initial geometry of the beam. The design
variables for the problem are the radii of each beam element. Initially, all design variables are set to
3 mm. The problem constraints are that the maximum stress in each element must be less than the yield
stress of the material. The material properties for the beam are as follows: E = 70 GPa, G = 26 GPa,
σyield = 324 MPa, ρ = 2780 kg/m3. In each version of the problem that we test, there is one design
variable and one constraint per beam element.

Figure 2 plots the computational cost of solving each optimization problem against the problem size.
The cantilever beam problem is solved for up to 1000 elements, corresponding to a problem size of 1000
variables and 1000 constraints. In all cases, SNOPT and the augmented Lagrangian method converge to
the same solution. Again, the cost comparison is in terms of the number of expensive linear systems which
must be solved. Figure 2 shows that SNOPT is the superior optimizer for small problems but becomes
very costly to use on larger problems due to the need to compute the whole Jacobian for each iteration.
In contrast, the growth rate in the cost is much lower using any version of the augmented Lagrangian
solver. Furthermore, maintaining quasi-Newton approximations to the Jacobian within the trust-region
solver yields a very large reduction in the computational cost — generally 60-80% for both types of
approximation — when compared to using true Jacobian-vector products everywhere in the algorithm.
It is interesting to note that SNOPT never requires more than 20 iterations (20 Jacobian computations)
to solve the problem while the augmented Lagrangian method requires up to 200 iterations on the larger
versions of the problem. Therefore, most of the cost reduction is attributed to avoiding the frequent
recomputation of the full Jacobian.
The second structural test problem is to minimize the mass of a square plate clamped on all sides and

subject to a pressure load. Figure 3 shows the initial geometry of the plate and the load. The material
properties for the plate are as follows: E = 70 000, ν = 0.3, σyield = 300.0, ρ = 1.0, kcorr = 5/6. The
plate thickness variables are bounded between 3 mm and 7 mm. By symmetry, we only need to analyze
one quarter of the plate to obtain results for the whole. As with the beam problem, every finite element in

6

101 102 103

Number of Beam Elements

102

103

104

105

Nu
m

be
r o

f [
R
/
y]
−

1
 P

ro
du

ct
s

to
 O

pt
im

iz
e

AugLag - True J-Products
AugLag - Adjoint Broyden
AugLag - TR1
SNOPT - Full Jacobian

Figure 2: Computational cost of solving cantilever beam design problem

X

Y

Z

0.25 MPa

Ly = 320 mm

Lx = 320 mm

tinit = 3 mm

Figure 3: Layout of pressurized plate design problem

the discretization is associated with a single design variable, thickness, and a single constraint, maximum
stress less than a yield stress. Five discretization schemes are tested: 12 × 12, 18 × 18, 24 × 24, 30 × 30,
and 36 × 36 plate elements. The finite element analysis was carried out using the TACS code (Toolkit
for the Analysis of Composite Structures [15]) using third-order MITC shell elements. In contrast to the
cantilever beam problem, the plate problem is statically indeterminate. We therefore expect this test to
be a more representative of the matrix-free algorithm’s performance on general structural optimization
problems.
Figure 4 plots the computational cost of solving different versions of the plate problem using SNOPT

and the augmented Lagrangian algorithm with quasi-Newton Jacobian approximations. The final plate
designs generated by each optimizer are not identical but the difference in optimum mass is less than 0.3%
on the coarsest mesh. (This difference decreases as the mesh is refined.) Just like with the cantilevered
beam problem, Figure 4 shows that the cost of the augmented Lagrangian algorithm has more favourable
scaling than that of SNOPT. Results for the augmented Lagrangian algorithm with true Jacobian-vector
products are not plotted because that algorithm is far more expensive than the versions using the approxi-
mate Jacobians. As with the beam problem, the combination of approximate Jacobians and a matrix-free
optimization algorithm is effective at reducing computational cost, even compared to a robust SQP algo-
rithm like SNOPT. Once again, SNOPT requires recalculation of the Jacobian less than 20 times to solve
the problem. However, the cost of computing the whole Jacobian is so large that maintaining an approx-
imation to the Jacobian, as we do in our matrix-free augmented Lagrangian method, is much more cost
effective. For the largest case plotted in Figure 4, (1296 variables and constraints,) using the matrix-free

7

102 103

Number of Plate Elements

103

104

105

Nu
m

be
r o

f [
R
/
y]
−

1
 P

ro
du

ct
s

to
 O

pt
im

iz
e

SNOPT - Full Jacobian
AugLag - TR1
AugLag - Adjoint Broyden

Figure 4: Computational cost of solving pressurized plate design problem

augmented Lagrangian algorithm reduces the number of large linear systems to solve by nearly 85%. We
expect that an order-of-magnitude improvement over traditional SQP should be possible for larger test
cases.

7. Conclusions
We have presented an alternative approach to structural optimization using a matrix-free algorithm.

The matrix-free approach was motivated by taking another look at how gradient information was com-
puted for an optimization problem with both many variables and many constraints. Because computing
products of the Jacobian with a few vectors of interest is far cheaper than trying to compute the full
Jacobian for large problems, we use this information to approximate and update the Jacobian through
a quasi-Newton method. Our test results show great promise. Even though our augmented Lagrangian
algorithm required many more iterations than an SQP algorithm to solve the test problems, the lower
cost of the augmented Lagrangian iterations meant that we could reduce the total computational work
by as much as 85% compared to SQP. We emphasize that because we did not change the original set
of constraints on the problem at all, the reductions in computational cost do not come with any of the
caveats associated with constraint aggregation.
Future work on this project consists of testing the algorithm on more complicated structures to verify
the trend of reduced computational load as the model and problem sizes increase. We also forsee an
application of this algorithm to multidisciplinary problems such as the combined aerodynamic and struc-
tural optimization of aircraft wings. In the multidisciplinary case, the imbalance in computational cost
between the analysis and the optimization is even more pronounced than for the single-discipline case.
Furthermore, multidisciplinary problems are more likely to rely on iterative methods to solve the linear
systems because of the difficulty in computing partial derivative information within the multidisciplinary
system. In these cases, the matrix-free optimization approach is especially attractive.

8. Acknowledgements
The authors would like to thank Sylvain Arreckx and Dominique Orban from École Polytechnique

de Montréal for their assistance in developing the augmented Lagrangian algorithm within the NLPy
computing environment. The first author was partially funded by a scholarship from the Natural Science
and Engineering Research Council of Canada.

9. References
[1] R. J. Balling and J. Sobieszczanski-Sobieski. Optimization of Coupled Systems: A Critical Overview

of Approaches. AIAA Journal, 34(1):6–17, 1996.

8

[2] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific,
1996.

[3] S. K. Bourji and H. F. Walker. Least-Change Secant Updates of Nonsquare Matrices. SIAM Journal
on Numerical Analysis, 27(5):1263–1294, 1990.

[4] C. G. Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations. Mathematics of
Computation, 19(92):577–593, 1965.

[5] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton matrices and their
use in limited memory methods. Mathematical Programming, 63:129–156, 1994.

[6] A. R. Conn, N. I. M. Gould, and P. L. Toint. A Globally Convergent Augmented Lagrangian Algo-
rithm for Optimization with General Constraints and Simple Bounds. SIAM Journal on Numerical
Analysis, 28(2):545–572, 1991.

[7] F. E. Curtis, J. Nocedal, and A. Wächter. A Matrix-Free Algorithm for Equality Constrained
Optimization Problems with Rank-Deficient Jacobians. SIAM Journal on Optimization, 20(3):1224–
1249, 2009.

[8] C. Fleury and V. Braibant. Structural Optimization: a New Dual Method Using Mixed Variables.
International Journal for Numerical Methods in Engineering, 23:409–428, 1986.

[9] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP Algorithm for Large-Scale Constrained
Optimization. SIAM Journal on Optimization, 12(4):979–1006, 2002.

[10] J. Gondzio. Matrix-free interior point method. Computational Optimization and Applications,
51:457–480, 2012.

[11] A. Griewank and A. Walther. On Constrained Optimization by Adjoint based Quasi-Newton Meth-
ods. Optimization Methods and Software, 17:869–889, 2002.

[12] A. A. Groenwold, L. F. P. Etman, and D. W. Wood. Approximated approximations for SAO.
Structural and Multidisciplinary Optimization, 41:39–56, 2010.

[13] R. T. Haftka. Simultaneous Analysis and Design. AIAA Journal, 23(7):1099–1103, July 1985.

[14] R. T. Haftka, Z. Gürdal, and M. P. Kamat. Elements of Structural Optimization. Kluwer Academic
Publishers, Dordrecht, NL, 1992.

[15] G. J. Kennedy and J. R. R. A. Martins. Parallel Solution Methods for Aerostructural Analysis and
Design Optimization. In 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Confer-
ence, Fort Worth, TX, Sept. 2010.

[16] G. Kreisselmeier and R. Steinhauser. Systematic Control Design by Optimizing a Vector Performance
Indicator. In Symposium on Computer-Aided Design of Control Systems, pages 113–117, Zurich,
Switzerland, 1979. IFAC.

[17] J. R. R. A. Martins and J. T. Hwang. Review and Unification of Discrete Methods for Computing
Derivatives of Single- and Multi-disciplinary Computational Models. AIAA Journal, 2013. (In press).

[18] J. R. R. A. Martins and A. B. Lambe. Multidisciplinary Design Optimization: Survey of Architec-
tures. AIAA Journal, 2013. (In press).

[19] J. J. Moré and G. Toraldo. On the Solution of Large Quadratic Programming Problems with Bound
Constraints. SIAM Journal on Optimization, 1(1):93–113, 1991.

[20] N. M. K. Poon and J. R. R. A. Martins. An adaptive approach to constraint aggregation using
adjoint sensitivity analysis. Structural and Multidisciplinary Optimization, 34:61–73, 2007.

[21] S. Schlenkrich, A. Griewank, and A. Walther. On the local convergence of adjoint Broyden methods.
Mathematical Programming, 121:221–247, 2010.

[22] K. Svanberg. The Method of Moving Asymptotes - a New Method for Structural Optimization.
International Journal for Numerical Methods in Engineering, 24:359–373, 1987.

9

	1. Abstract
	2. Keywords
	3. Introduction
	4. Gradient Computation Methods
	5. A Matrix-Free Optimization Algorithm
	6. Structural Test Results
	7. Conclusions
	8. Acknowledgements
	9. References

