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1. Abstract  
Evolutionary algorithms have become popular for finding approximate solutions of optimization problems. We 
have created a benchmark to compare the efficiency of these algorithms. Also we have modified the original 
particle swarm optimization algorithm with gradient information to improve its efficiency. 
2. Keywords: Evolutionary algorithms, Benchmark for testing, Particle swarm optimization. 
 
3. Introduction 
In the literature a lot of evolutionary algorithms can be found for example the ant colony algorithm [1] which 
simulates the behaviour of ants, genetic algorithms [2] which solves the optimization problem by simulating the 
process of evolution, Particle Swarm Optimization (PSO) algorithm [3,4], and hybrid techniques which are created 
as a mixture of algorithms to compound their beneficial features. The researchers of this area usually use test 
problems to compare these algorithms, however, the efficiency of an algorithm against another algorithm cannot 
be measured by the number of problems that it solves better, but we can state that which algorithm is better for a 
given test problem. Because of this, the benchmark should contain a wide variety of test functions with different 
properties. 
 
4. Advantages and disadvantages of evolutionary algorithms 
Evolutionary algorithms are popular for their efficiency, and easy implementation, but these algorithms have 
drawbacks which we have to consider in order to create a good benchmark. We should find test problems which 
can bring up these disadvantages. The largest disadvantage is that these algorithms select the better solutions in 
every iteration step knowing only the solutions in the previous iteration steps. Because of this it is hard to find the 
optimum for a noisy test function. The other disadvantage is that the algorithms cannot test whether the solution is 
optimal or not? In some cases the algorithms find the local optimum instead of the global. We can put various exit 
criteria in the algorithms which can help achieving better results, but it doesn’t solve the problem.  
 
5. A modified PSO algorithm 
As previously mentioned, several variants of the PSO algorithm have been developed to improve the effectiveness 
of the technique. One of the solutions is to establish multiple groups of particles instead of one group. Then the 
local best results in each group compared and the best result of the best group gives the solution. At this case the 
communication is interpreted not only between the individual particles, but between the groups, so that for 
individual particles in the speed and position changes not only the position of the local best of the group, but the 
best results of all the groups taken into consideration.  
Another modification is known as crazy bird. This variant is uses randomly selected particles and these particles 
are flying into a random direction, so that the group does not tear out particles towards the hoped gbest position, 
which differs from current gbest direction. It helps finding global minimum if the number of crazy bird is kept 
small. 
The aforementioned procedures effectiveness has a random nature. We do not know that how many groups for the 
particles to send into random direction to get a better result than using the standard algorithm.  
At the standard algorithm there is no other information about the objective function which is computed. But in 
many cases, depending on the individual characteristics of the problem, it would be useful to have local 
knowledge, since such information may make the procedure to be more efficient. One such information is the local 
gradient, which as we have only discrete points of samples, can be estimated. There are some methods in the 
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literature which use gradient information to increase the performance of the PSO algorithm [11, 12, 13]. A lot of 
these methods use the gradient information to move the particle in the direction of the gradient, achieving better 
local search results. We use this information to set a velocity multiplier coefficient to increase convergence speed. 
The finite-difference-based solution is a fast and efficient solution for the gradient estimation for discrete data. 
Each finite difference scheme is based on the Taylor-row. At the differentiable function it is assumed that the 
one-dimensional function f(x) can be written in the following way:  
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In this case we can stop at the second member of the formula as follows: 
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Expressed as the derivative of the following formula applies: 
 

         0 0
0

( ) ( )
'( )

f x h f x
f x

h
+ −

≈        (3) 

 
This formula is called in the literature as forward difference estimate. 
Then, if instead of f(x0+h) we use f(x0-h) in the equation, we get the following result: 
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This formula in the literature is called as backward difference. As mentioned these estimates are simple and easily 
calculated, but its drawback that it is less accurate. More complex gradient estimations are available in the 
literature, but their calculation is more time consuming than the above described procedures and require more than 
two sampling points. 
During the movement of a particle up to a given moment, the points of the earlier function values can be used to 
estimate gradients in this point. We only use one dimensional gradient estimation formula, because the trajectory 
of a given particle is always one dimensional and does not depend from the dimension of the objective function. 
We have implemented the algorithm using backward difference method since it was easier to implement. The 
gradients of the completed algorithm is used to adjust the speed of the particles, thus the particles move faster in 
one interval the feasible domain and move slower on the other interval. Each particle position and velocity data are 
stored, also the number of consecutive points where positive gradients have been found. In case when this value 
exceeds a pre-defined constant, than the velocity of the particle is increased. In case a negative gradient is found, or 
it is not interpreted by the gradient, the speed is reset to the default value. 
If a particle goes through on high number consecutive sample points, where the gradient is positive, it means that 
the particle during this time did not pass through the local extreme values, or the global ones, so we can accelerate 
the speed of the particle to have less iterations to reach the extremum. The efficiency of the method is shown at 
several test examples. 
 
6. Benchmark problems 
In this section we present the test problems of our benchmark. A lot of test problems and test results can be found 
in the literature [5, 6, 7], but the authors does not mention why they include a given test problem to their tests. The 
complexity of the test problems depends on the number and distribution of local optimums, and the number of 
variables. In the design of our benchmark we have taken into account the disadvantages of evolutionary 
algorithms. In order to create a useful benchmark we have to include some not too complex problems (Table 1). 
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Table 1: Benchmark problems 
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The DeJong [8], Easom and Rosenbrock functions are not complex problems, because they don’t have a lot of 
local optima. These are useful because we can see that our algorithm works in the right way, and we haven’t made 
coding mistakes. The Drop Wave and Rastrigin functions are more complex ones, because they have a lot of local 
optima and for the algorithms it is harder to find the global one on a given dimension. 
 
7. Composition of the test functions  
In [9] the author has proposed a method that can generate more complex functions from given basis functions. In 
this section we propose a general framework how to create your own method for function generation. 
The input data: 
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[ ]min max, DX X   the search range of the function which we want to generate 

( )if θ   basic functions 

min max,
i i

D
x x    search range of the basic functions 

io    The position of the global optimum (maximum) for the i-th basic function 
bias   A vector which contains the bias values for each basic function. We can define the global optimum 

with this. The function with the biggest bias value will have the global optimum (The optimum 
value is the biggest bias value plus one). 

 
The output data: 
 

( )F θ  
 
The steps of the algorithm without shifting the optimums: 
 
In the first step we have to shrink the basic functions to the search range of the output function. 
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After that we have to normalize our function:    ( )
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If the function value is 0 at the optimum point we should modify the basic function. 

At present we have a basic function shrinked and shifted to our new function’s search range. The output function is 

the following: 
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The steps of the algorithm with shifting the optimums: 
 
If we would like to define not only the global optimum, but the positions of the optimums too, we should shift the 
optimum points. In order to do this, the basic functions needs to be evaluated outside the defined search rage, and 
the given optimum for the function have to be the global optimum outside the search range too. If we would like to 
keep the original search range, we should use different type of shrinking which have mentioned before. With 
shifting the optimums the output function: 
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Where  is the shifting vector. 
Wi is the weighting function. We use this because we would like to keep the predefined optimum positions and 
values. This function should give a bigger coefficient to a function when we are “near” the given function’s 
optimum, and small coefficient for the other functions. We can use different type of functions to do this. We have 
used the following functions: 
 
Distance 

           ( )_ ,i i iw euclidean dist oϑ= ,        (12) 
 
Normalize the distances: 

          

i
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w
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          1i iw w= −          (14) 
 
Search for the biggest complement distance 

  (1 ) / ( 1)i if w biggestComplementDist w biggestComplementDist ni ≠ = − −  
where n is the number of basic functions. 
 
Gaussians 
 
The use Gaussian functions result smoother edges. 
 
Some other type of functions which can generate noise to our problem: 
 
We can generate more difficult problems if we give some noise to our weighting function. During the design of the 
weighting function we have to keep in mind that we want to keep the original optimums. In order to do this, our 
new weighting function should have a value set on [0,1], and it’s global maximum should be at the optimum point 
(Table 2). 
 
A Gabor function like weighting function: 
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noisiness parameter. the grater this value the greater the noise, 2τ  is the convergence range (Table 3). 
After we have calculated the values, we have to search for the biggest value and update the vector: 

  (1 ) / ( 1)i if w biggestWeightValue w biggestWeightValue ni ≠ = − −  
 
An example: 
 

( )i kϑ iϑ 1τ
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We generated a 2D function with a search range [-10,10] in x and y direction. We have used 7 basis functions, 
every function is the same: 

2( ) 1- ( )i
k

f kθ θ= ∑  where is the k-th element of the variable vector. The x coordinates of the optimum 

points: [-8,6,2,7,2,9,-2], and in the y coordinates: [8,-2,4,7,2,3,-8], the bias vector: [100,25,3,4,70,2,1] 

 
Table 2: Example function with distance based and Gaussian weighting 

 
The function with distance weighting function With Gaussian weighting 

 

  
 

Table 3: Example function with Gabor function like weighting with different parameters 
 

Gabor function like weighting 

 1 2τ =
 

1 3τ =
 

2 8τ =
 

  

( )kθ
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2 20τ =

 

  
 
 
9. Comparing the standard PSO and the modified PSO (GPSO) 
We have compared these two methods using our previously proposed set of functions (the definitions of the used 
composition test functions are in the above example). It is hard to create a summary which contains a lot of 
information and can be easily read and understood in the same time. There are a lot of articles which use different 
statistical indexes to propose their results.  
In our test we run the two algorithms one hundred times for each 2D test function with two hundred particles and 
we calculate the average number of iterations (in one iteration there are two hundred function evaluations), the 
average of the distances between the numerical and theoretical solutions, the best solution (the distance is 
minimal), the worst solution, and the standard deviation of the distances between the numerical and theoretical 
solutions. 
From the Table 4 we can conclude that the GPSO algorithm have found solutions within less iterations in the most 
cases than the standard algorithm. The comparisons show, that the application of gradient information makes the 
procedure more efficient, without great additional time consuming calculations. 

 
Table 4: Statistical indexes 

 
Function name Method Avg of iterations Avg of distances Best Worst Std dev. 

 
De Jong PSO 271.44 0.00012 241 307 0.00015 

GPSO 169.66 0.00019 148 184 0.00027 
Generalized 

Easom 
PSO 269.58 0.0008 229 298 0.00526 

GPSO 191.68 0.00004 149 277 0.00032 
Modified 

Generalized 
Easom 

PSO 271.48 0.0000003 241 321 0.0000007 

GPSO 222.24 0.000002 96 316 0.000008 

 
Rosenbrock PSO 256.13 0.00122 134 303 0.00605 

GPSO 171.62 0.00032 124 230 0.00284 
GeneralizedDrop 

Wave 
PSO 153.89 0.03443 54 285 0.02979 

GPSO 157.50 0.01647 56 331 0.02452 
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Rastrigin PSO 157.85 0.31868 86 295 0.30559 

GPSO 122.96 0.33681 70 309 0.22001 
 

Two Towers PSO 167.94 0.15069 87 279 0.17236 
GPSO 142.16 0.19134 56 350 0.18367 

 
Four Drop Waves PSO 240.60 0.00128 105 300 0.00549 

GPSO 169.32 0.00298 85 289 0.01245 
Composition Test 

function with 
distance 

weighting 

PSO 271.17 0.01369 232 299 0.01412 

GPSO 180.07 0.01698 148 274 0.01318 

Composition Test 
function with 

Gaussian 
weighting 

PSO 270.89 0.00112 240 303 0.00231 

GPSO 183.65 0.00795 104 301 0.03328 

Composition Test 
function with 

Gabor like 
weighting 

PSO 146.00 12.0394 71 274 13.5161 

GPSO 129.21 14.6124 74 281 13.4657 

 
10. Visualizing the optimization process 
From the table above we can conclude that the GPSO algorithm have found solutions within less iterations in the 
most cases than the Standard algorithm, but the “Avg of distances” are better in the standard PSO. And we can see 
that the numerical results generated using the composition functions are the expected results according to the 
theoretical ones. These kind of statistical indexes can be used for summarize the results, but they do not inform 
us about the reasons of the results. 
To generate the Figure 1-3 we have run the algorithms one thousand times on the 2D Rastrigin, 2D Drop Wave, 2D 
De Jong test functions respectively with one thousand particles. We can see on Figure 1-3 that the GPSO algorithm 
gets near the optimum with less iterations than the standard algorithm, but when we recall the results in Table 4 in 
many cases it cannot get as close to the optimum as the standard algorithm. 

 
Figure 1: History of PSO and GPSO, 2D Rastrigin test function 
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Figure 2: History of PSO and GPSO, 2D Drop Wave test function 

 

 
Figure 3: History of PSO and GPSO, 2D De Jong test function 

 
 

11. Conclusion and further work 
We have proposed an extensible framework which can be used for testing evolutionary algorithms. This 
framework contains the generalized form of some well-known test functions and some new ones as well in order to 
cover a lot of function properties. We have proposed a simple method for generating optimization test functions 
from a basic set of functions and a weighting function to control the noisiness parameter. We have used the test 
framework to compare the standard and our modified form of the PSO algorithm, which uses gradient information. 
We can conclude that our modified algorithm will find the neighbourhood of the optimum faster than the standard 
algorithm in most cases, but the distance between the found solution and the theoretical one is usually larger. One 
direction in our further research is to find a technique which can reduce this distance and to create some interesting 
weighting functions which can produce different types of noise to the generated function. 
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