
10th World Congress on Structural and Multidisciplinary Optimization
May 19 -24, 2013, Orlando, Florida, USA

1

Benchmark for testing evolutionary algorithms

Csaba Barcsák1, Károly Jármai2

1 BSc. student, University of Miskolc, Egyetemváros, Hungary, csaba.barcsak@gmail.com
2 Professor, University of Miskolc, Egyetemváros, Hungary, altjar@uni-miskolc.hu

1. Abstract
Evolutionary algorithms have become popular for finding approximate solutions of optimization problems. We
have created a benchmark to compare the efficiency of these algorithms. Also we have modified the original
particle swarm optimization algorithm with gradient information to improve its efficiency.
2. Keywords: Evolutionary algorithms, Benchmark for testing, Particle swarm optimization.

3. Introduction
In the literature a lot of evolutionary algorithms can be found for example the ant colony algorithm [1] which
simulates the behaviour of ants, genetic algorithms [2] which solves the optimization problem by simulating the
process of evolution, Particle Swarm Optimization (PSO) algorithm [3,4], and hybrid techniques which are created
as a mixture of algorithms to compound their beneficial features. The researchers of this area usually use test
problems to compare these algorithms, however, the efficiency of an algorithm against another algorithm cannot
be measured by the number of problems that it solves better, but we can state that which algorithm is better for a
given test problem. Because of this, the benchmark should contain a wide variety of test functions with different
properties.

4. Advantages and disadvantages of evolutionary algorithms
Evolutionary algorithms are popular for their efficiency, and easy implementation, but these algorithms have
drawbacks which we have to consider in order to create a good benchmark. We should find test problems which
can bring up these disadvantages. The largest disadvantage is that these algorithms select the better solutions in
every iteration step knowing only the solutions in the previous iteration steps. Because of this it is hard to find the
optimum for a noisy test function. The other disadvantage is that the algorithms cannot test whether the solution is
optimal or not? In some cases the algorithms find the local optimum instead of the global. We can put various exit
criteria in the algorithms which can help achieving better results, but it doesn’t solve the problem.

5. A modified PSO algorithm
As previously mentioned, several variants of the PSO algorithm have been developed to improve the effectiveness
of the technique. One of the solutions is to establish multiple groups of particles instead of one group. Then the
local best results in each group compared and the best result of the best group gives the solution. At this case the
communication is interpreted not only between the individual particles, but between the groups, so that for
individual particles in the speed and position changes not only the position of the local best of the group, but the
best results of all the groups taken into consideration.
Another modification is known as crazy bird. This variant is uses randomly selected particles and these particles
are flying into a random direction, so that the group does not tear out particles towards the hoped gbest position,
which differs from current gbest direction. It helps finding global minimum if the number of crazy bird is kept
small.
The aforementioned procedures effectiveness has a random nature. We do not know that how many groups for the
particles to send into random direction to get a better result than using the standard algorithm.
At the standard algorithm there is no other information about the objective function which is computed. But in
many cases, depending on the individual characteristics of the problem, it would be useful to have local
knowledge, since such information may make the procedure to be more efficient. One such information is the local
gradient, which as we have only discrete points of samples, can be estimated. There are some methods in the

2

literature which use gradient information to increase the performance of the PSO algorithm [11, 12, 13]. A lot of
these methods use the gradient information to move the particle in the direction of the gradient, achieving better
local search results. We use this information to set a velocity multiplier coefficient to increase convergence speed.
The finite-difference-based solution is a fast and efficient solution for the gradient estimation for discrete data.
Each finite difference scheme is based on the Taylor-row. At the differentiable function it is assumed that the
one-dimensional function f(x) can be written in the following way:

()

20 0 0
0 0

0

'() ''() ()
() () ...

1! 2! !

n
n

n

f x f x f x
f x h f x h h h

n

∞

=

+ ≈ + + + = ∑ (1)

In this case we can stop at the second member of the formula as follows:

 0
0 0

'()
() ()

1!
f x

f x h f x h+ ≈ + (2)

Expressed as the derivative of the following formula applies:

 0 0
0

() ()
'()

f x h f x
f x

h
+ −

≈ (3)

This formula is called in the literature as forward difference estimate.
Then, if instead of f(x0+h) we use f(x0-h) in the equation, we get the following result:

 0 0
0

() ()
'()

f x f x h
f x

h
− −

≈ (4)

This formula in the literature is called as backward difference. As mentioned these estimates are simple and easily
calculated, but its drawback that it is less accurate. More complex gradient estimations are available in the
literature, but their calculation is more time consuming than the above described procedures and require more than
two sampling points.
During the movement of a particle up to a given moment, the points of the earlier function values can be used to
estimate gradients in this point. We only use one dimensional gradient estimation formula, because the trajectory
of a given particle is always one dimensional and does not depend from the dimension of the objective function.
We have implemented the algorithm using backward difference method since it was easier to implement. The
gradients of the completed algorithm is used to adjust the speed of the particles, thus the particles move faster in
one interval the feasible domain and move slower on the other interval. Each particle position and velocity data are
stored, also the number of consecutive points where positive gradients have been found. In case when this value
exceeds a pre-defined constant, than the velocity of the particle is increased. In case a negative gradient is found, or
it is not interpreted by the gradient, the speed is reset to the default value.
If a particle goes through on high number consecutive sample points, where the gradient is positive, it means that
the particle during this time did not pass through the local extreme values, or the global ones, so we can accelerate
the speed of the particle to have less iterations to reach the extremum. The efficiency of the method is shown at
several test examples.

6. Benchmark problems
In this section we present the test problems of our benchmark. A lot of test problems and test results can be found
in the literature [5, 6, 7], but the authors does not mention why they include a given test problem to their tests. The
complexity of the test problems depends on the number and distribution of local optimums, and the number of
variables. In the design of our benchmark we have taken into account the disadvantages of evolutionary
algorithms. In order to create a useful benchmark we have to include some not too complex problems (Table 1).

3

Table 1: Benchmark problems

name definition optimum (maximum)

De Jong 2

1
() -

n

i
i

f x
=

= ∑x
*=(0,0,0,...,0)

f(*)=0

x

x

Generalized
Easom 2 2 2 2

1 2 3

1 2 3

-(-) -(-) -(-) -...-(-)

() cos() cos() cos()...cos()
n

n

x x x x

f x x x x

e π π π π

= ⋅

⋅

x

-100 100

* (, , , ...,)

(*) 1

ix

f

π π π π

≤ ≤

=

=

x

x

Modified
Generalized

Easom
[]

2

1

0.1
1-
5

1

() cos()

n

i
i

n x

i
i

f abs x e =

=

  ∑  =
  

  
∏x

-10 10

* (0, 0, 0, ..., 0)

(*) 1

ix

f

≤ ≤

=

=

x

x

Rosenbrock
-1

2 2 2
1

1
() - 100(-) (-1)

n

i i i
i

f x x x+
=

 = + ∑x

-2.048 2.048

*=(1,1,1,...,1)

(*)=0

ix

f

≤ ≤

x

x

GeneralizedDro
p Wave

2 2 2 2
1 2 3

2 2 2 2
1 2 3

1 cos(12 ...)
() 1 (...) 2

2

n

n

x x x x
f

x x x x

+ + + + +
=

+ + + + +
x

-5.12 5.12

*=(0,0,0,...,0)

(*)=1

ix

f

≤ ≤

x

x

Rastrigin 2
1

() -(10 (-10cos(2)))n
i ii

f n x xπ
=

= +∑x

-5.12 5.12

*=(0,0,0,...,0)

(*)=0

ix

f

≤ ≤

x

x

Two Towers
[]

[]

0.2
2

1

0.5
2

1

- 3(-5)

1

- 3(5)

1

cos(3(-5))

cos(3(5))

()

1.2

n

i
i

i

n

i
i

i

xn

i

xn

i

x

x

f e

e

=

=

 
  
 

=

 
+  

 

=

+

∑
= +

∑
+

∏

∏

x

-10 10

*=(-5,-5,-5,...,-5)

(*) 1.2

ix

f

≤ ≤

≈

x

x

Four Drop
Waves

[]
2

1

2

1 1

-

1

1 1() sin
5 10

1.1 cos()

n

i
i

n n

i in
i i

xn

i
i

f x abs x

x e =

= =

 
  
 

=

   
= +   

   

∑
+

∏ ∏

∏

x

-10 10

*=(0,0,0,...,0)

(*)=1.1

ix

f

≤ ≤

x

x

The DeJong [8], Easom and Rosenbrock functions are not complex problems, because they don’t have a lot of
local optima. These are useful because we can see that our algorithm works in the right way, and we haven’t made
coding mistakes. The Drop Wave and Rastrigin functions are more complex ones, because they have a lot of local
optima and for the algorithms it is harder to find the global one on a given dimension.

7. Composition of the test functions
In [9] the author has proposed a method that can generate more complex functions from given basis functions. In
this section we propose a general framework how to create your own method for function generation.
The input data:

4

[]min max, DX X the search range of the function which we want to generate

()if θ basic functions

min max,
i i

D
x x   search range of the basic functions

io The position of the global optimum (maximum) for the i-th basic function
bias A vector which contains the bias values for each basic function. We can define the global optimum

with this. The function with the biggest bias value will have the global optimum (The optimum
value is the biggest bias value plus one).

The output data:

()F θ

The steps of the algorithm without shifting the optimums:

In the first step we have to shrink the basic functions to the search range of the output function.

let max min

max min

i

i i

X X

x x
κ

−
=

−
 (5)

the transformed basic function:
i

i

f
θ

κ

 
 
  , (6)

After shifting we have: ()
()min min, i i

i i i

X x
f

θ κ
ϕ ϕ

κ

− −
=

 (7)

After that we have to normalize our function: ()
()i i

i i

f

f o

ϕ

 (8)

If the function value is 0 at the optimum point we should modify the basic function.

At present we have a basic function shrinked and shifted to our new function’s search range. The output function is

the following:

()
()

() i i
i i

i i

f
F w bias

f o

ϕ
θ = +

  
  

  
∑

 (9)

The steps of the algorithm with shifting the optimums:

If we would like to define not only the global optimum, but the positions of the optimums too, we should shift the
optimum points. In order to do this, the basic functions needs to be evaluated outside the defined search rage, and
the given optimum for the function have to be the global optimum outside the search range too. If we would like to
keep the original search range, we should use different type of shrinking which have mentioned before. With
shifting the optimums the output function:

5

()
()

() i i
i i

i i

f
F w bias

f o

ϑ
θ = +

  
  

  
∑ (10)

where
()min min i i i

i

i

X xθ κ
ϑ

κ

− − + Ψ
=

 (11)

Where is the shifting vector.
Wi is the weighting function. We use this because we would like to keep the predefined optimum positions and
values. This function should give a bigger coefficient to a function when we are “near” the given function’s
optimum, and small coefficient for the other functions. We can use different type of functions to do this. We have
used the following functions:

Distance

 ()_ ,i i iw euclidean dist oϑ= , (12)

Normalize the distances:

i
i

w
w

w
=
∑ (13)

 1i iw w= − (14)

Search for the biggest complement distance

 (1) / (1)i if w biggestComplementDist w biggestComplementDist ni ≠ = − −
where n is the number of basic functions.

Gaussians

The use Gaussian functions result smoother edges.

Some other type of functions which can generate noise to our problem:

We can generate more difficult problems if we give some noise to our weighting function. During the design of the
weighting function we have to keep in mind that we want to keep the original optimums. In order to do this, our
new weighting function should have a value set on [0,1], and it’s global maximum should be at the optimum point
(Table 2).

A Gabor function like weighting function:

2

2

()

-

1cos(())

i

k

k

i i
k

w k e

ϑ

τϑ τ

∑

= ∏ where means the k-th element of the vector, is the

noisiness parameter. the grater this value the greater the noise, 2τ is the convergence range (Table 3).
After we have calculated the values, we have to search for the biggest value and update the vector:

 (1) / (1)i if w biggestWeightValue w biggestWeightValue ni ≠ = − −

An example:

()i kϑ iϑ 1τ

Ψ

6

We generated a 2D function with a search range [-10,10] in x and y direction. We have used 7 basis functions,
every function is the same:

2() 1- ()i
k

f kθ θ= ∑ where is the k-th element of the variable vector. The x coordinates of the optimum

points: [-8,6,2,7,2,9,-2], and in the y coordinates: [8,-2,4,7,2,3,-8], the bias vector: [100,25,3,4,70,2,1]

Table 2: Example function with distance based and Gaussian weighting

The function with distance weighting function With Gaussian weighting

Table 3: Example function with Gabor function like weighting with different parameters

Gabor function like weighting

 1 2τ =

1 3τ =

2 8τ =

()kθ

7

2 20τ =

9. Comparing the standard PSO and the modified PSO (GPSO)
We have compared these two methods using our previously proposed set of functions (the definitions of the used
composition test functions are in the above example). It is hard to create a summary which contains a lot of
information and can be easily read and understood in the same time. There are a lot of articles which use different
statistical indexes to propose their results.
In our test we run the two algorithms one hundred times for each 2D test function with two hundred particles and
we calculate the average number of iterations (in one iteration there are two hundred function evaluations), the
average of the distances between the numerical and theoretical solutions, the best solution (the distance is
minimal), the worst solution, and the standard deviation of the distances between the numerical and theoretical
solutions.
From the Table 4 we can conclude that the GPSO algorithm have found solutions within less iterations in the most
cases than the standard algorithm. The comparisons show, that the application of gradient information makes the
procedure more efficient, without great additional time consuming calculations.

Table 4: Statistical indexes

Function name Method Avg of iterations Avg of distances Best Worst Std dev.

De Jong PSO 271.44 0.00012 241 307 0.00015

GPSO 169.66 0.00019 148 184 0.00027
Generalized

Easom
PSO 269.58 0.0008 229 298 0.00526

GPSO 191.68 0.00004 149 277 0.00032
Modified

Generalized
Easom

PSO 271.48 0.0000003 241 321 0.0000007

GPSO 222.24 0.000002 96 316 0.000008

Rosenbrock PSO 256.13 0.00122 134 303 0.00605

GPSO 171.62 0.00032 124 230 0.00284
GeneralizedDrop

Wave
PSO 153.89 0.03443 54 285 0.02979

GPSO 157.50 0.01647 56 331 0.02452

8

Rastrigin PSO 157.85 0.31868 86 295 0.30559

GPSO 122.96 0.33681 70 309 0.22001

Two Towers PSO 167.94 0.15069 87 279 0.17236
GPSO 142.16 0.19134 56 350 0.18367

Four Drop Waves PSO 240.60 0.00128 105 300 0.00549

GPSO 169.32 0.00298 85 289 0.01245
Composition Test

function with
distance

weighting

PSO 271.17 0.01369 232 299 0.01412

GPSO 180.07 0.01698 148 274 0.01318

Composition Test
function with

Gaussian
weighting

PSO 270.89 0.00112 240 303 0.00231

GPSO 183.65 0.00795 104 301 0.03328

Composition Test
function with

Gabor like
weighting

PSO 146.00 12.0394 71 274 13.5161

GPSO 129.21 14.6124 74 281 13.4657

10. Visualizing the optimization process
From the table above we can conclude that the GPSO algorithm have found solutions within less iterations in the
most cases than the Standard algorithm, but the “Avg of distances” are better in the standard PSO. And we can see
that the numerical results generated using the composition functions are the expected results according to the
theoretical ones. These kind of statistical indexes can be used for summarize the results, but they do not inform
us about the reasons of the results.
To generate the Figure 1-3 we have run the algorithms one thousand times on the 2D Rastrigin, 2D Drop Wave, 2D
De Jong test functions respectively with one thousand particles. We can see on Figure 1-3 that the GPSO algorithm
gets near the optimum with less iterations than the standard algorithm, but when we recall the results in Table 4 in
many cases it cannot get as close to the optimum as the standard algorithm.

Figure 1: History of PSO and GPSO, 2D Rastrigin test function

9

Figure 2: History of PSO and GPSO, 2D Drop Wave test function

Figure 3: History of PSO and GPSO, 2D De Jong test function

11. Conclusion and further work
We have proposed an extensible framework which can be used for testing evolutionary algorithms. This
framework contains the generalized form of some well-known test functions and some new ones as well in order to
cover a lot of function properties. We have proposed a simple method for generating optimization test functions
from a basic set of functions and a weighting function to control the noisiness parameter. We have used the test
framework to compare the standard and our modified form of the PSO algorithm, which uses gradient information.
We can conclude that our modified algorithm will find the neighbourhood of the optimum faster than the standard
algorithm in most cases, but the distance between the found solution and the theoretical one is usually larger. One
direction in our further research is to find a technique which can reduce this distance and to create some interesting
weighting functions which can produce different types of noise to the generated function.

10

12. Acknowledgements
The authors gratefully acknowledge the support of the Hungarian Scientific Research Fund under the OTKA
75678 project number. The project was also supported by the TÁMOP 4.2.1.B-10/1/KONV-2010-0001 Increasing
the quality of higher education through the development of research-development and innovation program at the
University of Miskolc.

13. References
[1] A. Ostfeld, Ant colony optimization methods and applications, InTech Publishers 2011. ISBN

978-953-307-157-2
[2] M. Mitchell, An introduction to genetic algorithms, The MIT Press, 1998.
[3] J. Kennedy, R. Eberhart, Particle swarm optimization, IEEE International Conference on Neural Networks,

Vol. 4, pp. 1942–1948, 1995.
[4] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, Proceedings of the Sixth International

Symposium on Micro Machine and Human Science, pp. 39–43, 1995.
[5] D. Swagatam, P. N. Suganthan, Criteria for CEC 2011 Competition on testing evolutionary algorithms on

real world optimization problems, Technical Report, December, 2010
[6] R. Storn, K. Price, Differential Evolution – A Simple and efficient heuristic for global optimization over

continuous spaces, Journal of Global Optimization, 11: 341–359, 1997.
[7] M. Mologa, C. Smutnicki, Test functions for optimization needs, 2005. pp. 1-10.

www.bioinformaticslaboratory.nl
[8] K. De Jong, An analysis of the behavior of a class of genetic adaptive systems, Doctoral dissertation,

University of Michigan, 1975.
[9] J. Liang, N. Suganthan, K. Deb, Novel composition test functions for numerical global optimization, Swarm

Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE, pp 68-75, 2005.
[10] L.C. Cagnina, S.C. Esquivel and C.A.C. Coello, Solving constrained optimization problems with a hybrid

particle swarm optimization algorithm, Engineering Optimization, Vol. 43, No. 8, August 2011, 843–866.
[11] J. Farkas, K. Jármai: Optimum design of steel structures, Springer Verlag, Heidelberg, 2013. 288 p. ISBN

978-3-642-36867-7
[12] D. Barla-Szabó, A study of gradient based particle swarm optimisers, University of Pretoria, Msc Thesis,

2010.
[13] M.M. Noel, T.C. Jannett, Simulation of a new hybrid particle swarm optimization algorithm, Proceedings of

Thirty-sixth Southeastern Symposium on System Theory, pages 150-153, 2004.

