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1. Abstract
Fuzzy structural analysis is a well developed tool for uncertainty quantification in computational mechan-
ics. However, its application may be numerically demanding, as it involves the solution of optimization
problems in order to determine extrema of the structural response. This contribution explores the ap-
plication of Taylor series and intervening variables for performing fuzzy structural analysis efficiently.
Results presented indicate the application of an intervening variable of the reciprocal type may offer
significant improvement in terms of accuracy with respect to traditional approximations.
2. Keywords: fuzzy structural analysis, Taylor series, intervening variable, reciprocal variable.

3. Introduction
The importance of explicitly considering the effects of uncertainties in structural analysis has been widely
acknowledged by the engineering community [8, 13]. A number of approaches for uncertainty quantifica-
tion have been developed within the framework of classical probabilities as well as Bayesian techniques,
see e.g. [5, 39], etc. Recently, the so-called non traditional approaches for uncertainty quantification
have gained considerable attention as well, e.g. [3, 7, 14, 25]. In particular, approaches based on interval
analysis and fuzzy analysis have been the subject of active research [29, 30]. It should be noted that irre-
spective of the approach used to quantify the effects of uncertainty, the application of such procedures is
usually much more involved from a numerical viewpoint than performing deterministic analyses. This is
due to the fact the structural performance is not quantified by means of a unique, deterministic quantity
but by a set of possible outcomes.
In interval analysis (see e.g. [19, 37]), uncertainty in the value of one or more parameters of a model
is quantified in terms of bounds. Then, the objective of interval analysis is determining the bounds of
a structural response of interest given bounds associated with the unknown input parameters. Fuzzy
structural analysis can be interpreted as a sequence of interval analyses as pointed out in [29]. That is,
uncertain input parameters are assigned a membership which varies between 0 and 1. For each different
value of the membership function, the input variables of a model can be characterized by means of in-
tervals. Hence, the structural response can be characterized as an interval as well. In this manner, it is
possible to determine the membership for the response function. The latter procedure has been termed
in the literature as α-level optimization (see e.g. [29, 31]).
A major challenge for the practical implementation of fuzzy structural analysis using the α-level optimiza-
tion is the associated numerical costs. For each α-level analyzed (i.e. value of the membership function),
it is necessary to determine the minimum and maximum of the structural response given that the un-
certain structural parameters lie on a certain interval. Clearly, this is an optimization problem that can
be extremely challenging due to issues such as non linearities of the functions involved and the inherent
difficulties associated with the determination of global optima [1, 21]. Hence, a number of approaches
have been devised in order to overcome this issue, see e.g. [6, 11, 15, 24]. Among these approaches, Taylor
series expansion has received considerable attention [10, 17, 26, 37, 27]. This is due to the fact numerical
efforts associated with the construction of a Taylor series expansion are limited to a single structural
analysis (calculation of stiffness matrix inverse) plus additional assembly and multiplication of structural
matrices for calculating sensitivities [20]. Nonetheless, Taylor series may not be always appropriate as
they may fail in capturing nonlinearities of the functions being approximated. In view of this issue, this
contribution explores the application of Taylor series considering intervening variables. The latter vari-
ables have been applied customarily in the field of structural optimization (see e.g. [21, 35, 38]) and have
also been considered within the framework of structural reliability and classical probabilities [16, 40, 42].
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The structure of this paper is the following. First, the basic formulation of the deterministic structural
analysis problem and some basic concepts of fuzzy structural analysis are reviewed briefly in Section 4.
Section 5 discusses approximate representation of structural responses by means of first- and second-order
Taylor expansions. The application of intervening variables (in particular, reciprocal variables) is dis-
cussed in section 6. Section 7 presents test examples illustrating the application of Taylor series. Finally
Section 8 closes the paper with some conclusions and outlook.

4. Formulation
Assume a linear elastic structure modeled using the FE method [22]. The model comprises Ne el-
ements and Nd degrees-of-freedom (DOFs). In addition, assume there are Nu uncertain parameters
xi, i = 1, . . . , Nu(such as geometry, loadings, etc.) that are characterized as fuzzy variables. The fuzzy
set x̃i, i = 1, . . . , Nu associated with each of these variables is:

x̃i = {(xi, µx̃i(xi)) : (xi ∈ Xi) ∧ (µx̃i(xi) ∈ [0, 1])} , i = 1, . . . , Nu (1)

where µx̃i(xi), i = 1, . . . , Nu represents the membership function associated with the i-th variable and
Xi is the set that contains xi. The membership function ranges between 0 and 1 and is assumed as a
convex function in the following. In case µx̃i(x

∗
i ) = 0, then x∗i does not belong to the fuzzy set; in case

µx̃i(x
∗
i ) = 1, x∗i is a member of the fuzzy set; finally, in case 0 < µx̃i(x

∗
i ) < 1, membership of x∗i to the

fuzzy set is uncertain.
Consider the uncertain parameters are grouped in a Nu dimensional vector x = 〈x1, x2, . . . , xNu〉T . Then,
the equilibrium equation associated with the FE model of the structure is the following.

K(x)u(x) = f(x) (2)

In above equation, K(x) is the Nd ×Nd matrix of stiffness, u(x) is the Nd × 1 vector of displacements
and f(x) is the Nd × 1 vector of (equivalent) nodal forces. Note both the stiffness matrix and force
vector depend on fuzzy variables. In view of this issue, the components of the displacement vector u are
fuzzy variables as well. Undoubtedly, it is of interest characterizing these fuzzy displacements by means of
their associated membership functions. The characterization of the latter functions in an exact, analytical
form is quite challenging [6, 29]. Hence, these membership functions are represented in a discrete way,
i.e. possible displacements values are computed at specific α-cuts, where α denotes the membership level
under analysis [6, 29]. The practical implementation of this procedures is as follows. The α-cut associated
with the i-th uncertain variable is:

xi,αk = {xi ∈ x̃i : µx̃i(xi) ≥ αk} , i = 1, . . . , Nu, αk ∈ [0, 1] (3)

where αk, k = 1, . . . , Nc denotes the α-cut value being studied and xi,αk denotes the set of possible values
xi may assume for a given value αk. Then, the α-cut associated with the n-th displacement is:

un,αk =
{
un :

(
xi ∈ xi,αk , i = 1, . . . , Nu

)
∧ (un = un(x))

}
(4)

where un (x1, x2, . . . , xNu) is the n-th component of the vector u(x) that solves Eq.(2) and un,αk is the
set of possible values un assumes for the α-cut value αk. The interpretation of Eq.(4) is the following:
it describes the set that contains all possible values the displacement may assume given the unknown
parameters lie within the interval xi,αk . This is represented schematically in Fig. 1 where it is assumed
Nu = 1 for the sake of simplicity.

x1

µx̃1
(x1)

0

1

αk

xR1,αk
xL1,αk

un

µũn
(un)

0

1

αk

uRn,αk
uLn,αk

Interval analysis for
α-cut equal to αk

x1,αk
un,αk

Figure 1: Schematic representation of fuzzy structural analysis considering α-cuts
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Note that under the assumption that the sets xi,αk are compact and convex, these sets are fully described

by their minimum and maximum value (denoted as xLi,αk and xRi,αk , respectively, see Fig. 1). Furthermore,
under the additional assumption of a continuous mapping function between the unknown input variables
x and the output variables u (see Eq.(2)), the set un,αk is also fully described by its minimum and

maximum value (denoted as uLn,αk and uRn,αk , respectively, see Fig. 1). Hence, the determination of the

set un,αk involves the solution of two optimization problems [6]. That is, uLn,αk is the solution of the
optimization problem:

uLn,αk =min
x

(un(x)) (5)

subject to

xi ∈ xi,αk , i = 1, . . . , Nu

K(x)u(x) = f(x)

while uRn,αk is the solution of:

uRn,αk =max
x

(un(x)) (6)

subject to

xi ∈ xi,αk , i = 1, . . . , Nu

K(x)u(x) = f(x)

The solution of the optimization problems posed in Eqs.(5) and (6) can be quite challenging. From the
point of view of optimization, the problems in Eqs.(5) and (6) may possess local optima thus rendering
the identification of the global optimum cumbersome. From a numerical viewpoint, the evaluation of the
displacement un demands performing structural analysis (inverse of stiffness matrix) which can be costly
due to the dimension of the model. In order to cope with these issues, different strategies have been
proposed in the literature (see e.g. [12, 15, 18, 31, 41]). As already stated above, the focus of this con-
tribution is on the application of strategies based on Taylor series expansion for fuzzy structural analysis
[26, 37]. In the following and for the sake of simplicity, uncertainties are assumed to affect the stiffness
matrix only (cf. Eq.(2)). This implies the equivalent nodal load vector is modeled as deterministic.

5. Application of Taylor Series

5.1. First-order Taylor Expansion
As discussed previously, the calculation of the displacement vector u is numerically demanding as it
involves structural analyses. A possible means for avoiding these demanding analyses consists of ap-
proximating the displacement vector by means of a first-order Taylor series. Such an approach is well
documented in the literature [27, 36, 37]. For the sake of completeness, the main concepts associated
with the implementation of a first-order Taylor expansion are reproduced in the following. For further
details, it is referred to the aforementioned references.
The first-order Taylor expansion uL of the displacement vector is expressed as:

u(x) ≈ uL(x) = u
(
x0
)

+

Nu∑
i=1

u,i
(
xi − x0i

)
(7)

where x0 is the expansion point; x0i is the i-th component of x0 (x0i should belong to the set xi,αk);

u
(
x0
)

is the displacement evaluated at the expansion point; and u,i denotes partial derivative of u with
respect to xi evaluated at x0. The latter two vectors are equal to [33]:

u
(
x0
)

= K
(
x0
)−1

f (8)

u,i =
∂u

∂xi

∣∣∣∣
x=x0

= −K
(
x0
)−1

K,iu
(
x0
)
, i = 1, . . . , Nu (9)

where K,i is the partial derivative of the stiffness matrix with respect to xi evaluated at x0. Consider-
ing the approximate representation of the displacement vector in Eq.(7), it is possible to determine an
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analytical solution for the optimization problems in Eqs.(5) and (6). These solutions are [27]:

uLn,αk = un
(
x0
)

+

Nu∑
i=1

un,iai,αk , n = 1, . . . , Nu (10)

uRn,αk = un
(
x0
)

+

Nu∑
i=1

un,ibi,αk , n = 1, . . . , Nu (11)

where the terms ai and bi are defined as:

ai,αk =

{
xRi,αk − x

0
i if un,i ≤ 0

xLi,αk − x
0
i if un,i > 0

(12)

bi,αk =

{
xLi,αk − x

0
i if un,i ≤ 0

xRi,αk − x
0
i if un,i > 0

(13)

From the above description, it is evident that the application of first-order Taylor expansion is numerically
efficient as it requires a single matrix factorization. However, its main disadvantage is its accuracy: even if
the displacement is mildly nonlinear with respect to the uncertain variables, the bounds calculated using
a linear approximation (see Eqs.(10) and (11)) can be far from the actual bounds of the displacement for
a particular α-cut.

5.2. Second-order Taylor Expansion
An evident means to improve the accuracy of the approximation in Eq.(7) is including higher order
terms, e.g. quadratic, cubic, etc. However, the practical implementation of such strategy may become
numerically involved because of two issues. First, the computation of higher order derivatives can be a
numerically demanding in case the number of uncertain variables is considerable. Second, the identifi-
cation of the global optimum for a function involving high order terms can be far from trivial. In view
of these issues, the application of Taylor series considering higher order terms has been restricted in the
literature to incomplete second-order expansions [10, 17], i.e. expansions that include linear terms and
quadratic terms of the type x2i (no cross terms of the type xixj , i 6= j are included). In this contribution,
a complete second-order Taylor expansion uQ(x) of the displacement vector is considered, i.e.:

u(x) ≈ uQ(x) = u
(
x0
)

+

Nu∑
i=1

u,i
(
xi − x0i

)
+

1

2

Nu∑
i=1

Nu∑
j=1

u,ij
(
xi − x0i

) (
xj − x0j

)
(14)

where u,ij denotes partial derivative of u with respect to xi and xj evaluated at x0. The latter vector is
equal to [34]:

u,ij =
∂2u

∂xi∂xj

∣∣∣∣
x=x0

= −K
(
x0
)−1 (

K,iu,j + K,ju,i + K,iju
(
x0
))
, i, j = 1, . . . , Nu (15)

where K,ij is the partial derivative of the stiffness matrix with respect to xi and xj evaluated at x0.
In order to determine the values of uLn,αk and uRn,αk based on the approximation uQn (x), it is necessary to
solve the following optimization problems.

uLn,αk =min
x

(
uQn (x)

)
(16)

subject to

xi ∈ xi,αk , i = 1, . . . , Nu

uRn,αk =max
x

(
uQn (x)

)
= min

x

(
−uQn (x)

)
(17)

subject to

xi ∈ xi,αk , i = 1, . . . , Nu

In Eq.(17), recall maximizing a function is equal to minimizing its negative value [1, 21].
The optimization problems in Eqs.(16) and (17) can be solved using methods of quadratic programming
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[32]. Problems of quadratic programming are challenging to solve whenever the Hessian matrix associ-
ated with the function being minimized is not positive semi-definite. It should be noted the problems
in Eqs.(16) and (17) fall into the latter category: even if the Hessian matrix associated with any of the
optimization problems in Eqs. (16) and (17) is positive semi-definite (thus ensuring that optimization
problem is convex), the remaining problem would have an associated Hessian matrix which is negative
semi-definite. This is due to the fact the optimization problems in Eqs.(16) and (17) are identical except
for the fact one seeks the minimum of uQn (x) while the other seeks the minimum of −uQn (x). The only
case that would escape this classification is the case where the Hessian matrix associated with uQn (x) is
equal to zero. For the latter case, the problem actually reduces to problem involving linear terms only
and hence the approach described in Section 5.1 is applicable.
From the discussion above, it is seen that at least one of the optimization problems in Eqs.(16) and (17)
is non-convex. Hence, for solving these optimization problems and determining their global optima, it is
necessary to resort to special techniques. In particular, non-convex quadratic programming problems are
known to be NP-hard [43, 44]. The solution strategy applied in this contribution consists in combining
the so-called branch-and-bound technique with relaxations of the original optimization problem [2, 9].
It is important to note that the solution of the optimization problems of Eqs.(16) and (17) can become
numerically involved in view of the arguments discussed previously. It may even be the case that the
solution of optimization problems associated with the quadratic approximation of the displacement may
be more numerically demanding than solving the exact optimization problem (where no approximations
of the displacement vector are introduced). Nonetheless, the application of second-order Taylor expan-
sions of the displacement vector is still investigated in this contribution in order to assess its accuracy
when compared to the linear case and the case where intervening variables are considered. However, it is
explicitly acknowledged that the application of second-order Taylor expansions could potentially imply a
considerable numerical burden that may not be worthwhile.

6. Application of First-Order Taylor Series and Intervening Variable of Reciprocal Type
A possible means for improving the the accuracy associated with a first-order Taylor expansion is the
application of intervening variables. Such variables are applied frequently within the field of structural
optimization (see e.g. [21, 28, 35, 38]). However, its application within uncertainty quantification has
remained relatively unexplored except for few efforts documented in the literature [16, 40, 42].
Assume intervening variables are defined such that yi = yi(xi), i = 1, . . . , Nu. Then, the first-order
Taylor expansion of the displacement with respect to these intervening variables (denoted as uI(x)) is:

u(x) ≈ uI (y (x)) = u
(
y
(
x0
))

+

Nu∑
i=1

∂u

∂yi

∣∣∣∣
y=y(x0)

(
yi(xi)− yi

(
x0i
))

(18)

Different types of intervening variables have been proposed in the literature [38, 40]. One of the most
commonly used intervening variables is the reciprocal as it may lead to an exact representation of the
structural response for certain classes of problems [23, 38]. Hence, under the assumption that the set
xi,αk excludes the value 0, the intervening variable yi(xi) is defined as:

yi(xi) =
1

xi
, i = 1, . . . , Nu (19)

Replacing Eq.(19) in (18) yields the following expression for the first-order Taylor expansion considering
intervening variables of the reciprocal type (denoted in the following as uR(x)).

u(x) ≈ uR(x) = u
(
x0
)

+

Nu∑
i=1

u,ix
0
i

(
1− x0i

xi

)
(20)

Based on the above approximation uR(x), the analytical solution for the optimization problems in Eqs.(5)
and (6) is the following.

uLn,αk = un
(
x0
)

+

Nu∑
i=1

un,ici, n = 1, . . . , Nu (21)

uRn,αk = un
(
x0
)

+

Nu∑
i=1

un,idi, n = 1, . . . , Nu (22)
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where the terms ci and di are defined as:

ci,αk =


x0i

(
1− x0

i

xRi,αk

)
if un,i ≤ 0

x0i

(
1− x0

i

xLi,αk

)
if un,i > 0

(23)

di,αk =


x0i

(
1− x0

i

xLi,αk

)
if un,i ≤ 0

x0i

(
1− x0

i

xRi,αk

)
if un,i > 0

(24)

As noted from the above equations, the application of the approximation uR(x) involves numerical efforts
which are equivalent to those associated to uL(x). That is, both approaches require a single factorization
of the stiffness matrix. However, the major advantage of the approximation uR(x) over uL(x) is that it
may reproduce - to some extent - the eventual nonlinear behavior of u(x). In fact, for certain types of
problems, uR(x) may even approximate u(x) exactly as already stated above.

7. Examples

7.1. Example 1: Statically Determinate Truss Structure
The first example consists of the 13-bar statically determinate truss depicted in Fig. 2. The truss is
subjected to 3 external loadings. All bars of the truss possess a Young’s modulus equal to E = 2× 1011

[Pa]. In addition, for each bar, the cross section area is modeled as a fuzzy variable. That is, the model
comprises a total of 13 fuzzy variables (Nu = 13). The membership function associated with each of these
fuzzy variables is shown in Fig. 3. The objective is determining the membership function associated with
the vertical displacement of node A.

4 [m] 4 [m] 4 [m] 4 [m]

4 [m]

10 [kN] 10 [kN] 10 [kN]

A

Figure 2: Schematic representation of structure con-
sidered in example 1

xi [cm
2]

µx̃i
(xi)

0

1

10 155

Figure 3: Membership function associated with cross
section area of each bar

In order to estimate the sought membership function, four different approaches are employed. These
approaches involve first- and second-order Taylor expansions considering no intervening variables, first-
order Taylor expansion considering reciprocal intervening variables and direct solution of Eqs.(5) and
(6) by means of an optimization algorithm. These approaches are labeled as ‘T1’, ‘T2’, ‘R’ and ‘D’ in
the following. It should be noted that for approaches ‘T1’, ‘T2’ and ‘R’, the expansion point is selected
as x0 = 〈10, 10, . . . , 10〉T [cm2]. For the case of approach ‘D’, a sequential quadratic programming
algorithm is used for solving the optimization problem [32]. In order to avoid determining local minima,
the algorithm is executed several times from random starting points.
The estimated membership functions using each of the 4 approaches described above are summarized in
Fig. (4). As noted from the figure, there is a perfect match between the membership function generated
using the reciprocal intervening variable (‘R’) and direct optimization (‘D’). This was an expected result:
as the truss under study is statically determinate, the application of a reciprocal intervening variable
leads to an approximate representation that is actually equal to the exact displacement. In addition,
the approximations considering Taylor expansions produce results which are approximate. Naturally, the
accuracy of the second-order expansion (‘T2’) is higher than the accuracy of the first-order expansion
(‘T1’). However, numerical costs associated to ‘T2’ are much higher than those associated with ‘T1’.
Note numerical efforts associated with direct optimization (‘D’) are also considerable while the costs
associated with first-order expansions with and without intervening variables are equal and substantially
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smaller than the previous cases.
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Figure 4: Membership function associated with vertical displacement of node A

7.2. Example 1: Statically Indeterminate Truss Structure
The second example consists of the 21-bar statically indeterminate truss depicted in Fig. 5. The reason
for choosing an indeterminate structure is analyzing the performance of a first-order approximation
considering intervening reciprocal variables in order to assess (qualitatively) how its accuracy decreases
with respect to the case where a determinate structure is analyzed.
The parameters of the 21-bar truss replicate those of example 1 of this contribution except that in this
case, the problem involves a total of Nu = 21 fuzzy variables related with the cross section area of the
bars. The membership function associated with each of these areas is represented schematically in Fig.
3. The objective is determining the membership function associated with the horizontal displacement of
node B. The sought membership function is determined using the same four approaches used in example
1. The results obtained are presented in Fig. 6.

4 [m] 4 [m] 4 [m] 4 [m]

4 [m]

4 [m]

10 [kN] 10 [kN] 10 [kN]

B

Figure 5: Schematic representation of structure considered in example 2

The results obtained are most interesting. For almost all α-cuts analyzed, the approximation that is clos-
est to the results provided by direct optimization is the first-order Taylor expansion considering reciprocal
variables. The second-order Taylor expansion provides results which are quite close to those provided
by the approximation considering reciprocal variables. Finally, the first-order expansion considering no
intervening variables provides the worst approximation when compared with direct optimization.
It is interesting to note that although the structure analyzed is not statically determinate, the approxi-
mation involving reciprocal intervening variables still outperforms the other approximations considered.
Such a behavior has already been recognized within the context of structural optimization [4].

8. Conclusions
The results presented in this contribution suggest the application of intervening variables of the recip-
rocal type may bring substantial advantages for performing fuzzy structural analysis, i.e. propagating
the uncertainty from input variables to output responses (in this case, displacements) where uncertainty
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Figure 6: Membership function associated with horizontal displacement of node B

is quantified in terms of membership functions. The examples analyzed indicate a first-order Taylor
expansion of the displacement considering reciprocal intervening variables outperforms both first- and
second-order Taylor expansions considering no intervening variables. In addition, numerical costs asso-
ciated with the use of a first-order Taylor expansion do not change irrespective of the use of a reciprocal
intervening variable or no intervening variable at all. On the contrary, numerical efforts do increase
considerably for the case where a second-order Taylor expansion is employed.
The main reason behind the successful application of a reciprocal intervening variable is its capacity of
capturing the nonlinear behavior of the exact structural response. However, it must be acknowledged
that for problems of practical interest, capturing the nonlinear behavior of the response is only one side
of the problem. The other side is coping with the presence of extrema of the structural response which
take place for values of the uncertain parameters which lie within the bounds of these parameters (and
not on these bounds). Note the first-order Taylor expansion considering reciprocal intervening variables
presented in Eqs.(21), (22), (23) and (24) computes the extrema of the response assuming these extrema
take place in the boundary of the region containing the uncertain parameters. However, there is no
warranty that this actually takes place (except for specific cases such as the one analyzed in Example 1).
Although the results presented are promising it should be kept in mind the examples analyzed are of
limited scope. Future research efforts will aim at considering different types of structures. In the same
manner, different types of intervening variables (other than reciprocal) could be considered as well. Fi-
nally, other types of approximation (besides a first-order Taylor expansion) should be considered for
accounting for those cases where the extrema of the response do not lie on the boundary of the region
containing the uncertain parameters. In fact, efforts on researching these issues are currently under way.
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[21] R.T. Haftka and Z. Gürdal. Elements of Structural Optimization. Kluwer, Dordrecht, The Nether-
lands, 3rd edition, 1992.

[22] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
Dover Publications, 2000.

[23] H.A. Jensen and A.E. Sepulveda. Design sensitivity metric for structural dynamic response. AIAA
Journal, 36(9):1686–1693, 1998.

[24] H.A. Jensen and A.E. Sepulveda. Use of approximation concepts in fuzzy design problems. Advances
in Engineering Software, 31(4):263273, 2000.

9



[25] Y. Kanno and I. Takewaki. Confidence ellipsoids for static response of trusses with load and struc-
tural uncertainties. Computer Methods in Applied Mechanics and Engineering, 196(1-3):393–403,
2006.

[26] Z.S. Liu, S.H. Chen, and W.Z. Han. Solving the extremum of static response for structural systems
with unknown-but-bounded parameters. Computers & Structures, 50(4):557–561, 1994.

[27] S. McWilliam. Anti-optimisation of uncertain structures using interval analysis. Computers &
Structures, 79(4):421–430, 2001.

[28] W.C. Mills-Curran, R.V. Lust, and L.A. Schmit. Approximations method for space frame synthesis.
AIAA Journal, 21(11):1571–1580, 1983.

[29] D. Moens and M. Hanss. Non-probabilistic finite element analysis for parametric uncertainty treat-
ment in applied mechanics: Recent advances. Finite Elements in Analysis and Design, 47(1):4–16,
2011.
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