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1. Abstract
While various multiobjective optimization methods based on metaheuristic techniques have been pro-
posed, these methods still encounter difficulties when handling many variables, or numerous objectives
and constraints. This paper proposes a new aggregative gradient-based multiobjective optimization
method for obtaining a Pareto-optimal solution set. In this method, the objective functions and con-
straints are evaluated at multiple points in the objective function space, and design variables at each point
are updated using information aggregatively obtained from all other points. In the proposed method,
a multiobjective optimization problem is converted to a single objective optimization problem using a
weighting method, with weighting coefficients adaptively determined by solving a linear programming
problem. A sequential linear programming technique is used to update the design variables, since it
allows effective use of design sensitivities that can be easily obtained in many engineering optimization
problems. Several numerical examples illustrate the effectiveness the proposed method.
2. Keywords: Design optimization, Multiobjective optimization, Gradient-based optimization, Adap-
tive weighting coefficient

3. Introduction
Obtaining an entire set of Pareto-optimal solutions can offer designers a clear picture of the trade-off
relationships among the conflicting objective functions, and various multiobjective optimization methods
have been proposed to obtain Pareto-optimal solution sets. In particular, multiobjective optimization
methods based on metaheuristic techniques such as genetic algorithms [1][2][3], and particle swarm op-
timization [4][5], have been extensively studied. However, constraints cannot be explicitly handled in
such methods, and the algorithms or objective functions must be modified to implement constraint han-
dling [6][7][8]. Furthermore, metaheuristic-based methods are inefficient when searching for fine-tuned
solutions once a nearly global optimum is found, since the algorithms do not include design sensitivities.
Metaheuristic techniques are also not well-suited for handling large-scale problems that have many de-
sign variables. Therefore, this paper proposes a new gradient-based multiobjective optimization method
which can utilize design sensitivity information when updating design variables.

4. Method of aggregative gradient-based multiobjective optimization

In this method, objective functions and constraints are evaluated at multiple points and the design
variables at each point are updated using information aggregatively obtained from all other points in the
objective function space. A typical nonlinear multiobjective optimization problem can be written as:

minimize f(x) = [f1(x), f2(x), . . . , fm(x)]T (1)

subject to:

g(x) ≤ 0 (2)

xL ≤ x ≤ xU (3)

x = [x1, x2, . . . , xn]
T, (4)

where objective function vector f is a function of design variable vector x, and g is a constraint vector.
xL and xU respectively denote the lower and upper bound of the design variables.

The multiobjective optimization method proposed in this paper is based on the weighting method,
and weighting coefficients are adaptively given during optimization process. In the proposed method,
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weighing coefficients are determined using a Data Envelopment Analysis (DEA) technique. DEA is
a tool originally used in the field of economics to evaluate the relative performance of decision-making
units (DMUs) in multi-input and multi-output environments [9]. In this implementation, the performance
values of a DMU for multiple criteria are converted, by solving a linear programming problem, to a single
value, termed the efficiency value, which is then used to evaluate relative performance among multiple
DMUs. An important feature of the DEA technique is that it can provide optimal weighting coefficients
when the efficiency is calculated. In the proposed method, DEA is conducted for each point to obtain
appropriate weighting coefficients.

In the case that all objective functions are to be minimized, the efficiency of the M -th point, θM , is
calculated by solving the following linear programming problem.

minimize θM =
m∑
i=1

wM
i fM

i w.r.t. wM
i (5)

subject to:

m∑
i=1

wM
i fk

i ≥ 1 (for k = 1, 2, ...,K) (6)

wM
i ≥ 0 (for i = 1, 2, ...,m), (7)

where K is the total number of points, fk
i is the k-th point’s i-th objective function value, and wM

i

represents the weighting coefficients. If the M -th point is a non-dominated point among K points, θM

becomes 1, and for dominated points, θM becomes larger than 1.
The weighting coefficients calculated by the DEA act to minimize θM , which is converted to a single

objective function by the weighting method. Therefore, if the M -th point has a smaller value of fM
1 and a

larger value of fM
2 than the other points in a bi-objective problem, the above linear programming problem

returns a larger wM
1 value and a smaller wM

2 value, which increases the importance of the first objective
function. The use of such calculated weighting coefficients when the design variables are subsequently
updated is the main idea of the proposed method.

4. Procedures
The aggregative gradient-based multiobjective optimization procedure is now described in detail. Figure
1 shows the flowchart of the procedure.

Initialization

Evaluate objective functions

Calculate weighting coefficients

Update design variables

Calculate design sensitivities

Terminate?

Start

End

M < K
M = K

Figure 1: Flowchart

• Step 1: Initialization

Generate initial design variables with random values for K points.
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• Step 2: Calculate objective functions

Evaluate objective functions for all K points.

• Step 3: Calculate weighting coefficients

Solve the linear programming problem shown in Eqs. (5) through (7) for all points and obtain
adaptive weighting coefficients wM

i . M is then set to 1.

• Step 4: Calculate sensitivities

Evaluate sensitivities of the objective functions and constraint functions for the M -th point.

• Step 5: Update design variables

Update the design variables of the M -th point, minimizing the weighted sum of the objective
functions using weighting coefficients wM

i . A Sequential Linear Programming (SLP)-based updating
scheme is used in Step 5 since it can stably handle a large number of design variables using well-
established linear programing solvers. That is, the single objective optimization problem, converted
from the multiobjective optimization problem through the use of adaptive weighting coefficients,
is linearly approximated. In this step, the following approximated linear programming problem is
solved to update the design variables of the point.

min fM =
m∑
i=1

wM
i

n∑
j=1

∂fi(x
M)

∂xj
xj w.r.t. xj (8)

subject to:

gs(x
M) +

n∑
j=1

∂gs(x
M)

∂xj
(xj − xM

j ) ≤ 0

(for s = 1, 2, ..., t) (9)

x̃L ≤ x ≤ x̃U , (10)

where fM is the weighted sum of the objective functions obtained in Step 3, and xM is the design
variable vector of the M -th point before updating. x̃L and x̃U are respectively the lower and upper
bound for this linear programming problem considering the moving limit of the design variables. If
M = K, the procedure then advances to Step 6 (Check termination condition), otherwiseM = M+1
and the procedure returns to Step 4.

• Step 6: Check termination condition

If the termination condition is satisfied, the procedure ends, otherwise it returns to Step 2.

Note that in the above procedure, two linear programming problems are solved for each point during
a single iteration: 1) to determine weighting coefficient values, and 2) to update the design variables. The
weighting coefficients for each point are therefore adaptively updated at every iteration. We note that
although our method utilizes the concept of a weighting method, it does not require setting the weighting
coefficients to predetermined values.

5. Examples
5.1. Example 1
The proposed method is now applied to two numerical examples to demonstrate its performance. In these
examples, values 5% larger or smaller than those of the design variables were used as SLP move limits.
First, the proposed method was applied to a test function [10]. The problem is stated as follows.

f1 = x4
1 + x4

2 − x2
1 + x2

2 − 10x1x2 + 0.25x1 + 20 (11)

f2 = (x1 − 1)2 + x2
2 (12)

−2 ≤ x1, x2 ≤ 2 (13)

Figure 2 shows the results for this problem, where K was set to 40. The eight-point stars indicate
the initial points and the “+” symbols represent the obtained solutions. The circled “+” marks indicate
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Figure 2: Obtained solutions in Example 1

dominated solutions that represent local optima for this problem. This result illustrates that the proposed
method can provide true Pareto-optimal solutions, although several points are stacked at local optima.
In other words, the multi-point aggregative approach that our method uses can minimize the selection of
local optima in multimodal problems.

5.2. Example 2
Next, the proposed method is used to solve the topology optimization problem illustrated in Fig. 3.
A downward traction f is applied at the lower right-hand corner of the design domain. The objective
functions are the mean compliance and total volume, and both are minimized. The density method is
used in this problem and the design domain is discretized into 60×40 elements. This problem is therefore
a large-scale problem with 2,400 design variables, and the range of each design variable was set to [0, 1].
We note that a metaheuristics-based multiobjective optimization method could not be applied to such a
large-scale problem.

60

40Design domain

f

Figure 3: Topology optimization problem

The multiobjective topology optimization is formulated as follows.

f1 = uTKu (14)

f2 = V (15)

subject to:

0 ≤ x ≤ 1 (16)

Ku = f , (17)

where u and f are respectively the displacement and force vector, K is the stiffness matrix, and V denotes
the total volume.

Figure 4 shows the non-dominated solutions obtained by the proposed method when K was set to
60. Four selected points, A–D in this figure, have corresponding configurations shown in Fig. 5. The
illustrated configurations demonstrate that the proposed method can effectively obtain non-dominated
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Figure 4: Non-dominated solutions in Example 2
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Figure 5: Examples of obtained solutions in Example 2

solutions for topology optimization problems that include a large number of design variables, since de-
sign sensitivities are used when updating the design variables. We note that conventional multiobjective
optimization methods employing metaheuristic techniques, classified as direct methods since design sen-
sitivities are not used in the optimization process, are almost always unsuitable for such large-scale
problems.

6. Conclusions

This paper proposed a new gradient-based multiobjective optimization method to obtain Pareto-
optimal solutions. The proposed method uses a weighting method to convert a multiobjective optimiza-
tion problem to a single objective optimization problem, and a linear programming problem is solved to
determine adaptive weighting coefficients for each point while considering the point’s position relative to
all other points in the objective function space. The converted single objective optimization problem is
linearly approximated, and the design variables are updated by a linear programming technique.
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