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1. Abstract
Aerosol cans are usually made of thin high performance steel and are filled with fluid at high pressure.
For these two reasons, and considering usage and packaging requirements, the structural stability of their
ends, top and bottom is then delicate to maintain. In the present work, we address the problem of shape
optimization of the bottom of a can, in order to control the dome growth DG (e.g. displacement of can
base) at a proof pressure as well as the dome reversal pressure DRP, a critical pressure at which the
can bottom looses stability (e.g. initiates buckling). We first implemented and validated an RBF-like
metamodel to have at hand cheap criteria surrogates (DG,DRP) using a 2D spline representation in an
axi-symmetric setting. Then, we implemented a Normal Boundary Intersection -NBI- with filtering for-
mulation in order to capture the -approximate- Pareto Front, using an FSQP method for the NBI-related
sub-optimizations.
The obtained approximate Pareto Fronts corroborate the antagonistic behavior of the DG and DRP
criteria, and are successfully compared to the projection on the exact cost evaluations. We also identify
Pareto-optimal solutions which lie in a restrictive industrial-prescribed acceptable interval for the DG-
DRP costs.
We then consider the problem of selection of solutions among the Pareto Front. We model the selection
problem as a Nash game played by the two costs DG and DRP, and show that an arbitrary splitting
of the shape parameters among the two players may lead to inefficient solutions (strictly dominated by
Pareto-optimal ones).
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3. Introduction
Structural multidisciplinary shape optimization -MDO- is known to demand costly computational re-
sources, notably when one seeks to identify the Pareto Front, one of the most relevant MDO tools. To
overcome this obstacle, it is classical to couple methods for the Pareto capture with metamodels aimed at
cheap costs evaluation [1] [2] [3]. There are two possible couplings between methods to identify the set
of Pareto optimal solutions, and metamodels : The first idea is to lead optimization with the dedicated
algorithms (NBI or others) and use an updated metamodel for a certain number of evaluations until
finding the solutions (strong coupling). The second idea is to lead optimization with the metamodel and
only do the exact calculations of the metamodel-obtained solutions (weak coupling).
In our work, the normal boundary intersection (NBI) method [4] and the radial basis function (RBF)
metamodel [5] are used to build our algorithm (NBI RBF) using a weak coupling. The implemented
algorithm is validated against mathematical test-cases, and then used to perform a multicriteria shape
optimization of structures which undergo highly nonlinear deformations. We compare the results ob-
tained for different a priori discretizations of the Pareto fronts. We also address the problem of selecting
solutions among the Pareto optimal ones, by using a Nash game approach.

4. Normal Boundary Intersection
In this section, we present the methodology and background used throughout the paper.

A multiobjective optimization problem is given as follows:
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min
x∈D

F (x) = (f1(x), f2(x), ..., fm(x))
T

s.t.

 gj(x) ≥ 0 j = 1, ..., J
hk(x) = 0 k = 1, ...,K

xlower ≤ x ≤ xupper
(1)

The Pareto Front is defined as the set of non-dominated designs, in the objective space. A design point,
x∗ ∈ D is non-dominated if there is no other point, x ∈ D, such that:

fi(x) ≤ fi(x∗) i = 1, ..,m

with strict inequality for at least one index.

Normal Boundary Intersection method NBI is a solution methodology developed by Das and Dennis
(1996) for the approximation of Pareto surfaces [4].
The method is based on the intersection of the so-called CHIM ’s ( convex hull of individual minima)
normal and the objective space border.
We summarize it as follows:
Let x∗i be the respective global minimizers of fi(x), i=1,..,m over x ∈ (D).
Let F ∗i = F (x∗i ), i=1,..,m.
Let F ∗ = [f1(x∗1), f2(x∗2), ...., fm(x∗m)]T .
Let φ be the m×m matrix whose ith column is F (x∗i )− F ∗ known as the pay-off matrix.
Then the set of points in Rm that are convex combinations of F (x∗i ) − F ∗ is referred to as the CHIM,
i.e., CHIM = {φβ, β ∈ Rm avec

∑m
i=1 βi = 1, βi ≥ 0}. The set of attainable objective vectors

{F (x) : x ∈ (D)} is denoted by F and is usually referred to as the objective space. Let denote the
boundary of F by ∂F .
NBI method determines the portion of ∂F which contains the Pareto optimal points. The principal idea
behind this approach is that the intersection point between the boundary ∂F and the normal pointing
towards the origin emanating from any point in the CHIM is a point on the portion of ∂F containing
the efficient points. This point is guaranteed to be a Pareto optimal point if the trade-off surface in the
objective space is convex. This is the algebraic idea behind NBI’s approach, Das and Dennis have shown
that this approach can be written mathematically and also that the point of intersection of the normal
and the boundary of F closest to the origin is the global solution of the following single problem:

max
x,t

t

s.t. (DNBI)


φ.β + t.n = F (x)− F ∗
gj(X) ≥ 0 j = 1, ..., J
hk(X) = 0 k = 1, ...,K
xlower ≤ x ≤ xupper

(2)

The advantage of the NBI method is that it gives a set of well distributed solutions over the Pareto Front.
One may need however to postprocess the results with a filter, to eliminate non-pareto or local pareto
points (if the trade-off surface in the objective space is not convex).

The basic idea of RBF metamodeling is to construct a function approximations using function values
at some sampling points, which are typically determined using experimental design methods such as
Latin hypercube, uniform distribution of the search space [6].
Let f(x) be the true objective or response function and f̃(x) its approximation obtained from a classical
RBF with the general form :

f̃(x) =

n∑
i=0

ωiφ(||x− xi||) (3)

where x is the vector of design variables, xi is the vector of the ith sampling point, n is the number of
sampling points, ||x − xi|| is the Euclidean distance, φ is a basis function (for example, Gaussien one

φ(r) = e−a r2 where a is the attenuation coefficient (0 ≺ a ≤ 1)) [7], and ωi is the unknown weighting
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coefficient which is obtained by solving the linear system :

f = A.ω (4)

where f = [f(x1), .., f(xn)]T and Ai,j = φ(||xi − xj ||) ( i=1,..,n ; j=1,..,n ).

5. Coupling NBI and RBF methods
Our goal is to perform a weak coupling between the NBI algorithm and RBF metamodel in order to have
a simple tool with a reasonable calculation time to solve multiobjective optimization problems and test
its effectiveness for academic cases, and also for an industrial cases.
Throughout our work, we address a special case of MDO (two objective functions):

min
x

F (x) = (f1(x), f2(x))
T

s.t. (D)

 gj(x) ≥ 0 j = 1, ..., J
hk(x) = 0 k = 1, ...,K

xlower ≤ x ≤ xupper
(5)

The NBI algorithm shows the need for an optimizer in each stage in the sense that the NBI method re-
quires optimization of each objective function, as well as the objective function NBI, so it is necessary to
perform a large number of evaluations of cost functions, which can be very costly in terms of computation
time. In these conditions, we replaced all the objective functions approximated by functions built with
the RBF metamodel. Let f̃1(x) and f̃2(x) the approximations obtained from a classical RBF for f1 and
f2, respectively. For RBF metamodel used, there are two parameteres to determine: The attenuation
factor will be determined using the technique of Rippa, and we chose a uniform distribution of the search
space to select the sampling points.

The NBI RBF coupling algorithm is the following:

Algorithm 1 NBI RBF coupling algorithm

1: for i = 1 : 2 do . Minimize each objective function subject to constraints
2: x∗i = min

x
f̃i(x)

3: end for
4: F̃ ∗i = [f̃1(x∗i ), f̃2(x∗i )]T . Individual minima for each objective
5: F̃ ∗ = [f̃1(x∗1), f̃2(x∗2)]T . Shadow Minima matrix
6: φ . Pay-off matrix (m×m)
7: for i = 1 : 2 do
8: φi = F̃ (x∗i )− F̃ ∗ . Pay-off matrix ith column
9: end for

10: n = −φ.e , e = (1, 1)
T

. Normal vector

11: β = (β1, β2)T , βi ≥ 0 ,
∑2

i=1 βi = 1 . weights vector
12: for each β = (β1, β2)T do
13: Solving the problem:

max
x,t

t

s.t. (DNBI)


φ.β + t.n = F̃ (x)− F̃ ∗
gj(X) ≥ 0 j = 1, ..., J
hk(X) = 0 k = 1, ...,K
xlower ≤ x ≤ xupper

14: end for

The coupling approach is first tested for several optimization problem known as test problems, which are
mathematical explicit functions (Schaffer, Messac, Constraints minimization and Tanaka problem) [10].
The results, Figure 1 on page 4 and Table 1, show that on the coupling NBI RBF converges to the
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Pareto frontier with an approximately 80%, 95%, 99% and 97% fewer number of objective functions calls
compared to a conventional NBI for Schaffer, Messac, Constraints minimization and Tanaka problem,
respectively.

Table 1: Functions call number required by NBI and NBI RBF methods

Problem Method used Prescribed Pareto points Functions calls

Schaffer
NBI 50 208

NBI RBF 50 40

Messac
NBI 50 701

NBI RBF 50 32

Constraints minimization
NBI 50 2315

NBI RBF 50 18

Tanaka
NBI 100 1884

NBI RBF 100 50

Schaffer Messac

Constraints minimization Tanaka

Figure 1: Comparison between the results obtained by NBI RBF approach, and the exact Solutions NBI

After the validation of algorithm versus academic test cases, we present an application for industrial test
case which is the shape optimization of the bottom of two kinds of aerosol cans.

6. Shape optimization of the bottom of aerosol cans

6.1. Motivation
Aerosol cans are usually made of thin high performance steel and are filled with fluid at high pressure.
For these two reasons, and considering usage and packaging requirements, the structural stability of their
ends, top and bottom is then delicate to maintain. In the present work, we address the problem of shape
optimization of the bottom of a can, in order to control the dome growth DG (e.g. displacement of can
base) at a proof pressure as well as the dome reversal pressure DRP , a critical pressure at which the can
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bottom looses stability (e.g. initiates buckling).

Dome growth Dome reversal pressure

Figure 2: Two criteria to be optimized

6.2 Types of bottom’s cans shape and steel characteristics
For our work, we use two types of bottom’s cans, Figure 4 on page 6, aerosol can N1 and aerosol can N2
are made of thin high performance steel which have the following characteristics:
* Steel thickness: e=0.46 mm
* Strain hardening exponent: n= 0.2
* Yield strength: Re = 270 MPa
* Ultimate strength: Rm = 380 MPa
* Strength coefficient : K = e(Rm.(n.(1−ln(n))))

* Hollomon law : σ = Kεn

Aerosol bottom N1 Aerosol bottom N2

Figure 3: Two different purpose shapes of the bottom

6.3. Presentation of the MDO framework
The goal is to figure out a design of bottom of aerosol cans, which satisfies a DRP value bigger than DRP
of initial shapes and a DG value smaller than 1 mm. Our initial aerosol can N1 design has 19.1 bar and
0.89 mm for DRP and DG values, respectively, and our initial aerosol can N2 design has 15.2 bar and
0.48 mm for DRP and DG values.
The test of this industrial study case of optimization would require at first to use LS-DYNA software
which performs the calculations of deformed elasto-plastic in order to determine the objective criterions
DRP and DG. Then we will use our developed approach of optimization which allows to set the param-
eters of an axisymmetric shape by using cubic splines and then optimizing in the space of splines under
border constraints.
As a first step, we present the characteristics related to shape optimization (design variable, constraints,
metamodel database and multiobjectif optimization formula).

6.3.1. Design variable
For our cases study, the bottom of the can is divided into two parts, a fixed non modifiable one, and a
variable part, to be optimally designed.
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Aerosol bottom N1 Aerosol bottom N2

Figure 4: Design variable

6.3.2. Design constraints and metamodel database

Aerosol bottom N1 Aerosol bottom N2

Figure 5: Four design variable and for each point three different positions, so we have a set of 81 points

We selected a set of 81 points ( 34 ), each point representing a given shape of the bottom of the can. Let
us mention that in our case, the above uniform sampling turned out to be more efficient than the Latin
hypercube sampling. These points will be considered as sampling points for the RBF metamodel. Then,
for each point, we calculate the exact value of two criteria DRP and DG. We collect these values to set a
database allowing us to build the RBF metamodel for each criterion, and the optimization problem will
be studied using these metamodels.

6.3.3. Optimization formula
Our aim is to solve the problem with our developed approach (NBI RBP coupling), and exact cost evalu-
ations are performed for the final Pareto optimal designs, in order to assess the efficiency of our approach
to solve this industrial optimization problem.

Let ϕ denote a cubic spline shape of the bottom of the can, or equivalently the ordinates (abscissae
are fixed) of that cubic spline. Then, our original problem is stated as the following:

max
ϕ=(ϕ1,ϕ2,ϕ3,ϕ4)

DRP (ϕ) / min
ϕ=(ϕ1,ϕ2,ϕ3,ϕ4)

DG(ϕ)

s.t. (D can)
{
ϕlower ≤ ϕ ≤ ϕupper

(6)

With our approach, we will solve the problem equivalent to the original one, replacing the criteria with
their metamodels:

max
ϕ=(ϕ1,ϕ2,ϕ3,ϕ4)

˜DRP (ϕ) / min
ϕ=(ϕ1,ϕ2,ϕ3,ϕ4)

D̃G(ϕ)

s.t. (D can)
{
ϕlower ≤ ϕ ≤ ϕupper

(7)

Let be ϕ0 = (ϕ01, ϕ02, ϕ03, ϕ04) the initial shape of the bottom of the can, and α a small positive offset.
Then, we choose NBI constraints as follows:
* ϕlower = (ϕ01 − α,ϕ02 − α,ϕ03 − α,ϕ04 − α)
* ϕupper = (ϕ01 + α,ϕ02 + α,ϕ03 + α,ϕ04 + α)
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6.3.4. Optimization results
For α = 0.5mm, we computed an approximate Pareto front for the DG/DRP costs using the NBI+RBF
coupling. For different prescribed number of Pareto points N , we show the overall time and total number
of exact or surrogate evaluations used for the Aerosol can N1 case in Table 2, and for the Aerosol can N2
case in Table 3.

Table 2: Time required for the different functions call - Beverage can - (***)=(*)+(**)

N Total time∗∗∗
Objective function Approximated function

Total calls Time required∗∗ Total calls Time required∗

6 3h 46 min 10 s 87 3h 21 min 24 s 86835 24 min 46 s
12 4h 07 min 28 s 93 3h 37 min 06 s 87444 30 min 22 s
24 4h 27 min 39 s 105 4h 00 min 13 s 85193 27 min 26 s
50 5h 43 min 23 s 131 5h 06 min 55 s 90883 36 min 28 s

Table 3: Time required for the different functions call - Spray can - ( (***)=(*)+(**) )

N Total time∗∗∗
Objective function Approximated function

Total calls Time required∗∗ Total calls Time required∗

6 4h 21 min 07 s 87 3h 57 min 34 s 76524 23 min 33 s
12 4h 38 min 53 s 93 4h 11 min 00 s 78246 27 min 53 s
24 5h 11 min 31 s 105 4h 38 min 45 s 80784 32 min 46 s
50 6h 19 min 40 s 131 5h 47 min 20 s 80405 32 min 20 s

N=6 N=12

N=24 N=50

Figure 6: Comparison between the results obtained by NBI RBF approach, and the exact cost evaluation
of these results for several cases - Aerosol can N1 -
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N=6 N=12

N=24 N=50

Figure 7: Comparison between the results obtained by NBI RBF approach, and the exact cost evaluation
of these results for several cases - Aerosol can N2 -

6.3.5. Results discussion
A simple comparison between the results obtained by our approach and the accurate evaluation of these
solutions, Figure 6 Figure 7, allows us to assess that our results remain good ones notwithstanding the
complexity of our cases study.
Similarly, it is clear from Table 2 and Table 3 that our approach has allowed us to save a remarkable
computational time. For example, if we take the case with N = 50 from Table 2, there are 131 calls
of exact function evaluations and 80405 for approximated function, respectively, which represent 0.16 %
and 98.24 % of the total function calls used in our approach, but at the same time, we note that only
this 0.16% of total calls take 99.85% of the total computing time required. This last remark explains the
idea why we chose not to apply roughly the NBI method with exact evaluations to solve the industrial
case.
In the beginning of our work, we presented our goal that was to look for new profiles for the bottom of
the aerosol cans satisfying some requirements (DRP higher than initial shapes DRP values and DG lower
than 1 mm), a goal that we achieve successfully, Figure 9.
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Figure 8: Some profiles which meet the operational industrial requirements

we used a filter to eliminate all dominated points, and we remarked that all remaining solutions are
almost located at the boundary of the space formed by the elements of the RBF database Figure 9. Then
we can conclude that the solutions obtained are likely non-dominated solutions and our approach is able
to solve the industrial problem with a reasonable computation time.

Aerosol can N1 - N=24 - Aerosol can N2 - N=50 -

Figure 9: NBI RBF solutions after filtering with RBF data

7. Nash equilibrium and RBF coupling approach

We then consider the problem of selection of solutions among the Pareto Front(i.e NBI solutions). We
model the selection problem as a Nash game played by the two costs DG and DRP approximated by
RBF metamodel.
The results presented in Figure-10 show the Nash equilibria obtained for different splittings of the shape
coordinates among the two players GD and DRP. There are remarkable Nash solutions which lie on, or
are close to, the Pareto Front. But, unfortunately, in the region of interest for the operational industrial
applications (upper-left zone of the Pareto Front), almost all the Nash solutions are inefficient (strictly
dominated by Pareto-optimal ones). Thus, arbitrary splitting is not advisable.
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Aerosol can N1 Aerosol can N2

Figure 10: Nash equilibria (red) for different arbitrary splittings of the shape parameters

7. Summary and outlook

The NBI RBF coupling results show that the present approach is able to efficiently solve the multicriteria
shape optimization problem of structures with nonlinear (elasto-plastic) behavior, that is, identify regions
of interest of the Pareto Front. This is achieved not only with a reasonable computation time, but also
by yielding Pareto fronts which are consistent with respect to the total number of prescribed points over
the front.
The Nash RBF coupling results show that an arbitrary splitting of the shape parameters among the two
players may lead to inefficient solutions (strictly dominated by Pareto-optimal ones).
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