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1. Abstract
This paper presents a topology optimization method for viscous fluid problems based on the lattice
Boltzmann method (LBM). In the field of computational fluid dynamics, the LBM is a new approach
for calculating viscous flow behavior that replaces the classical formulation based on the Navier-Stokes
(NS) equation. Since the LBM is formulated with a linear equation rather than the nonlinear NS equa-
tion, numerical solutions can be stably obtained. Moreover, the explicit scheme of the LBM makes it
suitable for implementing large-scale parallel computations. In previous research, the adjoint equation
has typically included a large-scale asymmetric matrix in the sensitivity analysis, since the optimization
formula is constructed using the discrete lattice Boltzmann equation (LBE). To overcome the problem of
extreme computational cost with this approach, we construct an optimization formula governed by the
continuous Boltzmann equation, so that an adjoint equation that uses the same framework as that of the
Boltzmann equation can be derived. The framework characteristics then allow the adjoint equation to be
calculated explicitly, as with the LBE. Here, the optimization formulation is based on the LBE and the
adjoint LBE, and we use level set boundary expressions in order to obtain optimal configurations with
clear boundaries.
2. Keywords: Topology Optimization, Level Set Method, Lattice Boltzmann Method, Adjoint Method

3. Introduction
In 1973, Pironneau [1] pioneered the structural optimization of fluid problems by constructing a method-
ology based on shape optimization, and obtained an optimal shape for an obstacle placed in laminar fluid
flow, a shape resembling that of a rugby ball. Considerable research has been carried out since then and
a number of shape optimization methods applicable to viscous fluid problems have been proposed.

On the other hand, topology optimization [2], in which a structural optimization problem is replaced
by a material distribution problem, enables topological changes such as the generation of new holes in the
design domain during the optimization process, in addition to changes in the boundaries of a structure.
To apply topology optimization to fluid problems, Borravall and Petersson [3] first proposed a topology
optimization method for minimal friction problems in external and internal flow, and constructed a
methodology in which both the material and fluid domains are governed by fluid equations by assuming
that the material domain is a porous medium. This allows global control of the material distributions, by
affecting a fictitious force operating in the material domain. In research based on this methodology, for
instance, Hansen et al. [4] proposed a design for flow channels with two outlets and a single inlet, with
the aim of controlling the ratio of the flow in the outlets by altering the inlet flow velocity. Such control
techniques applied to flow properties are of particular interest in the field of micro-electromechanical
systems (MEMS), since they may be especially suitable for novel flow channel devices such as micro flow
channels or micro pumps.

Flow in high Reynolds number regimes, however, has seldom been treated in previous research on
topology optimization for fluid problems, due to the nonlinearity of the convection term in the Navier-
Stokes (NS) equation. This is especially problematic in cases of high Reynolds number flows such as
turbulent flow, when numerical calculation incurs enormous computational cost. Furthermore, a tradi-
tional approach based on the finite element method (FEM) is difficult to implement in two-phase flow
problems because the finite elements are poorly suited to expressing both the interfaces between the
different phases and the intricacies of fluid mixing during flow.
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To overcome these problems, the lattice Boltzmann method (LBM) has attracted attention as a new
methodology for fluid flow analysis [5], replacing approaches based on the NS equation in the field of
computational fluid dynamics. The LBM, based on the Boltzmann kinetic equation, is constructed using
the lattice Boltzmann equation (LBE), a time evolution of the velocity distribution function applied
to fictitious particles, so that the LBE can be treated as a linear and explicit scheme. Consequently,
the LBM can be constructed using simple algorithms and by its nature is thus suitable for large-scale
parallel computation. Lin et al. [6] applied the LBM to turbulent flow problems and, using parallel
computation, obtained numerical results for complex flow regimes. In addition, the LBM preserves the
accuracy of particle mass and momentum, enabling it to be applied to two-phase [7]. The LBM is
therefore extremely useful when working with complex flows and can be successfully applied to structural
optimization problems that include complex fluid flow regimes. In a pioneering study by Pingen et al.
[8], a topology optimization methodology using the LBM was constructed and optimal solutions similar
to those of previous research based on the NS equation were obtained. However, their approach required
dealing with a large-scale asymmetric matrix during the adjoint analysis, since the formulation of the
optimization problem was constructed using the LBE as a discrete equation, and the numerical cost of
the optimization process was therefore enormous.

In this paper, to overcome this kind of problem in the adjoint analysis, we construct a structural opti-
mization methodology using the continuous adjoint analysis proposed by Krause et al [9]. This approach
enables derivation of a continuous adjoint equation, since the formulation is based on the continuous
Boltzmann method. Due to the framework characteristics, the adjoint equation can be calculated ex-
plicitly, as with the LBE. Since this methodology has not yet been applied to structural optimization
problems, we must confirm that it is appropriate for use in a topology optimization method using the
LBM. To directly obtain clear boundaries in the optimal configurations, we use level set boundary ex-
pressions, based on the phase field method proposed by Yamada et al [10]. In the following sections,
the Boltzmann equation and the LBE are first discussed as core concepts of the LBM. Next, the level
set-based topology optimization method is described and the formulation using the LBM. The numerical
implementation and optimization algorithm are then described and, finally, we introduce two- and three
dimensional numerical examples to validate the utility of the presented topology optimization method.

4. Govering equation
The LBM is a new methodology in computational fluid dynamics that can be used instead of the classical
approach based on the Navier-Stokes equation. The LBM is constructed using the LBE as a discrete
Boltzmann kinetic equation, following the concepts of kinetic theory. The LBM expresses the fluid regime
via an aggregation of fictitious particles, and makes it possible to obtain macroscopic values such as fluid
velocity, pressure and temperature from the moments of the velocity distribution function that expresses
the distribution state of the particles. In this section, we discuss the concept of the LBM applied to a
viscous fluid.

4.1 Boltzmann kinetic equation
Here, we discuss the concept of Boltzmann kinetic equation as a continuous problem. Hence, the velocity
distribution function f = f(t,x, ξ) is governed by the following equation:

∂f

∂t
+ ξ · ∇f = Q(f) in I × Ω× Ξ, (1)

where t ∈ I(t0, t1) ⊆ R>0 represents the time, x ∈ Ω ⊆ Rd (d = 2, 3 is the spatial dimension) and ξ ∈ Ξ
(= Rd) are the particle position and velocity, respectively, Q is called a collision operator that expresses
the effect of contact between the fictitious particles. Due to the complexity of the framework, numerous
approximate models have been proposed for Q. Here, we use the following Bhatnagar-Gross-Krook (BGK)
collision model,

Q(f) = − 1

ω
(f − f eq), (2)

where ω is the relaxation time that expresses the average time until the next collision. f eq is the Maxwell
distribution as a local equilibrium solution of the Boltzmann kinetic equation,

f eq = − ρ

(2π/3)d/2
exp

(
−3

2
(ξ − u)2

)
, (3)

where ρ and u represent the fluid density and velocity, respectively. Here, ξ and u are normalized by√
3RT , where R is the gas constant and T is the temperature. The macroscopic variables can be derived
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by the moments of velocity distribution function f :

ρ =

∫
Ξ

fdξ, ρu =

∫
Ξ

ξfdξ. (4)

4.2 Lattice Boltzmann equation
The LBM is formulated as a discrete Boltzmann kinetic equation with respect to space and time in order
to implement as a numerical scheme for analyzing the incompressible viscous fluid flow. In the following
configuration, the discrete space Ωh defined in Ω is divided into an equally-spaced lattice h ∈ R>0, and
the discrete time interval Ih := {t ∈ I : t = t0 + kh2, k ∈ N}. The discrete velocity distribution function
fi is governed by the LBE:

f̃i(x, t) = fi(x, t)−
1

ω
(fi(x, t)− f eq

i (x, t)), (5)

f̃i(x, t) = fi(x+ cih
2, t+ h2) in Ih × Ωh × Ξh. (6)

Equation (5) expresses the effect of particle collisions and Eq. (6) represents the propagation process for
the particle positions at the next time step. Ξh is the discrete velocity space defining the particle velocity
ci, which has q ∈ N directions. The value of q is defined differently in various lattice gas models. In the
two-dimensional case, the nine velocity model has the following velocity vectors,

[c1, c2, c3, c4, c5, c6, c7, c8, c9]

=
1

h

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
. (7)

In the three-dimensional case, the fifteen velocity model has the following vectors,

[c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15]

=
1

h

 0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1
0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1
0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1

 . (8)

The discrete local equilibrium distribution function f eq
i is obtained by the Maxwell distribution (3),

approximated using the Taylor expansion as follows:

f eq
i = wiρ

(
1 + 3h2ci · u+

9

2
h2(ci · u)2 − 3

2
h4u · u

)
. (9)

For the two-dimensional nine-velocity model, weight wi is defined so that w1 = 4/9, w2 = w3 = w4 =
w5 = 1/9, w6 = w7 = w8 = w9 = 1/36, and for the three-dimensional fifteen-velocity model, weight wi
is defined so that w1 = 2/9, w2 = w3 = · · · = w7 = 1/9, w8 = w9 = · · · = w15 = 1/72. The density ρ,
velocity u, and pressure p are obtained from the following moments of the velocity distribution function:

ρ =
∑
i

fi, u =
1

ρ

∑
i

cifi, p =
ρ

3
. (10)

5. Optimization problem
In this section, using the LBM, we construct the formulation of the level set-based topology optimization
method for the pressure drop minimization problem under internal flow. Since the adjoint method used
in the sensitivity analysis is based on the adjoint LBE in this research, we use the Boltzmann equation
to formulate the optimization problem.

5.1 Level set method boundary expression
Here, the level set method represents fluid and solid domains, and the boundaries between them, ∂Ω,
using the iso-surface of the level set function as follows:

0 < φ(x) 6 1 if x ∈ Ω \ ∂Ω,

φ(x) = 0 if x ∈ ∂Ω,

−1 6 φ(x) < 0 if x ∈ D \ Ω,

(11)
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Figure 1: Fixed design domain D and level set function φ

where D represents the fixed design domain, Ω ⊆ D represents the fluid domain governed by the Boltz-
mann equation, and D\Ω represents the solid domain. As shown in Fig. 1, the fluid and solid domains
are defined as the level set function assumes positive and negative values, respectively. Here, the level
set function is constrained to values lying between −1 and 1, and Tikhonov regularization, as we discuss
later, is used in the formulation of the optimization problem.

5.2 Expansion of fluid domain
To expand the fluid domain Ω to the fixed design domain D, the expanded velocity ũ is defined as

ũ := χφu, (12)

where χφ is the characteristic function representing the existence of the fluid domain Ω, defined as follows:

χφ =

{
1 if φ(x) > 0,

0 if φ(x) < 0.
(13)

By replacing the velocity u in the Maxwell distribution f eq shown in Eq. (3) with the expanded velocity ũ
of Eq. (12), the Boltzmann equation is made dependent on the characteristic function χφ. Consequently,
the space of the Boltzmann equation in Eq. (1) can be considered as I ×Ω×Rd 7−→ I ×D ×Rd, which
allows the flow regime to be represented using the LBE, obtained by the discrete Boltzmann equation
in the fixed design domain D. Therefore, an optimal configuration can be obtained by controlling χφ,
governed by φ as a design variable in the optimization problem.

5.3 Optimization problem
Here, the topology optimization method based on the Boltzmann equation is formulated for a general
form of objective functional J , constructed by integrating jΓ and jD, as follows:

inf
φ

J =

∫
I

∫
Γ

jΓ(ρ[f ],u[f ])dΓdt+

∫
I

∫
D

jD(ρ[f ],u[f ], φ)dΩdt, (14)

s.t. V =

∫
D

χφdΩ− Vmax 6 0, (15)

E =

∫
I

∫
D

∫
Ξ

g

{
∂f

∂t
+ ξ · ∇f +

1

ω
(f − f eq)

}
dξdΩdt = 0, (16)

where V is a volume constraint that prescribes the limit quantity Vmax of the fluid domain and E is the
weak form of Eq. (6) using test function g(t,x, ξ).

Since the characteristic function χφ allows discontinuity in infinitesimal intervals throughout the fixed
design domain D, the above optimization problem formulation is ill-posed. To regularize the optimization
problem, an expanded objective functional JR is defined as follows, based on the Tikhonov regularization
scheme:

JR := J +Rτ , (17)
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where the regularization term Rτ is defined as follows, using a regularization coefficient, τ :

Rτ :=
1

2
τ

∫
D

|∇φ|2dΩ. (18)

Consequently, the regularized optimization problem is formulated as

inf
φ

JR = J +Rτ , (19)

s.t. V 6 0, (20)

E = 0. (21)

The above optimization problem is now replaced by an unconstrained problem, using Lagrange’s
method of undetermined multipliers.

inf
φ

J̄R = JR + E + λG+Rτ , (22)

where J̄R is the Lagrangian, and λ ∈ R are the Lagrange multipliers. This optimization problem is then
replaced by the following time evolution equation of the level set function φ = φ(ς,x) by introducing a
fictitious time, ς ∈ Ψ[ς0, ς1) ⊆ R>0, as follows:

∂φ

∂ς
= −KJ̄ ′R = −K(J̄ ′ − τ∇2φ), (23)

where K > 0 is a constant of proportionality. The results of the time evolution formulation are assumed
to be proportional to the gradient of Lagrangian J̄R with respect to the level set function φ. Here, the
sensitivity J̄ ′ of J̄ := J + µE + λG is considered as the topological derivative. Due to this assumption,
topological changes such as the generation of new fluid domains in the solid domain and new solid do-
mains in the fluid domain are allowed during the optimization process.

5.4 Sensitivity analysis
The design sensitivity that is required to update the level set function during the optimization process is
derived using the adjoint method.

J̄ ′ = J(f ′, φ) + J(f, φ) + E(f ′, g, φ) + E(f, g′, φ) + E(f, g, φ′) + λG(φ′). (24)

In the above equation, the gradient of E with respect to the test function g is equal to the equilibrium
equation E, and can be eliminated. Since calculating the gradient of E with respect to f is enormously
costly when using numerical schemes such as the finite difference method, an adjoint equation is defined
using g, as follows,

J(f ′, φ) + E(f ′, g, φ) = 0. (25)

In previous research, a methodology to calculate the above equation in a discrete form was proposed, using
a matrix scheme, but even for a two-dimensional case, an (N × 9)2 asymmetric matrix for the number
of lattice nodes N then had to be dealt with. Hence, the calculating the discrete adjoint equation was
extremely costly.

On the other hand, since we construct the adjoint equation in a continuous form, it can be formulated
in the same manner as the Boltzmann kinetic equation, and represented as follows:

∂g

∂t
+ ξ · ∇g =

1

ω
(g − geq)− j′D in I × Ω× Ξ, (26)

where geq is defined as

geq :=

∫
Ξ

g(ξ̂)
((u− ξ)(u− ξ̂) +RT )

ρRT
f eq(ξ̂)dξ̂. (27)

Due to the similar configuration of equations X and Y, equation (26) can be discretized with respect to
space and time as with the LBE, so that the adjoint lattice Boltzmann equation (ALBE) is derived as
follows:

g̃i(x, t) = gi(x, t)−
1

ω
(gi(x, t)− geq

i (x, t))− j′D, (28)

g̃i(x, t) = gi(x− cih2, t− h2) in Ih × Ωh × Ξh. (29)
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Figure 2: Optimization procedure flowchart

The ALBE is explicitly calculated, and suitable for parallel computation owing to the simplicity of its
algorithm. Here, we note that the gradient of integrand jΓ is included in the boundary condition of the
ALBE. The details of the derivation method for the boundary conditions can be found in previous work
[9].

Consequently, using the adjoint variable gi, the design sensitivity of Eq. (24) is obtained as

J̄ ′ = E(fi, gi, φ
′) + λG(φ′)

= giwiρ
(
3h2ci · u+ 9h4χφ(ci · u)2 − 3h2χφu · u

)
+ λ. (30)

6. Optimization algorithm
The optimization flowchart is represented in Fig. 2. First, the initial level set function φ0 = 1 is set in
the fixed design domain D. Next, the LBE is calculated until a steady-state condition is realized. If the
objective functional is converged, the optimized structure is obtained and the optimization is finished,
otherwise the ALBE is calculated and the level set function is then updated based on Eq. (23), using
the design sensitivity in Eq. (30), and the procedure returns to the first step of the iterative loop. These
procedures are repeated until the objective functional is converged. Here, we use the FEM to update the
level set function, based on the method used in previous research [10].

7. Numerical examples
In this section, two- and three-dimensional numerical examples are provided. All numerical examples use
the same parameters for the optimization: τ = 5.0 × 10−3, K = 1, and φ0 = 1 , which sets the initial
configuration as being filled with fluid in the fixed design domain D.

7.1 Two-dimensional channel flow problem
First, we confirm the applicability of our methodology by comparing it with a previous FEM-based ap-
proach. The design requirements for the two-dimensional channel flow problem are shown in Fig. 3(a).
The left and right inlets velocities are respectively defined as uI = (U, 0)T and (−U, 0)T using the char-
acteristic velocity U = 5.0× 10−2. The volume constraint Vmax = 0.4, grid size h = 1.0× 10−2, and the
relaxation time ω = 0.8, which is a physically proper value in order to represent the fluid properties as
a continuum. The kinematic viscosity of the fluid is then obtained as ν = 1/3(ω − 1/2)h = 103. Hence,
the Reynolds number is represented as Re = UL/ν = 10, where we define the characteristic length L as
the width of the inlet.
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Figure 3: Optimal configuration in two-dimensional flow channel problem
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Figure 4: Optimal configuration in three-dimensional flow channel problem

Figure 3(b) shows the optimal configurations based on the FEM (a) and LBM (b) approaches for the
flow channel problem. The general similarity of the configurations confirms that the proposed LBM can
obtain appropriate results.

7.1 Three-dimensional channel flow problem
Next, the previous two-dimensional case is extended to a three-dimensional channel flow problem. The
design model is shown in Fig. 4(a). In this figure, the inlet velocity is defined as uI = (U, 0, 0) using
U = 5.0× 10−2, and the outlet pressure is p0 = 0.33. The volume constraint, relaxation parameter, and
cubic grid size are respectively set as Vmax = 0.3, ω = 0.8, and h = 3.0× 10−2. The kinematic viscosity
of the fluid is then obtained as ν = 1/3(ω − 1/2)h = 111, and the Reynolds number is represented as
Re = UL/ν = 0.01

As shown in Fig. 4(b), the proposed method can derive a valid optimal structure in the three-
dimensional case.

8. Conclusion
In this study, we constructed a level set-based topology optimization method for a pressure drop mini-
mization problem using the LBM. We obtained the following results

(1) A pressure drop minimization problem was formulated to represent solid/fluid domain boundaries,
using the level set function.

(2) The adjoint lattice Boltzmann equation was derived by basing the formulation of the optimization
problem on the continuous Boltzmann kinetic equation, and was applied to obtain the design
sensitivity.
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(3) The optimization algorithm was constructed for the steady state flow problem using the lattice
Boltzmann method.

(4) Clear optimal configurations for two- and three-dimensional flow channel problems were obtained.
Furthermore, we demonstrated that a topology optimization method using the LBM can derive
optimal configurations that are similar to those obtained via the FEM.

In future research, the proposed method will be extended to multiphase flow problems that may be
particularly relevant to cutting edge engineering applications such as microfluidic systems in MEMS de-
vices.
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[9] M.J. Krause, G. Thäter, and V. Heuveline. Adjoint-based fluid flow control and optimisation with
lattice Boltzmann methods. Computers and Mathematics with Applications, 65(6):945–960, 2013.

[10] T. Yamada, K. Izui, S. Nishiwawki, and A. Takezawa. A topology optimization method based on the
level set method incorporating a fictitious interface energy. Computer Methods in Applied Mechanics
and Engineering, 199(45-48):2876–2891, 2010.

8


