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1. Abstract  

Design optimization of steel space frames is a very popular topic in structural engineering due to economy saved 

in cost of the structures by optimization process. Although the final cost of a steel frame is affected by many 

factors, such as material, manufacturing, erection and transportation costs, the material cost of steel comprises a 

great deal of overall cost of the structure. Hence, the design optimization of steel frames is focused on weight 

minimization in the literature based on the assumption that the use of least material leads to an economical 

design as well in terms of final cost of a structure. This study focuses on design optimization of steel space 

frames that are sized for minimum weight subject to stress, stability and nodal displacement and drift constraints 

according to Allowable Stress Design-American Institute of Steel Construction (ASD-AISC) specification. Bat 

inspired optimization (BIO) algorithm, which is a recently developed metaheuristic technique that exploits 

echolocation behavior of bats in searching a design space, is employed to deal with the optimization problem at 

hand. It is shown that BIO produces improved results with respect to other methods of metaheuristics. 

2.Keywords: optimum design; discrete optimization; stochastic techniques; bat-inspired algorithm; steel frames. 

 

3. Introduction 
Designing a steel frame is among the usual tasks of a structural engineer. Both safety and economy have to be 

observed while designing a steel frame. The common practice is to observe structural safety always, while an 

economical design is pursued by the designer sometimes using intuition or experience, and occasionally using a 

trial-and-error process. However, despite the best effort of the designer, the optimum design cannot be reached in 

most cases, and even the design produced might sometimes be very far from economical range. The continuous 

inflation of the cost of materials necessitates the development of computer-aided numerical algorithms that are 

capable of optimizing the design of structures.  

Optimization has been long studied through the globe in many disciplines of science and engineering. In the past 

structural optimization was overwhelmed with optimality criteria and mathematical programming based 

methods. Despite strong mathematical backgrounds and remarkable speed of convergence to the optimum, these 

methods have found limited applications in some optimization areas, such as discrete structural optimization The 

need for selection of member sizes from a list of ready sections hampers a direct application of these methods to 

practical structural optimization problems. Fortunately, in the last two decades a number of computational tools 

called metaheuristics have been developed, which makes it possible to find optimum solutions to problems from 

engineering practice [1]. Such tools are finding increasing industrial use due to their efficiency as well as ease in 

their implementations. These methods are recognized as one of the most practical approaches for solving many 

complex problems, and this is particularly true for many real-world problems that are combinatorial in nature. 

The practical advantage of metaheuristics lies in both their effectiveness and wide range of applicability [2]. The 

applications of these techniques to the structural optimization problems are very popular nowadays [3-6]. 

One of the most recent metaheuristic techniques is bat inspired optimization algorithm (BIO) developed by Yang 

[7]. The main idea behind BIO algorithm is to imitate echolocation behavior of bats. This algorithm is inspired 

from spectacular echolocation talent of bats, as these animals can find their prey and discriminate different types 

of insects even in complete darkness. The recent studies indicate that BIO algorithm produces superior results 

when solving engineering optimization problems [8-10]. In this paper, the BIO algorithm is formulated to solve 

minimum weight design problem of steel space frames subject strength and displacement provisions of ASD-

AISC specification. The efficiency of the BIO algorithm is investigated and verified using a 3D industrial factory 

building under specified loadings.  

 

4. Optimization of Steel Frames According to ASD-AISC 
For a steel structure consisting of Nm members that are collected in Nd 

design groups (variables), the optimum 

design problem according to ASD-AISC [11] code yields the following discrete programming problem, if the 

design groups are selected from steel sections in a given profile list.  

Find a vector of integer values I (Eq. 1) representing the sequence numbers of steel sections assigned to Nd 

member groups 
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where Ai and ρi 
are the length and unit weight of the steel section adopted for member group i, respectively, Ni is 

the total number of members in group i, and Lj is the length of the member j which belongs to group i.  

The members subjected to a combination of axial compression and flexural stress must be sized to meet the 

following stress constraints: 
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If the flexural member is under tension, then the following formula is used instead: 
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In Eqs. (3-6), Fy is the material yield stress, and fa=(P/A) represents the computed axial stress, where A is the 

cross-sectional area of the member. The computed flexural stresses due to bending of the member about its 

major (x) and minor (y) principal axes are denoted by fbx and fby, respectively. Fex
’
 and Fey

’
 denote the Euler 

stresses about principal axes of the member that are divided by a factory of safety of 23/12. Fa stands for the 

allowable axial stress under axial compression force alone, and is calculated depending on elastic or inelastic 

bucking failure mode of the member using Formulas 1.5-1 and 1.5-2 given in ASD-AISC [11]. The allowable 

bending compressive stresses about major and minor axes are designated by Fbx and Fby, which are computed 

using the Formulas 1.5-6a or 1.5-6b and 1.5-7 given in ASD-AISC [11]. It is important to note that while 

calculating allowable bending stresses, a newer formulation (Eq. (7)) of moment gradient coefficient Cb given in 

ANSI/AISC 360-05 [12] is employed in the study to account for the effect of moment gradient on lateral 

torsional buckling resistance of the elements, 
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where Mmax, MA, MB and MC are the absolute values of maximum, quarter-point, midpoint, and three-quarter 

point moments along the unbraced length of the member, respectively, and Rm is a coefficient which is equal to 

1.0 for doubly symmetric sections. Cmx and Cmy are the reduction factors, introduced to counterbalance 

overestimation of the effect of secondary moments by the amplification factors (1-fa/Fe
’ 
). For unbraced frame 

members, they are taken as 0.85. For braced frame members without transverse loading between their ends, they 

are calculated from Cm=0.6-0.4(M1/M2), where M1/M2 is the ratio of smaller end moment to the larger end 

moment. Finally, for braced frame members having transverse loading between their ends, they are determined 

from the formula Cm=1+ψ (fa / Fe
’
) based on a rational approximate analysis outlined in ASD-AISC [11] 

Commentary-H1, where ψ is a parameter that considers maximum deflection and maximum moment in the 

member.        
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For computation of allowable compression and Euler stresses, the effective length factors K are required. For 

beam and bracing members, K is taken equal to unity. For column members, alignment charts are furnished in 

ASD-AISC [11] for calculation of K values for both braced and unbraced cases. In this study, however, the 

following approximate effective length formulas are used based on Dumonteil [13], which are accurate to within 

about -1.0 and +2.0 % of exact results [14]: 

 

For unbraced members: 
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For braced members: 
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where GA and GB refer to stiffness ratio or relative stiffness of a column at its two ends.  

It is also required that computed shear stresses (fa) in members are smaller than allowable shear stresses (Fv),  as 

formulated in Eq. (10).  
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In Eq. (10), Cv is referred to as web shear coefficient. It is taken equal to Cv =1.0 for rolled I-shaped members 

with h/tw≤2.24E/Fy, where h is the clear distance between flanges, E is the elasticity modulus and tw is the 

thickness of web. For all other symmetric shapes, Cv is calculated from Formulas G2-3, G2-4 and G2-5 in 

ANSI/AISC 360-05 [12]. 

Apart from stress constraints, slenderness limitations are also imposed on all members such that maximum 

slenderness ratio (λ=KL/r) is limited to 300 for members under tension, and to 200 for members under 

compression loads. The displacement constraints are imposed such that the maximum lateral displacements are 

restricted to be less than H/400, and upper limit of story drift is set to be h/400, where H is the total height of the 

frame building and h is the height of a story. 

Finally, we consider geometric constraints between beams and columns framing into each other at a common 

joint for practicality of an optimum solution generated. For the two beams B1 and B2 and the column shown in 

Figure 1, one can write the following geometric constraints: 
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where bfb, b
’
fb, and bfc are the flange width of the beam B1, the beam B2 and the column, respectively, dc is the 

depth of the column, and tf is the flange width of the column. Eq. (11) simply ensures that the flange width of the 

beam B1 remains smaller than that of the column. On the other hand, Eq. (12) enables that flange width of the 

beam B2 remains smaller than clear distance between the flanges of the column (dc-2 tf ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Beam-column geometric constraints.                      
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5. Bat Inspired Optimization Algorithm 
The bat-inspired optimization algorithm is derived from the echolocation behavior of bats. Echolocation is an 

advanced hearing based navigation system used by bats and some other animals to detect objects in their 

surroundings by emitting a sound to the environment. While they are hunting for preys or navigating, these 

animals produce a sound wave that travels across the canyon and eventually hits an object or a surface and return 

to them as an echo. The sound waves travel at a constant speed in zones where atmospheric air pressure is 

identical. By following the time delay of the returning sound, these animals can determine the precise distance to 

circumjacent objects. Further, the relative amplitudes of the sound waves received at each individual ear are used 

to identify shape and direction of the objects. The information collected this way of hearing is synthesized and 

processed in the brain to depict a mental image of their surroundings. 

Yang [7] simulated echolocation behavior of bats and its associated parameters in a numerical optimization 

algorithm. However, in Hasançebi et al. [15] a major adaptation of the technique is carried out in its formulation 

and outline to generate an algorithm that performs efficiently for structural optimization problems. The basic 

steps in implementation of this BIO algorithm are described as follows. 

Step 1. Initializing bat population (positions and velocities): A population of μ micro-bats (solutions) is 

randomly generated first, where μ refers to the population size. Each micro-bat Bi has two sets of components; a 

position (design) vector xi and a velocity vector vi, Eq. (13).  

 

                                                                               Bi=(xi, vi)                                                                               (13) 

 

Step 2. Echolocation parameters and their initializations: Each micro-bat incorporates a set of echolocation 

parameters Ωi=(fi,ri,li), which consists of a frequency fi, a pulse rate ri, and a loudness parameter li. All the three 

echolocation parameters are non-negative dynamic real quantities with the following value ranges: 

 

                                                   fmin ≤ fi ≤ fmax , rmin ≤ ri ≤ rmax , lmin ≤ li ≤ lmax                                                        (14) 

 

where fmin and fmax are the specified lower and upper bounds for the frequency parameter fi, respectively; rmin and 

rmax are the specified lower and upper bounds for the pulse rate parameter ri, respectively; and lmin and lmax are the 

specified lower and upper bounds for the loudness parameter li, respectively. Yang [7] states that the choice of 

upper and lower bounds for the echolocation parameters might have a significant influence on the convergence 

characteristics of the algorithm. In the present study the bounds fmin, fmax, lmax and rmin are set to the following 

constants; fmin=0.0,  fmax=1.0, lmax=1.0, and rmin=0.5,whereas lmin and rmax are calculated using the following 

equations. 
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In Eq. (15) nsec is the number of sections in the discrete set used for sizing the design variables, and nd is the 

number of discrete design variables. The echolocation parameters are initialized such that the initial frequency fi
0 

is set to a value randomly chosen between fmin and fmax. Besides, the initial loudness
 
li is set to its maximum value 

lmax=1.0 whereas the initial pulse rate ri is set to its minimum value rmin=0.5 for every micro-bat in the 

population. 

Step 3. Evaluating micro-bats in the initial population: The initial population is evaluated. The objective 

function values of the feasible micro-bats that satisfy all problem constraints are directly calculated from Eq. (2). 

However, infeasible micro-bats that violate some of the problem constraints are penalized using an external 

penalty function approach, and their objective function values are calculated according to Eq. (16). 
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In Eq. (16), Ø is the constrained objective function value, ck is the k-th problem constraint and p is the penalty 

coefficient used to tune the intensity of penalization as a whole. This parameter is set to an appropriate static 

value, such as p=1. 

Step 4. Storing the current population:The current population is stored and iteration counter t is increased by 1 

Step 5. Generating candidate micro-bats: μ number of new micro-bats is generated as candidate solutions for 

the design population. This is implemented using a procedure that employs two probabilistic generation schemes 

referred to as random flying and local search. Random flying provides a more explorative search, allowing the 

micro-bat to fly to a new and possibly remote position in the search space. On the other hand, a more 

exploitative search is intended in a local search scheme, where a micro-bat selected from the current population 
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is perturbed in the close vicinity of its current solution to browse neighboring points. A new micro-bat is 

generated by applying either one of these two schemes, which is determined probabilistically. A uniform random 

number ui is sampled between 0 and 1 for each micro-bat Bi in the current population, and it is compared with 

the pulse rate ri of the micro-bat. If ui ≥ ri, a new micro-bat is generated by flying Bi randomly to a new position 

in the design space. Otherwise, a micro-bat (Bk k [1,µ]) is selected from the current population at random and a 

local search is performed around this solution to generate a new micro-bat. Probabilistically speaking, the odds 

of generating a new micro-bat using random flying and local search in this procedure are 1-rave and rave, 

respectively, where rave represents the average pulse rate of the micro-bats in the current population. 

It should be noted that the initial value of pulse rate ri
0
 is set to 0.5 in the algorithm and it increases towards a 

value around rmax=1-1/nd in the course of the search process. It follows that in the beginning of the search the 

new candidate solutions are originated using the two generation schemes under equal probability. However, as 

the search goes on, the role of local search is augmented while that of random flying is diminished. This way an 

exploitative search is progressively dominated in time to benefit more from the previously visited good solutions 

than exploring new design regions of the search space. 

Random Flying: A new candidate solution is generated from a micro-bat Bi through random flying by adjusting 

its frequency fi
0 

first and updating its velocity and position next. Unlike real bats which exhibit random motion 

patterns, a micro-bat follows certain rules for the velocity and position update, which are formulated in Eq. (17) 
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In Eq. (13), fmin and fmax are the lower and upper bounds imposed for the frequency range of micro-bats, 

respectively and ui [0,1] is a random number sampled anew for each micro-bat according to a uniform 

distribution. In Eq. (17), vi
t
 and vi

t-1
 are the velocity vectors of the i-th micro-bat at time steps (iterations) t and   

t-1, respectively; likewise xi
t
 and xi

t-1
 are the position vectors of the micro-bat at iterations t and t-1, respectively 

and x* is the current global best solution representing the best-so-far solution found during the optimization 

process. 

Local Search: A local search is implemented on a randomly selected micro-bat Bk from the current population. 

In the original bat-inspired algorithm developed by Yang [7] for continuous variable optimization problems, the 

local search is implemented using Eq. (18) 
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where ξi,j is a uniform random number between -1 and 1 selected anew for each design variable j of the micro-bat 

Bk . A reformulation of this equation is carried out for discrete structural optimization problem as formulated in 

Eqs. (19) and (20). 
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In Eqs. (19) and (20), N(0,σ) is a normally distributed random with mean 0 and standard deviation σ; nsec is the 

number of sections in the discrete set used for sizing the design variables; xk,j
t
 and xk,j

t-1 
are the values of j-th 

design variable in the micro-bat Bk at time steps t and t-1, respectively; and rk is the pulse rate of the micro-bat 

Bk. The numerical experiments performed on several test problems indicated that the standard deviation σ can be 

taken as 1.0 for problems with small to medium size design spaces, and 2.0 or higher for problems with larger 

size design spaces. 

The rationale behind using a normal distribution in Eq. (19) is to facilitate occurrences of small step sizes as 

compared to large ones during local search. Besides, the term √( nsec) in this equation is used to adjust the extent 

of the region scanned by the algorithm during local search in relation to the size of the discrete set. It can be 

noted that the algorithm permits larger step sizes, as the size of the discrete set increases. 

It should also be noted that unlike Eq. (18) where all the design variables are subjected to transition 

(perturbation) during local search, Eq. (20) motivates transitions over a selected number of design variables, 

which is indeed controlled probabilistically by the pulse rate. Recalling that pulse rate is initially set to 0.5 for all 

micro-bats, a maximum of 50% of the design variables is then perturbed on average for each micro-bat at the 

start, and this ratio decreases to 1-rk in connection with an increase in pulse rate as the search continues. This 



 

6 

 

way, while the algorithm is converging towards the optimum the number of design variable transitions is also 

restricted progressively towards a more exploitative local search achieved by reduced search dimension. This can 

be reasoned by the fact that unlike continuous variable optimization, structural optimization problems may be 

highly sensitive to the changes in design variables due to discrete nature of the sizing variables. That is to say, 

even small changes in a few design variables may yield a solution with entirely different structural behavior. 

Especially this becomes a more critical issue when the algorithm is converging towards the optimum since the 

optimum lies on or near the constraint boundaries in almost all practical applications of structural optimization. 

Design transitions over many design variables at these stages generally lead to large or uncontrolled step sizes in 

discrete design space, resulting in either infeasible or unsatisfactory design points. Hence, it is essential to limit 

the number of design variable transitions in order to generate successful moves when approaching towards the 

optimum. 

Step 6. Evaluating candidate micro-bats: The objective function values of the feasible and infeasible 

candidate micro-bats are calculated from Eqs. (2) and (16), respectively. 

Step 7. Echolocation Parameters Update: After evaluating candidate micro-bats, the echolocation parameters 

are updated for improving candidates that move to better points than before. The rationale behind this is to 

automatically adopt a more useful set of values for the echolocation parameters, similar to real bats which adjust 

those parameters based on the distance to the target object. In the original BIO algorithm developed by Yang [7], 

this is performed by comparing the micro-bat with the global best design, which refers to the solution with the 

minimum objective function value located so far by the entire micro-bat population. Accordingly, every time 

when the global best design is improved by a candidate micro-bat Bi , a uniform random number ui is sampled in 

the range [0,1] and if it is smaller than the pulse rate li of the micro-bat, then its echolocation parameters ri, li are 

updated using the following equations: 

 

                                                                li
’ 
= α . li and ri

t+1
= rmax[1-exp(γt)]                                                        (21) 

 

where, li
’ 
and li are the previous and updated values of the loudness for micro-bat Bi, t is iteration number, ri

t+1
 is 

the pulse rate of the micro-bat Bi at iteration t+1, rmax is the maximum value of the pulse rate, and finally α and γ 

are the adaptation parameters of loudness and pulse rate, respectively. 

In the BIO algorithm employed for structural optimization problems here, two modifications have been carried 

out regarding this update methodology. First of all, a micro-bat is allowed to update its echolocation parameters 

each time when it produces a solution that surpasses its individual best, not the global best necessarily. The 

individual best refers to the best solution attained by the micro-bat itself during its iteration history. Unlike 

improving the global best, the latter is much easily and frequently achieved by all micro-bats enabling a 

recurrent echolocation parameter update during the search. Secondly, a reformulation of Eq. (21) is carried out 

for adaptation of pulse rate parameter as given in Eq. (22). 

 

                                                                   ri
t+1

=1-(1- ri
0
)γ

t+1
 ≤ rmax                                                                     (22) 

 

Eq. (22) facilitates a more gradual change of pulse rate parameter from its initial (minimum) value of ri
0
 towards 

rmax, whereas in Eq. (21) the pulse rate immediately approaches rmax in a few iterations and remains stationary at 

this value thereafter.  

Step 8. Selection: Selection is then carried out between current and candidate micro-bats to form the members 

of the next population which will parent and guide the generation of subsequent micro-bats. The selection 

methodology employed in the BIO algorithm is borrowed from the well-known variant of evolution strategies 

technique referred to as (µ+µ)-ES [16]. In this selection methodology current and candidate micro-bats are set 

into competition together and the best μ solutions from a total of μ+μ=2μ current and candidate solutions are 

selected deterministically in reference to their objective function values.  

Step 9. Termination: The steps 4 through 8 are implemented in the same way until a termination criterion is 

met. 

 

6. Design Example 
In this section the performance of the BIO algorithm is investigated using a 209-member industrial factory 

building (Figure 2) consisting of 100 joints. The structure is composed of 100 joints, and the 209 members of the 

frame are collected in 14 member groups (sizing design variables). The frame is sized for minimum weight by 

selecting the members from a set of discrete section presenting practical design application instance of real-size 

problems according to provisions of ASD-AISC [11] specification. This design problem has been studied 

formerly using other metaheuristic techniques, including classical harmony search (CHS) [17], adaptive 



 

7 

 

harmony search (AHS) [17], big bang-big crunch (BB-BC) [18], exponential big bang-big crunch (EBB-BC) 

[18], and modified big bang-big crunch (MBB-BC) [18]. Therefore, comprehensive comparisons are provided 

between the optimum solutions obtained for this problem using the BIO algorithm and other metaheuristics.  
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Figure 2: 209-member industrial factory building a) 3D view, b) Member grouping, c) First floor plan view,  d) 

Side view, e) Front view  
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For a fair comparison of results, the maximum number of iterations is limited to 1000. During numerical 

implementations, the control parameters of the BIO algorithm are chosen as follows: population size µ=50, 

minimum frequency fmin=0.0, maximum frequency fmax=1.0, initial (maximum) loudness li
0
=lmax=1.0, loudness 

adaptation parameter α=0.95, initial (minimum) pulse rate ri
0
=rmin=0.5, pulse rate adaptation parameter γ=0.98, 

standard deviation σ=2.0, and finally penalty coefficient p=1. The material properties of steel taken as follows: 

modulus of elasticity (E)=29,000ksi (203,893.6MPa) and yield stress (Fy)=36ksi(253.1MPa). Further, 

displacements of all the joints in x and y directions are limited to 3.43 cm (1.25 in.), and the maximum allowable 

value of inter-story drifts is taken as 1.52 cm (0.6 in.). 

 

 

 

 

 

 

 

 

 

 

 

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

a) The WL1 for roof and floor beams                                 b)  The WL2 for roof and floor beams 

 

Figure 3: The two wind load cases considered for the design of 209-member industrial factory building. 

 

For the design of this industrial building three different types of loads namely dead, crane and wind loads are 

considered. A design dead load of 1.2 kN/m2 (25.06 lb/ft2) is assumed to be acting on both floors of the side 

frames, resulting in uniformly distributed loads of 14.63 kN/m (1004.55 lb/ft) and 7.32 kN/m (502.27 lb/ft) on 

the interior and exterior beams of the side frames. Here, the dead weights of the gable roofs are neglected due to 

relatively light weight of these components. The crane load is modeled as two pairs of moving live loads acting 

on both sides of the crane runway beams. Each pair consists of a concentrated load of 280 kN (62.9 kip) and a 

couple moment of 75 kN m (5532 kip.ft). The crane load is represented in two distinct load cases as CL1 and 

CL2 by selecting two different positions for the crane on its runway. As shown in Figure 2(c), in CL1, the crane 

is positioned at points A and A’ to create maximum effect on the second framework. However, in CL2, it is 

positioned in the middle of the runway beam between the second and third frameworks (shown as B and B’ in 

Figure 2(c)) to maximize the response in the beams directed along y-axis. For design purpose, only the wind in 

the x-direction is considered and the corresponding wind forces are computed based on a basic wind speed of    

V = 46.94 m/s (105 mph) in line with the prescriptions given in ASCE 7-05 [19]. As shown in Figure 3, two load 

cases referred to as WL1 and WL2 are generated based on the sign of the internal wind pressure exerted on the 

external faces of the building. In both cases, it is assumed that wind produces a positive compression pressure on 

windward face, while it causes a negative suction effect on leeward face as well as on side walls of the building. 

In WL1 the suction effect is considered for the entire roof surface, while in WL2 one part of the roof is subjected 

to compression pressure. Amongst the five load cases (DL, CL1, CL2, WL1 and WL2), a total of six load 

combinations are generated for the strength design of structural members according to ASD-AISC [11] 

provisions, as follows: (i) 1.0DL + 1.0CL1, (ii) 1.0DL + 1.0CL1 + 1.0WL1, (iii) 1.0DL + 1.0CL1 + 1.0WL2, 

(iv) 1.0DL + 1.0CL2, (v) 1.0DL + 1.0CL2 + 1.0WL1, (vi) 1.0DL + 1.0CL2 + 1.0WL2. 
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Table 1: Comparison of results for 209-member industrial factory building. 

 
Sizing 

variables  HS AHS BB-BC EBB-BC MBB-BC BIO 

1  W8X31  W8X31  W16X57  W10X33  W10X33  W10X33  

2  W12X40  W10X39  W16X57  W10X33  W10X33  W10X33  

3  W8X31  W12X26  W8X28  W8X24  W12X26  W8X24  

4  W8X40  W8X40  W21X68  W10X33  W8X31  W10X33  

5  W24X62  W24X62  W24X62  W24X62  W24X62  W24X62  

6  W12X26  W10X26  W21X44  W12X26  W12X26  W12X26  

7  2L2.5X2X3/16  2L2X2X1/8  2L5X5X5/8  2L2X2X1/8  2L2X2X1/8  2L2X2X1/8  

8  2L2X2X1/8  2L2X2X1/8  2L2X2X1/8  2L2X2X1/8  2L2.5X2.5X3/16  2L2X2X1/8  

9  2L3X3X3/16  2L3X3X3/16  2L4X4X5/8  2L3X3X3/16  2L4X3.5X1/4  2L3X3X3/16  

10  2L3X2.5X5/16  2L2X2X1/8  2L2.5X2.5X3/16  2L2X2X1/8  2L2X2X3/16  2L2X2X1/8  

11  2L6X6X7/16  2L6X6X5/16  2L6X6X3/4  2L6X6X5/16  2L6X6X3/8  2L6X6X5/16  

12  2L6X6X3/8  2L6X6X5/16  2L8X8X3/4  2L6X6X5/16  2L6X6X3/8  2L6X6X5/16  

13  2L6X6X5/16  2L6X6X5/16  2L6X6X5/8  2L6X6X5/16  2L6X6X7/16  2L6X6X5/16  

14  2L6X6X5/16  2L5X5X5/16  2L5X5X7/16  2L5X5X5/16  2L5X5X3/8  2L5X5X5/16  

Weight, lb 
(kg)  

102924.73 
(46685.83)  

97121.3 
(44053.45)  

161764.99 
(73375.37)  

94631.38 
(42924.07)  

101842.77 
(46195.10)  

94631.38 
(42924.07)  

 

 

The BIO algorithm is employed to minimize the weight of the industrial factory building. In Table 1 the 

minimum weight designs of the structure obtained by this algorithm is compared to the previously reported 

results [17, 18] using harmony search (HS) and its adaptive variant (AHS) techniques, big bang-big crunch and 

its modified and exponential versions (BB-BC, MBB-BC and EBB-BC). The BIO algorithm performs very well 

and produces the best known solution of the problem, which is 42924.07 kg (94631.38 lb). The very same design 

has been formerly attained for the problem by EBB-BC algorithm. The optimum designs attained with AHS and 

HS techniques happened to be 44053.45 kg (97121.3 lb) and 46685.83 kg (102924.73 lb), respectively. The 

optimum design weight acquired with MBB-BC technique was 46195.10 kg (101842.77 lb). A substandard 

performance was exhibited by BB-BC algorithm, in which the structural weight could only be decreased to 

73375.37 kg (161764.99 lb) due to stagnation of the algorithm in a local optimum relatively in the early stage of 

the search process. Figure 4 shows the variation of the best feasible design obtained so far in the search 

processes using different metaheuristics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Design history graph of 209-member industrial factory building. 
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7. Conclusions 
In this study a bat-inspired optimization algorithm, BIO, has been introduced as an effective method for  

optimization of steel space frames with discrete sizing variables. The algorithm employs basic principles of bat 

inspired technique, yet a thorough reformulation of the technique is carried out for its application to structural 

optimization. The efficiency of the resulting algorithm is numerically examined using a 209-member industrial 

building. In this test problem the performance of the BIO algorithm is measured against a variety of different 

metaheuristic techniques under the same design considerations. A comparison of numerical results attained using 

different metaheuristics clearly proves the efficiency of the BIO algorithm in structural optimization. Apparently, 

the robustness of the BIO algorithm lies in its enhanced ability in achieving a satisfactory tradeoff between two 

contradictory requirements of the search process known as exploration and exploitation, which are characterized 

by the algorithm as random flying and local search. The algorithm achieves this by implementing the 

echolocation parameters of pulse rate and loudness in an efficient manner during the search process. In the 

beginning of the optimization process the roles of explorative and exploitative search are balanced in an identical 

weight by setting pulse rate parameter to 0.5. As the iterations go on, the role of exploitative search becomes 

more prominent in proportion to increase in pulse rate parameter, while the loudness is decreased in the 

meantime to gradually narrow the size of the area investigated during local search.  
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