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Technische Universität München, Chair of Structural Analysis, Arcisstrasse 21 80333 München

michael.breitenberger@tum.de, kub@tum.de, wuechner@tum.de

1. Abstract

A new method is presented which allows to determining the optimal segmentation of shell structures
built from precast patches. The geometry is described by Non-Uniform Rational B-Spline (NURBS)
surfaces and is integrated into the finite element method applying the isogeometric analysis technology
and most sophisticated own implementations of isogeometric shell elements. The goal of the method is to
find the segmentation, for which the stress resultants in the boundaries of the segments are minimal. The
method consists of three steps. In the first step, the stress resultants of the shell structure are computed.
This can be done with an isogeometric shell analysis considering one or more load cases. In the second
step the parameter space of the shell structure is roughly divided into a certain number of segments using
NURBS curves. This step is equivalent to the action of splitting/trimming the NURBS surface, which
describes the shell model. In the last step the NURBS curves in the parameter space of the shell model
are adapted such that the stress resultants for these curves get minimized. The result of the method
is the description of the original shell model with optimal trimmed NURBS surfaces. Thus the result
of the method is again a Computer Aided Design (CAD) model and can be used directly for further
applications. The method can be used for the segmentation of shell structures which should be built out
of precast concrete components. The procedure is fully integrated into the CAD program Rhino3D which
is an important issue for practical application and will be demonstrated by the contribution as well. The
success of the method will be demonstrated by illustrative benchmark examples. To summarize, the pre-
sented methodology combines the isogeometric analysis of shells, latest developments for the trimming
of NURBS-surfaces, CAD-FEM integration, optimization of layout of shell segments made from fiber
reinforced concrete.

2. Keywords: Isogeometric Analysis, Trimmed NURBS Surfaces, Integration CAD and CAE, Layout
Optimization

3. Introduction

For the design of shell structures made of precast concrete components a method is needed able to
determine the optimal segmentation of shells. Thereby the optimal segmentation is defined such that
the maximum stress in the boundaries of the segments is minimal. There are certainly many ways to
solve such a problem. For example one could use topology optimization techniques [3]. The drawback
of such techniques is to retrieve the optimization result from a finite element mesh back to a Computer
Aided Design (CAD) model. This process can be very tedious. In order to circumvent this procedure a
recently developed finite element approach named isogeometric analysis [6] is used for the optimization.
Isogeometric analysis uses for the analysis the same basis function as the CAD model, which makes the
meshing of the CAD model unnecessary. Usually Non-Uniform Rational B-Splines (NURBS) are taken
because they are most prevalent in CAD systems. For this text NURBS are assumed. Isogeometric
analysis allows it to apply the result of the proposed optimization technique directly to the original CAD
model just by using NURBS trimming operations. Thus the presented optimization can be embedded
perfectly into the design process.
The presented optimization method adjusts the boundary curves of trimmed surfaces, which form the
shell structure. In other words the initial layout of the trimming curves, defined by the user, is adjusted.
Thus the name layout optimization is used. The adjustment of the trimming curves is done with a gra-
dient based optimization algorithm.
The layout optimization technique is implemented in the in house finite element software CARAT++,
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which is integrated in the NURBS based CAD program Rhino3D. Latter is used as pre- and post pro-
cessing for the optimization. All examples and figures were done with this software package.
In the following section, the isogeometric concept including NURBS is described. Next, the layout op-
timization is introduced. Further, some examples are presented to illustrate the use of the proposed
optimization technique.

4. Isogeometric Analysis and NURBS

Isogeometric Analysis is a recent developed technology in the field of finite element analysis. The
name for this technology was introduced by T. Hughes [6]. In isogeometric analysis the functions from
the geometry description are used as basis functions for the analysis. Thus the design and analysis
work on the same geometrical model. This means the analysis can take the geometry directly from a
CAD model without the necessity of employing meshing procedures. For the design usually NURBS
(Non-Uniform Rational B-Spline) are taken because they allow great geometrical flexibility with a high
continuity (smoothness) [12]. NURBS are mathematically defined curves, surfaces and bodies which can
be used to model a large variety of different shapes. The term NURBS is the short form of Non-Uniform
Rational B-Spline and indicates that NURBS are a generalization of B-Splines. Therefore a short intro-
duction to B-Spline is given first.

4.1. B-Splines
A B-Spline is a non-interpolating, parametric curve, which consists of piecewise defined polynomials.
It is defined by a set of control points Pi, i = 1, ..., n, a polynomial degree p and a knot vector Ξ =
[ξ1, ξ2, ...ξn+p+1]. Latter is a vector of parametric coordinates ξi in non-descending order which specifies
the parametric domain and divides the B-Spline into sections. The knot vector is called open if the
first and the last knot have a multiplicity of p + 1. Open knot vectors interpolate the first and the last
control point of a B-Spline and are standard in CAD applications and are assumed for this text. B-Spline
curves of degree p are computed by the linear combination of control points and the corresponding basis
functions. The formula for B-Spline curves is

C(ξ) =

n∑
i=1

Ni,p(ξ)Pi (1)

An example of a cubic B-Spline with an open knot vector is shown in figure 1. Due to the open knot
vector the first and last control point (P1 and P7) are interpolated and the curve is tangential to the
control point polygon at its start and end.
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Figure 1: Cubic B-Spline with the knot vector Ξ = [0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1]. The dashed lines
represent the control point polygon. The small squares are the knots and divide the curve into segments.

4.2. Basis functions
The basis functions of B-Spline can be computed by the Cox-deBoor recursion formula [12] beginning
with the order p = 0:

Ni,0(ξ) =

{
1, ξi 6 ξ < ξi+1

0, otherwise
(2)

and for p > 1 it is

2



Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (3)

The basis functions are C∞ continuous inside the knot spans, which is the interval between two
consecutive knots, and Cp−1 at the knots. The local support for each basis function is the interval
[ξi, ξi+p+1]. The figure 2 shows the basis functions of the B-Spline curve in figure 1.
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Figure 2: Cubic B-Spline basis functions of the curve in figure 1 with the open knot vector Ξ =
[0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1]

4.3. B-Spline surfaces
B-Spline surfaces are computed by the tensor product of B-Spline basis functions in two parametric
dimensions ξ and η. They are defined by a net of n×m control points, two knot vectors Ξ and H, two
polynomial degrees p and q and the corresponding basis functions Ni,p(ξ) and Mj,q(η). The formula for
a B-Spline surface is

S(ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j (4)

An example of a quadratic B-Spline surface with the open knot vectors Ξ = H = [0, 0, 0, 0.5, 1, 1, 1] is
shown in figure 3. The surface on the right shows in addition the control point polygon net.

(a) B-Spline surface (b) B-Spline surface with control point polygon net

Figure 3: Quadratic B-Spline surfaces with the open knot vectors Ξ = H = [0, 0, 0, 0.5, 1, 1, 1]. The
straight black lines in the right picture represent the control point polygon net. Due to the open knot
vectors the control points at the corners are interpolated.

4.4. Non-Uniform Rational B-Spline (NURBS)
NURBS are non-uniform rational B-Spline, which means they have non-uniform knot vectors and rational
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basis functions. NURBS have in addition to their control point coordinates (xi, yi, zi) an individual weight
wi, which leads to rational basis functions. These are necessary to represent circles and cylinders exactly.
NURBS curves are defined as

C(ξ) =

∑n
i=1Ni,p(ξ)wiPi∑n
î=1Nî,p(ξ)wî

=

n∑
i=1

Ri,p(ξ)Pi (5)

whereas NURBS surfaces are defined as

S(ξ, η) =

∑n
i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,jPi,j∑n

î=1

∑m
ĵ=1Nî,p(ξ)Mĵ,q(η)wî,ĵ

=

n∑
i=1

m∑
j=1

Ri,p(ξ)Qj,q(η)Pi,j (6)

In the case all weights are equal to one NURBS can be represented by B-Splines. Thus B-Splines
geometries are a subset of NURBS geometries.

4.5. Geometry refinement
There are two ways of refining B-Spline and NURBS geometries. They are called degree elevation and
knot insertion. Both refinement techniques enhance the number of control points and therefore the capa-
bility of representing more shapes. The refinement does not change the shape of the geometry. For more
details see [12].

4.6. NURBS based shell element formulations
For the proposed layout optimization technique a surface geometry model with a high continuity is re-
quired. The high continuity is needed to determine the gradients for the optimization algorithm. The
gradients need to be computed on fields which depend on the first, second or third derivative of the
displacement field. The required field depends on the stress resultant, which needs to be optimized along
the trimming curves. Thus the analysis is done on a NURBS surface with a high enough continuity,
applying the isogeometric analysis technology. For the description of the kinematics the Kirchhoff-Love
or Reissner-Mindlin shell theory can be used. For both theories NURBS based shell formulations exist.
For the Kirchhoff-Love theory J. Kiendl et al. [8] and for the Reissner-Mindlin theory W. Dornisch et al.
[5] developed a NURBS based shell formulation. The application of the presented layout optimization
is independent of shell formulation and can be used for both theories. It only requires a smooth stress
resultant field, which can be achieved by a high enough continuity for the displacement field. The minimal
requirements on the continuity of the NURBS surface model differ depending on the applied shell theory.
In general the Kirchhoff-Love theory needs a by one increased continuity compared to the one needed for
the Reissner-Mindlin theory.
For this text the NURBS based Kirchhoff-Love element formulation is used. A detailed description for
this element can be found in [9]. An example of an isogeometric shell analysis with the NURBS based
Kirchhoff-Love shell element is shown in figure 4, which represents the Scordelis-Lo roof from the shell
obstacle course [2].

4.7. Scordelis-Lo roof
The Scordelis-Lo roof is a part of a cylindrical shell supported at its ends and free edges on the left and
right side. A problem description is shown in figure 4a. The roof is loaded by uniform gravity load. The
reference solution for this example is the vertical displacement at the point A. For the analysis of this
example a NURBS surface with polynomial degrees of four in both directions ξ and η and twenty elements
per edge are used. An element is equivalent to a knot span. This results in a vertical displacement at
the point A of u=0.3006 which is the converged solution for the used element type [8] and similar to the
reference solution in [2].

As mentioned before, for the layout optimization a stress resultant field is required. An example
of such a field is shown in figure 4b. For NURBS based shell formulations one can compute the stress
resultants for every parameter position (ξ, η). Thus it is possible to define curves in the parameter space
for evaluating the stress resultants along these curves.
The figure 5 shows an example of stress resultant evaluations along curves defined in the parameter
space. The figure shows the normal force n11 field for the Scordelis-Lo roof including evaluations along
curves defined in the parameter space (dashed lines). In order to evaluate the stress resultant along these
parameter curves, they are divided into a specific number of segments using the knot insertion refinement
technique. For this example the curves are divided into one hundred segments and for each knot span two
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(a) Description of the Scordelis-Lo roof benchmark
example
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(b) Top view of the Scordelis-Lo roof showing the
normal force n11 distribution on the undeformed ge-
ometry.

Figure 4: Shell benchmark example: Scordelis-Lo roof with its stress resultant field of n11

evaluations at its Gauss points are performed and visualized by straight lines, perpendicular to the mid
surface of the shell. This technique allows the evaluation of stress resultants along paths on the surface
defined by arbitrary curves in the parameter space.

ξ

η

ξ̃1

ξ̃2

(a) Parameter space of the NURBS surface which de-
scribes the Scordelis-Lo roof geometry and two addi-
tional curves parameterized with ξ̃1 and ξ̃2

(b) Isometric view of the normal force n11 distribu-
tion with some evaluations along curves defined in
the parameter space

Figure 5: Normal force n11 distribution of the Scordelis-Lo roof with some evaluations along two param-
eter curves

In the case the curves in the parameter space describe a closed loop in counter clockwise direction,
they define a trimmed NURBS surfaces [14]. For the layout optimization closed boundary loops are
adjusted and thus the results can be used directly in a CAD program using trimmed surface. In the next
section trimmed surfaces are explained briefly .

4.8. Trimmed NURBS
Trimmed NURBS surfaces are standard in CAD applications and are even more used than untrimmed
NURBS surfaces. They are defined by closed loops in the parameter space. An example of a trimmed
surface is shown in figure 6. The curves (A′ − B′, B′ − C ′, C ′ − D′, D′ − A′) in the parameter space
of figure 6a define the outer boundary of the trimmed surface. The area inside the loop (curves have
counter clockwise direction) belongs to the trimmed surface whereas the remaining parameter space will
be hidden for the visualization. For visualizing trimmed surfaces the boundary curves in the parameter
space are mapped to the geometry space and the inner parts are visualized. For the example in figure 6
the parameter curves (A′−B′, B′−C ′, C ′−D′, D′−A′) are mapped to the trimming curves (A−B,B−
C,C −D,D−A) and define the trimming curves for the trimmed surface. This operation is standard in
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CAD systems and is used for the visualization of the layout optimization results. The figure 6b shows the
trimmed NURBS surface defined by the parameter space in figure 6a. A detailed description of trimmed
NURBS surfaces can be found in [14]
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(a) Parameter space of a trimmed NURBS sur-
face: The closed loop defines the boundaries of the
trimmed surface (grey area)

A

BC

D

(b) Isometric view of the trimmed NURBS surface
with its control point polygon net

Figure 6: Trimmed NURBS surface with its parameter space and boundaries

5. Layout Optimization

Optimization problems can be expressed in a general form as follows:

minimize f(x); x ∈ Rn; xl ≤ x ≤ xu

such that gk(x) ≤ 0; k = 1, ..., p
hj(x) = 0; j = 1, ..., q

where f(x) is the objective function, gk(x) the inequality and hj(x) the equality constraints. All of
them depend on the optimization variables xi, i = 1, ..., n, collected in the vector x. The objective function
can be for example the total volume [10], the strain energy [7] or the maximum stress value [1]. During
the optimization the objective function f(x) is minimized by modifying the design variables xi. The
design variables xi can be related to any kind of variable which has an influence on the objective function
such as material properties [3], the shape or the topology of a structure. For the layout optimization the
control points of the boundary curves in the parameter space of trimmed NURBS surface are used.
For the optimal solution the design variables xi have to satisfy the constraints. These constraints are
expressed by the lower and upper bound xl and xu. For this text it is assumed that the design variables
need to be inside the limits of the NURBS parameter space. Apart from that there are no further
restrictions for the optimization e.g. limit surface area or weight for the patches, thus the inequality
constraints can be neglected.
For searching the optimal solution an adaptive three point line search is used. For the computation of
the sensitivities a forward finite difference approach is used, which means for computing the sensitivities
the coordinates of the boundary curves in the parameter space have to be changed slightly.
The figure 7 shows the design variables of a possible layout optimization. The design variables are
marked with double arrows. By changing the coordinates of the control points the shape of the trimmed
surfaces are changed. The parameter space of patch 1 and 2 coincide and the common boundary curve
is coupled. During the layout optimization the design variables are adjusted such that the maximum
stress resultant along the boundary curve is minimal. For minimizing the maximum stress resultant a
Kreisselmeier-Steinhauser function is used, which is explained in the next section.

5.1. Kreisselmeier-Steinhauser function
In order to minimize one or a combination of different stress resultants along boundary or parameter
curves respectively it is necessary to express the maximum value by a continuos function, that integrates
the stress resultants along the boundary curve. This means that the discrete stress resultants values along
a curve contribute to one value in portion. Two function, which could be used for this situation are the

6



ξ

η Patch 1

Patch 2

(a) Design variables (double arrows) are adjusted by
the layout optimization. The boundary curves de-
scribes the trimming curve of the two patches.

Patch 1

Patch 2

(b) Isometric view of the Scordelis-Lo roof described
by two trimmed NURBS surfaces

Figure 7: Initial configuration for a layout optimization

p-norm and the Kreisselmeier-Steinhauser (KS) function. The paper [13] shows that the KS function is
more adaptive for optimization problems. Therefore the KS function is used for the layout optimization.
The Kreisselmeier-Steinhauser functions for stress resultants is defined as follows:

fKS(σi, σ̄, ρ) =
1

ρ
ln

(
N∑
i=1

exp
(
ρ
σi
σ̄

))
(7)

where
∑N

i=1 represents the sum over the stress resultants evaluation points along the parameter
boundaries and σi are arbitrary stress resultant like normal force, moments or a combination of it at
the evaluation points. These stress resultants are normalized by a maximum allowable stress resultant
σ̄. The parameter ρ specifies the the relevance of the largest stress resultant among all σi. The higher
the parameter ρ is chosen the more the maximal stress resultant dominates the KS function. A good
value for ρ is between 1 and 100. For more details see [11]. For the proposed layout optimization the
magnitude of the stress resultant needs to be optimized, thus the KS function has to be rewritten as:

fKS(σi, σ̄, ρ) =
1

ρ
ln

(
N∑
i=1

exp
(
ρ
∣∣∣σi
σ̄

∣∣∣)) (8)

The reference stress resultant σ̄ needs to be set reasonable because if the value of σ̄ is too small
compared to the current stresses resultant σi the value of the KS function tends to infinity whereas if
the value is too small all stets of different stress resultants σi give the same KS function value. So the
maximum stress resultants and the reference stress resultant should be in a similar range. Either the
start value is chosen appropriate or the reference value has to be updated during the optimization.

6. Benchmark Examples

In the following section two examples are presented to illustrate the use of the proposed optimization
technique. The first example deals with a double clamped beam modeled with a NURBS surface and the
second example is based on the Scordelis-Lo roof explained in the previous section.

6.1. Double clamped beam
This example consists of a beam, modeled with a NURBS surface, clamped at its ends and loaded by a line
load in the middle of the structure. The goal of the layout optimization is to find the optimal segmentation
with the condition that the maximum moment around the y-axis along the trimming curve is minimal.
The distribution of the moment around the y-axis is shown in figure 8b. It shows a linear distribution of
the moment, which is correct. As an initial configuration an arbitrary chosen parameter/trimming curve
is used.

For this optimization the boundary curve in the parameter space is a quadratic B-Spline curve with
two knot spans. For the KS function the parameter ρ is set to five and the reference stress resultant σ̄
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Figure 8: Problem description of the double clamped beam

is equal to one. For the optimization a stress resultant field computed by a NURBS surface with the
polynomial degrees p = q = 3 and eight elements per direction is used. In addition ten evaluation points
along the boundary curve are used for the KS function. The figure 9 shows how the optimum is found in
20 optimization steps, whereby the required number of steps depends on the maximal step size.

Start Optimization Opt Step 2 Opt Step 4

Opt Step 6 Opt Step 8 Opt Step 10

Patch 1

(Initial Layout)

(Final Layout)

Patch 2

solution

Parameter space

bounardy curve

trimming curve

Figure 9: Layout optimization for the double clamped beam (figure 8) with a quadratic boundary curve
and two knot spans

6.1. Scordelis-Lo roof
The second benchmark examples is the Scordelis-Lo roof, a shell structure already used mention before.
For this example the goal is to minimize the moment m12 along the predefined boundary curve, which is
shown in figure 10. For the layout optimization the boundary curve is of degree four and has five knot
spans. For the KS function the parameter ρ is set to five and the reference stress resultant value is σ̄
equal to fifty. The stress resultant field was computed with the same stetting as in section 4.7.
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m12 = −792

m12 = +792

Figure 10: Initial configuration for the layout optimization

In figure 11 the optimization steps are shown. At the beginning the ends of the boundary curve are
adjusted and than slowly the rest. After 20 optimization steps the analytically solution is found, which
is a straight line in the middle of the shell structure. The final layout splits the shell into two equal
segments.

Start Optimization

Patch 1

(Initial Layout)

Patch 2

trimming curve

Opt Step 1 Opt Step 3

Opt Step 5 Opt Step 10 Opt Step 15 Opt Step 20

Figure 11: Optimization quadratic with two knotspans

In figure 12 a graph is plotted which shows the KS function values over the optimization steps. The
graph clearly shows how the KS function gets minimized and converges.

0 5 10 15 20 25
0

5

10

15

20

25

Optimization Steps

f
K

S

Figure 12: Optimization quadratic with two knotspans
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7. Conclusion

The benchmark examples show that the presented layout optimization technique works. The paper
is intended to illustrate the possibility of using isogeometric analysis for segmentizing shell structures.
There are certainly several aspects which need to be investigated in more detail e.g. multiple load cases,
more complex geometries etc.. The possibility of a direct integration of the proposed optimization into
the design process gives this method a promising future.
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