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1. Abstract
The homogenized material optimization (HMO) problem is a novel structural optimization problem that
we have developed for optimization of fiber reinforced composite structures. In the HMO problem we
apply a smeared-out approach to model the material properties of fiber reinforced composite materials.
The objective of the HMO problem is to maximize the stiffness of a composite structure by means of
finding the optimal distribution of composite material, belonging to a fixed set of fiber orientations, across
the design domain. In order to obtain manufacturable solutions, we have introduced a linear density filter
as a restriction method to control the thickness variation across the design domain. To examine the effect
of the density filter on the thickness variation and the objective function value of composite structures,
obtained in the HMO problem, we have performed numerical tests for different load cases, mesh densities
and range of the filter radius.

It is observed that for the present problem the thickness variation was mesh-independent. Both the
thickness variation and objective function value depend on the load case used in the HMO problem. For
all load cases the thickness variations exhibits an approximately piece-wise linear behaviour for increased
filter radius. Furthermore, it was observed that an increase of filter radius would result in an moderate
increase in objective function value for the solutions obtained from the HMO problem. From these re-
sults we conclude that by using a density filter, the HMO problem can be used to obtain manufacturable
designs for composite structures.

2. Keywords: homogenized material optimization, composite structures, density filter, structural opti-
mization.

3. Introduction
Structural optimization of composite structures is a research field that gains in interest as the use of fiber
reinforced composite material increases. The manufacturing process of composite structures requires plies
of fiber reinforced composite material to be stacked in a predefined order, lay-up sequence, to form the
structure. Due to the material properties of the fiber reinforced composite plies, the mechanical behaviour
of composite structures is dependent on the lay-up sequence of the plies. To generate a manufacturable
composite structure it is important to control the thickness variation throughout the composite structure.

To further expand on the structural optimization of fiber reinforced composite structures we have
developed the homogenized material optimization (HMO) problem, where we apply an smeared-out
approach to model the material properties of fiber reinforced composite material. The objective of
the HMO problem is to maximize the stiffness of a composite structure by means of finding the optimal
distribution of composite material, belonging to a fixed set of fiber orientations, across the design domain.
To take into account manufacturability of the composite structure we have introduced a linear density
filter on the design variables of the HMO problem, as a restriction method to control the thickness
variation across the design domain.

To the best of the authors knowledge the method described here has not previously been used for
optimization of composite structures. So far most of the research has been focused on developing opti-
mization methods that find the optimal lay-up sequences for predefined structures, e.g., Stegmann and
Lund, see [1], developed the discrete material optimization (DMO) method, in which the objective is
to maximize the stiffness of the composite structure by finding a lay-up sequence of plies with optimal
fiber orientations and material choice, chosen from a pre-defined set of candidate composite materials
and fiber orientations. To solve the DMO problem the authors have used gradient based mathematical
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programming techniques. Javidran and Nouri, see [2], used a simulated annealing optimization algorithm
for design of laminated composites with required stiffness properties. In the problem statement the ob-
jective was to minimize the sum of squared differences between calculated and required effective stiffness
properties. Design constraints were set on the ply thicknesses, fiber orientation of each ply and the total
thickness of plies with a given fiber orientation. Diaconu and Sekine, see [3], use lamination parameters,
see [4], to find the optimal lay-up sequence for long laminated cylindrical shells. The optimization state-
ment was to maximize the buckling loads on the shells, while a set of lamination parameters are used as
design variables.

The focus of the present paper is to examine the effect of the density filter on the thickness variation
of the composite structure obtained by solving the HMO problem and by doing so, investigating if a
manufacturable composite structure can be obtained using the HMO problem.

4. Homogenized Material Optimization Problem
The Homogenized Material Optimization (HMO) problem concerns optimization of composite structures.
It is inspired from the sizing optimization class of structural optimization problems, see [5]. In the present
version of the HMO problem we are considering composite structures that are made up of composite plies
with fiber orientations belonging to the set

Θ = {0◦,+45◦,−45◦, 90◦} .

Moreover, we are only considering composite structures with symmetric lay-up sequences. That is, the
composite plies making up the composite structure are ordered such that there is a symmetry about the
mid-plane of the composite structure.

4.1. Material Properties of Fiber Reinforced Composites
The composite structure consists of unidirectional fiber reinforced composite plies, where the fibers in
each ply are ordered in the same direction, these composite plies exhibit orthotropic material properties.
Elements of the material coefficient matrix Q of a composite ply are given in the problem-fixed (x1, x2, z)
coordinate system as
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Here Q̄ij in Eq.(1) above represent the elements of the material coefficient matrix in the ply-fixed
(x̄1, x̄2, z) coordinate system. Q̄ij is expressed in terms of engineering constants as

Q̄11 =
E1

1− ν12ν21
Q̄12 =

ν12E2

1− ν12ν21
Q̄22 =

E2

1− ν12ν21

Q̄66 = G12 Q̄44 = G23 Q̄55 = G13,

(2)

where E1, E2 are the Young’s modulus, G12, G23, G13 are the shear modulus and ν12, ν21 are the Poisson’s
ratios of a unidirectional fiber-reinforced composite ply, see [6]. The transformation from the ply-fixed
(x̄1, x̄2, z) to problem-fixed (x1, x2, z) coordinate system in Eq.(1) is given by a counter-clockwise sense
rotation of fibers in the plies according to Fig. 1 below, where θ corresponds to a fiber orientations
belonging to Θ.
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Figure 1: Transformation from (x̄1, x̄2, z) to (x1, x2, z)-coordinate system

4.2. Finite Element Discretization
The design domain of the composite structure is divided into a number of finite element Ωe, 1, . . . , Ne. The
stiffness matrix for each element Ωe of the design domain representing a symmetriclly stacked composite
structure is given by

ke =

∫
Ωe

∫ he/2

−he/2

(
(Bmem

e )
T
QeB

mem
e + z2 (Bcur

e )
T
QeB

cur
e

)
dzdΩe, (3)

where Bmem
e and Bcur

e are the strain displacement matrices for membrane and curvature strains respec-
tively, Qe is the material coefficient matrix of element Ωe with elements as in Eq.(1) and z is the thickness
variable. Each element Ωe contains variable amounts of composite material with fiber orientations θ ∈ Θ.
To take into account this variation of material properties when modelling the element material coefficient
matrix Qe we apply the following linear mixing rule

Qe =
∑
θ∈Θ

δθe
he

Qθ
e, (4)

where Qθ
e are the material properties for a fixed fiber orientation θ ∈ Θ, δθe is the total amount of

composite material with fiber orientation θ in element Ωe and he is the total thickness of element Ωe,
which is given by

he =
∑
θ∈Θ

δθe . (5)

The effect of applying the mixing rule in Eq.(4) is a uniform distribution of material properties Qθ
e

associated to each fiber orientation θ ∈ Θ, throughout the thickness of the element.

Figure 2: Distribution of material properties in an element Ωe

By doing so the material properties of each fiber orientation θ ∈ Θ are smeared-out and an homog-
enization of the material properties is achieved across the entire element, as illustrated in Fig. 2. The
strain displacement matrices Bmem

e , Bcur
e and material coefficient matrix Qθ

e are independent of the
thickness variable z and we assume that each element has a constant thickness he. Then the element
stiffness matrix ke in Eq.(3), when substituting Eq.(4), becomes

ke =
∑
θ∈Θ

(
δθe

(
kθ
e

)inplane

+ δθeh
2
e

(
kθ
e

)bending
)
, (6)

where (
kθ
e

)inplane

=
∫
Ωe

(Bmem
e )

T
Qθ

eB
mem
e dΩe,

(
kθ
e

)bending

=
∫
Ωe

1
12 (B

cur
e )

T
Qθ

eB
cur
e dΩe. (7)
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The global stiffness matrix is obtained as

K (δ) =

Ne∑
e=1

CT
e keCe, (8)

where Ce is a kinematic matrix that properly positions each ke in the global stiffness matrix K (δ). The
global stiffness matrix is a function of the design variable vector δ which is defined as

δ =
(
δT1 , . . . , δ

T
e , . . . , δ

T
Ne

)T

, δe =
(
δ0

◦

e , δ+45◦

e , δ−45◦

e , δ90
◦

e

)T
. (9)

4.3. Restriction Method
To control the thickness variation of the composite structure in the HMO problem, there needs to be
a coupling between design variables of adjacent elements of the design domain. This is achieved by
using a basic linear density filter on the design variables, see [7],[8]. The filtering of the design variables
mathematically reads

δθe
(
xθ

)
=

Ne∑
j=1

Wejx
θ
j , (10)

where δθe
(
xθ

)
are the filtered design variables that are used to calculate the stiffness and volume of the

composite structure and xθ
e are the unfiltered design variable that become the independent variables of

the optimization problem, see [9]. Wej in Eq.(10) is a weight matrix containing the weights of the density
filter according to

Wej =
ωj∑Ne

j=1 ωj

, (11)

where the weights ωj of the density filter are given by a cone-shaped function

ωj =
R− rj

R
. (12)

Here R is the radius of the cone and rj is the distance between centroids of elements Ωe and Ωj . Wej is
zero in Eq.(10) unless the distance between the centroids of Ωj and Ωe is within the filter radius R. In
vector form Eq.(10) reads

δ (x) = Wx. (13)

4.4. Constraints in HMO
We have implemented the following constraints: The equilibrium constraint representing the response of
the composite structure is given as

K (Wx)u = F , (14)

where K (Wx) is the stiffness matrix in Eq.(8) expressed as a function of the filtered design variables in
Eq.(13), u is the displacement vector of the structure and F is the force vector representing the applied
load case. The first of two design constraints is set on the total volume V of the composite structure
according to ∑

θ∈Θ

Ne∑
e=1

aeδ
θ
e

(
xθ

)
=

∑
θ∈Θ

Ne∑
e=1

Ne∑
j=1

aeWejx
θ
j = V, (15)

where ae is the area of element Ωe. The volume constraint in Eq.(15) is interpreted in the HMO problem
as an upper limit on the total amount of composite material that is allowed to be used in the design
domain. The second design constraint is a box constraint on each unfiltered design variable xθ

j :

xθ
j ≤ xθ

j ≤ xθ
j , (16)

Note, due to the properties of Wej the filtered design variables δθe
(
xθ

)
in Eq.(10) as well as xθ

j are within
the limits defined by Eq.(16), which specify that the amount of composite material with a given fiber

orientation θ ∈ Θ must be within the limits defined by xθ
j and xθ

j .
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4.5. Formulation of the Optimization Problem
The homogenized material optimization problem now reads

(HMO)



min
u,x

F Tu

s.t



K (Wx)u = F∑
θ∈Θ

Ne∑
e=1

Ne∑
j=1

aeWejx
θ
j = V

xθ
j ≤ xθ

j ≤ xθ
j

where the objective function is to minimize the compliance F Tu and therby maximizing the stiffness
of the composite structure, subjected to a load case F . The HMO problem will generate an optimal
composite structure by finding the best distribution of composite material for each given fiber orientation
θ ∈ Θ across the design domain. The implementation of the HMO problem was done in the in-house
FE-software TRINITAS, see [10], where we applied an optimality criteria (OC) method for its solution,
see [5],[11].

5. Thickness-to-Lenght Control of Composite Structures
In order to generate a manufacturable composite structure using the HMO problem it is important to
control the rate at which the thickness of the structure changes throughout the design domain. The
density filter introduces a local bound on this rate: the thickness change for a fiber orientation θ ∈ Θ
cannot be greater then

(
xθ
j − xθ

j

)
/R.

Figure 3: Discretized design domain

However, this is only an upper bound on the thickness change for material with directions θ ∈ Θ and
the actual influence of the filter radius R on thickness variation should be investigated by numerical tests.
As a measure of thickness variation we introduce

∆ =
d

hmax
e − hmin

e

, (17)

where hmax
e and hmin

e is the maximum and minimum element thickness of the design domain, respec-
tively, and d is the closest distance between the centers of the element with maximum thickness and the
element with minimum thickness. To investigate effects of the density filter on the thickness variation in
the HMO problem we have performed numerical tests for different parameter settings, i.e., filter radius
R, load case F and mesh density.
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6. Results
The numerical tests were done for three load cases and mesh densities, respectively. For each combination
of load case and mesh density numerical tests were performed for an increasing size of the filter radius
R. The parameter settings of the HMO problem for the numerical test are shown in Tab. 1. The limits

Table 1: Parameter Settings of HMO for the Numerical Tests

Ne F xθ
j xθ

j V R

Load case 1
100

1000ey 0.001 4 0.1 0 → 2625
1024

Load case 2
100

−1000ez 0.001 4 0.1 0 → 2625
1024

Load case 3
100

1000ey − 1000ez 0.001 4 0.1 0 → 2625
1024

xθ
j , x

θ
j are the same for all θ ∈ Θ. Numerical tests preformed for parameters settings in Tab. 1 provide

the results in Fig. 4.
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(a) Load case 1
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(b) Load case 2
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(c) Load case 3

Figure 4: Filter Radius R as a function of Thickness Variation ∆

In Fig. 4 plots of the filter radius R versus thickness variation ∆, for each load case in Tab. 1, are shown.
For all of the load cases it is clear that thickness variation of the composite structure is not dependent on
the mesh density. Further, the thickness variations in Fig. 4 all exhibit the same type of piece-wise linear
continuous behaviour for increased filter radius R. However, we can observe discontinuities in thickness
variations, a large one in Fig. 4b and Fig. 4 at R ≈ 0.2 for load case 2 and 3 and also a smaller one at
R ≈ 0.7 for load case 1 in Fig. 4a. This indicates that the thickness variation depends on what type
of load case is used in the HMO problem. Load case 1 and 2 are pure in-plane and out-of-plane loads,
respectively, while load case 3 is a combination of the two loads. From the graphs in Fig. 4 one can
conclude that if the load case contains an out-of-plane part, the behaviour of the thickness variation will
correspond to Fig. 4b and Fig. 4c, while a pure in-plane load case will generate a behaviour like the one
in Fig. 4a.
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Table 2: Optimal Solutions of HMO for Load Case 1

Ne = 100 Ne = 625 Ne = 1024

R = 0.2

R = 0.6

R = 1.2

The figures in Tab. 2 show the results of the HMO problem for load case 1, which is a pure in-plane
load. The solutions presented in the table show that the obtained results are mesh-independent as the
solutions are only refined for increased mesh density, while the general distribution of composite material
throughout the design domain remains the same. For an increase of the filter radius R the material
distribution experiences changes and converges toward a linearly decaying function.

Table 3: Optimal Solutions of HMO for Load Case 2

Ne = 100 Ne = 625 Ne = 1024

R = 0.2

R = 0.6

R = 1.2
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Table 4: Optimal Solutions of HMO for Load Case 3

Ne = 100 Ne = 625 Ne = 1024

R = 0.2

R = 0.6

R = 1.2

The figures in Tab. 3 and Tab. 4 represent the results of the HMO problem for load case 2 and load
case 3: these load cases represent a pure out-of-plane load and a combination of in-plane and out-of-plane
load, respectively. Similarly to the result of load case 1 presented in Tab. 2, the results in Tab. 3 and
Tab. 4 are mesh-independent. Also they exhibit the same behaviour of converging to a linearly decaying
function for increased filter radius R. However, unlike the results in Tab. 2, the results presented in Tab.
3 and Tab. 4 undergo large changes in material distribution across the design domain for small valus of
filter radius R. This behaviour is also viewed in the corresponding thickness variation plots in Fig. 4b
and Fig. 4c, where ∆ does not increase consistently for increasing filter radius R. From a manufacturing
point of view the filter radius should therefore be set to R > 0.2 in the present problem to generate
a manufacturable feasible solution. Comparing the results in Tab. 3 and Tab. 4 we can see that the
distribution of material in the design domain are very similar. This indicates that the out-of-plan part
of the load dominates the solutions of the HMO problem in Tab. 4.
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Figure 5: Objective value plots for Ne = 1024

The graphs in Fig. 5 represent objective function value plots for increasing filter radius R. In Fig. 5a
we see that for load case 1 the compliance approximately increases linearly for a filter radius below R ≈ 1
Thereafter the increase in compliance is small and the compliance can be approximated as constant.
Fig. 5b represent the corresponding plots for load case 2 and load case 3. In these plots we note that a
sharp increase in compliance is observed at R ≈ 0.2 for the load cases in Fig. 5b. This corresponds to a
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large change in the distribution of composite material as can be seen in the results presented in Tab. 3
and Tab. 4. For filter radius R > 0.2 in Fig. 5b we can see that the increase in the compliance in moderate.

7. Conclusions
In the present paper we have introduced the homogenized material optimization problem: a novel stiffness
optimization problem for optimization of composite structures. The results of numerical test in section
6 has shown that a density filter can be effectively used in the HMO problem to control the thickness
variation of composite structures. Fig. 4 together with Tab. 2, Tab. 3 and Tab. 4 show that the thickness
variation of the composite structure is independent of the mesh density. Also Fig. 4 shows that the gen-
eral behaviour of the thickness variation depends on what type of load case is used in the HMO problem.
For the present problem it can be concluded from the results presented in Tab. 2, Tab. 3 and Tab. 4
that an filter radius of R > 0.2 is required to obtain an manufacturable feasible solution. In Fig. 5 we
see that the objective function value is also dependent on what type of load case is applied in the HMO
problem. Furthermore, it can be concluded from Fig. 5 that the filter radius R has some influence on
the compliance of the composite structure, as an increases in compliance is observed for increasing filter
radius R. From the results presented in the present paper it can be concluded that the HMO problem
can be used to obtain manufacturable feasible solutions for composite structures.
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