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1. Abstract
In the ground structure approach for topology optimization, some restriction method is needed to avoid
mesh dependent solutions and enforce a length scale on the optimized structure. This talk presents new
restriction methods in the form of four different density filters to be used within a relaxation/penalization
method like SIMP. The first two are based on the geometric mean, while the last two are based on the
harmonic mean. The filters have been numerically compared with other well-known filters, and the
obtained results indicate that the new filters are able to generate almost black and white solutions with
competitive objective function values after a competitive number of iterations.

Moreover, and perhaps more important, it is demonstrated that on some problems several of the
considered filters generate different final solutions with close to equal objective values but with quite
different topologies and/or geometries. In such cases, an extensive ”filter tool box” would provide the
user with several different optimized solutions, each giving a (hopefully) clever suggestion of how the real
structure should be designed. Since there are often some aspects which are not properly considered by
the optimization model, like manufacturing aspects, it is clearly a benefit for the user to have several
clever suggestions to choose between for the further processing.

It turns out that each of the four suggested new filters generates, on at least one test problem, a
solution with topology and/or geometry not obtained by any of the other filters. Together with the
apparent ability to produce almost black and white solutions with competitive objective function values,
this should make the new filters interesting candidates for any “filter tool box” in topology optimization.
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3. Introduction
In topology optimization, when using a relaxation/penalization approach like SIMP, [2], filters are often
applied in an attempt to avoid mesh dependence of solutions and modelling problems such as checker-
boards. An often used filter is the sensitivity filter, [7], wherein a smoothing filter is applied to the
derivatives of the objective function, which has proven to work well in practice. Another often used filter
is the linear density filter, [3] and [4], which has good convergence properties, but may sometimes pro-
duce solutions with a relatively large number of gray element. Since this might be an unwanted property,
several nonlinear density filtering techniques have been suggested to give more black and white solutions,
e.g. [6], [8] and [5].
In this presentation, four nonlinear density filters based on the geometric and harmonic means are sug-
gested and numerically compared to some existing filters. Moreover, inspired by the obtained numerical
results, we suggest that any topology optimization software based on a relaxation/penaliztion approach
should contain a ”filter tool box” with several different filters. The arguments are the following: When
topology optimization is applied in practice for designing a new structure, the most demanding task
for the user is to formulate the problem in a correct and well-defined way. This includes setting up a
reasonable FE-model, and specifying relevant load cases, boundary conditions, objective function, and
constraint functions. When this has been done, a topology optimization software can be applied. But
then, if a filter tool box is available, it takes just a relatively small additional effort to solve the considered
problem several times with alternative filters. Since the relaxed and penalized problem is intrinsically
nonconvex, and since different filters restrict the set of feasible solutions in different ways, this repeti-
tion will typically provide the user with several different ”optimal solutions”, each giving a (hopefully
clever) suggestion of how the structure should be designed. Since there are often some aspects which
are not properly considered by the optimization model, like manufacturing aspects, it should be valuable
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for the user to have more than one suggestion to choose between before further post processing. This
does not mean that “any” filter should be included in the tool box, but if a new filter is able to, on at
least some nontrivial test problems, obtain relevant topologies not obtained by other filters, then this
new filter should be a candidate for inclusion. In fact, the different filters considered in this study do
indeed produce quite different solutions to the considered test problems. In particular, this holds for the
suggested new filters.

4. Density variables and design variables in density filters
In standard topology optimization, there is a density variable ρj associated with each element j in the
finite element model of the design space. The physical properties of the element, that is, the mass density
and the stiffness, are then controlled by this density variable via some interpolation scheme, e.g. SIMP.
When using a density filter, variables called ρ̃j are introduced, related to the variables ρj through a
function called a filter as ρ̃ = F (ρ), where ρ and ρ̃ are vectors containing the respective variables ρj
and ρ̃j for all elements. The quantity ρ̃j , identified as the physical density of element j, is then used
to interpolate material properties, while the ρj , now denoted design variables, are to be interpreted as
non-physical variables controlling the structure indirectly. All evaluations of structural behaviour are
performed using the physical densities ρ̃j . The optimizer is controlling the structure indirectly via the
design variables ρj , and all derivatives are therefore calculated through the chain rule.

5. Linear Density filter
The linear density filter, [3] and [4], is defined by:

ρ̃i =
∑

j

wijρj (1)

where wij are weighting factors based on the distance between element i and element j.
A reasonable requirement is that if all of the design variables are equal to a certain value, then the filtered
density should also obtain this value. This motivates the condition:

∑

j

wij = 1, for all i. (2)

which will be assumed throughout this manuscript. The weighting factors are normally taken > 0 in
some neighbourhood Ni of element i, and equal to zero outside the neighbourhood. The neighbourhood
is typically circular, and its radius is commonly known as the filter radius, or simply R, in which case
Ni = {j : d(i, j) ≤ R}, where d(i, j) is the distance between the centroids of element i and j. The most
frequently used weight factors are so called conic weights, defined by:

wij =
R− d(i, j)∑

k∈Ni
(R − d(i, k))

if j ∈ Ni, while wij= 0 if j /∈ Ni. (3)

6. Sensitivity filter
In the original sensitivity filter, [7], no filtering is made of the density itself, hence ρ̃ = ρ. However, the
sensitivities (derivatives) of an objective function φ, are filtered using the formula

∂̃φ

∂ρi
=

1

ρi

∑

j∈Ni

∂φ

∂ρj
wijρj (4)

This modification of the derivatives has proven to be effective in producing mesh-independent solutions,
and it is without doubt one of the most used filters in topology optimization applications.

7. Two new filters based on the geometric mean
In the above linear density filter, (1), the density of an element is defined as a weighted arithmetic mean
of the design variables in the neighborhood of the element. If the weighted arithmetic mean is replaced
by the weighted geometric mean, the following filter is obtained:

ρ̃i =
∏

j∈Ni

ρ
wij

j . (5)
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It follows from this definition that if any design variable in the neighborhood of an element is equal to
zero, the filtered density for that element will be zero. This indicates that this filter will be able to create
more black and white structures than the linear density filter. The filter can be rewritten as:

log(ρ̃i) =
∑

j

wij log(ρj). (6)

By switching ρ and ρ̃ with 1−ρ and 1−ρ̃ in (6), a “reversed” geometric filter is obtained:

log(1 − ρ̃i) =
∑

j

wij log(1− ρj). (7)

This filter does the opposite, that is, if any design variable in the neighborhood of an element is equal
to one, the filtered density for that element will be one. Thus, any black design variable pixel will be
filtered to a black circle with radius equal to the filter radius. Since taking the logarithm of zero is not
defined, we introduce a strictly positive parameter α for both filters:

log(ρ̃i + α) =
∑

j

wij log(ρj + α), (8)

log(1 − ρ̃i + α) =
∑

j

wij log(1− ρj + α). (9)

For large values of α, both these geometric filters become similar to the linear density filter, but the filters
are meant to be used with α < 1. In the sequel, (8) will be called “the straight geometric filter”, while
(9) will be called “the reversed geometric filter”.

8. Two new filters based on the harmonic mean
Arithmetic and geometric means are two of the three “Pythagorean means”. The third is harmonic mean,
and a filter based on the weighted harmonic mean can be formulated as:

1

ρ̃i
=

∑

j

wij

ρj
. (10)

This filter also has the property that if any design variable in the neighborhood of an element is equal to
zero, the filtered density for that element will be zero. By switching ρ and ρ̃ with 1−ρ and 1−ρ̃ in (10),
a “reversed” harmonic filter is obtained:

1

1− ρ̃i
=

∑

j

wij

1− ρj
, (11)

with the property that if any design variable in the neighborhood of an element is equal to one, the
filtered density for that element will be one. To avoid division by zero, the strictly positive parameter α
is introduced also in these two filters:

1

ρ̃i + α
=

∑

j

wij

ρj + α
, (12)

1

1− ρ̃i + α
=

∑

j

wij

1− ρj + α
. (13)

Again, for large values of α, both these filters become similar to the linear density filter, but the filters
are meant to be used with α < 1. In the sequel, (12) will be called “the straight harmonic filter”, while
(13) will be called “the reversed harmonic filter”.

9. Convexity and concavity properties of the new filters
The filter (1) is called linear since each density ρ̃i is a linear function of the variable vector ρ. The
geometric and harmonic filters are nonlinear in this respect, but a closer examination reveals that the
two reversed filters (9) and (13) are in fact convex density filters (each ρ̃i is a convex function of ρ), while
the two straight filters (8) and (12) are concave density filters (each ρ̃i is a concave function of ρ). These

3



properties can be proved by showing (analytically) that the Hessian matrix of ρ̃i(ρ) is always positive
semidefinite for the filters (9) and (13), while it is always negative semidefinite for the filters (8) and (12).
Three implications of these properties are the following:
I.) For each of the convex filters, the volume

∑
i ρ̃i(ρ) is a convex function of ρ, so that the feasible region

induced by a volume constraint is a convex set.
II.) For each of the concave filters, the compliance without penalization (p = 1 in SIMP) is a convex
function of ρ.
III.) For each of the concave filters, the volume

∑
i ρ̃i(ρ) is a concave function of ρ. This implies that

the MMA approximation of the volume will always be ”conservative”, so that the optimal solution of the
MMA subproblem will always satisfy the original volume constraint.

10. Numerical test problems
The new filters have been tested on several different test problems, and their performance has been
compared to several existing filters. In this presentation, however, we will present results only for three
closely related test examples and only for the above six filters (4), (1), (8), (9), (12) and (13).
The SIMP approach for topology optimization is used, with element-wise constant densities.
Four-node bilinear finite elements are used, and the implementation is done in Matlab, using the “88-line
code” from [1]. The optimizer used is the Matlab version of the method of moving asymptotes (MMA),
[9], with default values on all parameters, except for the addition of a move limit 0.2 on each variable in
each iteration, implemented through the parameters alfa and beta in the subroutine mmasub.m. (The
same move limit as used in the OC method of the “88-line code” in [1].)
In each of the three presented test problems, the sum of the compliances corresponding to four different
load cases is minimized subject to a volume constraint. The only difference between the test problems is
the weightings of the four load cases.
The design domain consists of 140 × 140 = 19600 square elements and 141 × 141 = 19881 nodes with
coordinates (x, y), where x ∈ {−70,−69, . . . , 69, 70} and y ∈ {−70,−69, . . . , 69, 70}.
There are 18 degrees of freedom which are fixed to zero, namely the degrees of freedom corresponding to
the nine nodes with coordinates (x, y), where x ∈ {−1, 0, 1} and y ∈ {−1, 0, 1}.
In each of the four load cases, there are applied external forces at each of the twelve nodes with coordinates
(xi, yi) according to Table 1. Note that (30, 52)≈60·(1/2,

√
3/2), which means that the twelve nodes are

located approximately on the boundary of a circle with radius 60 (with one ”hour” between each node).
The force (fx

ℓi, f
y
ℓi) applied at (xi, yi) for the different load cases is defined in Table 2 and illustrated in

Figure 1, and the load coefficients cℓ in Table 2 are chosen according to Table 3.
The optimization problem can be formulated as:

minimize
4∑

ℓ=1

fT

ℓ uℓ(ρ) subject to
n∑

i=1

ρ̃i(ρ) ≤ V ∗, ρ ∈ [0, 1]n, (14)

where, for a given ρ ∈ [0, 1]n, the displacement vector uℓ(ρ) is obtained as the solution to K(ρ)uℓ = fℓ,
where K(ρ) =

∑n

i=1
(Emin + ρ̃i(ρ)

p(E0 − Emin))Ki. Here, uℓ and fℓ are the displacement and force
vectors corresponding to load case ℓ, Ki is the stiffness matrix of element i, Emin = 10−9 and E0 = 1.
The physical densities ρ̃i(ρ) are obtained from one of the equations (1), (8), (9), (12), (13), or, if using the
Sensitivity filter, ρ̃i(ρ) = ρi. The SIMP penalty parameter is p=4. All the six considered filters use conic
weights with filter radius 2.4 elements (= 4% of the radius of the “circle of loads”). In the geometric and
harmonic filters, the parameter α has been chosen such that if

∑
j wijρj = 0.5 then ρ̃i becomes roughly

0.1 for the straight filters and 0.9 for the reversed filters. More precisely, α = 0.1 for the two harmonic
filters, and α = 0.01 for the two geometric filters.
Concerning the convergence criterion, the iterations are stopped when no variable has changed by more
than 0.001 since the previous iteration, which is somewhat harder than the more commonly used 0.01.
Since the objective value of an obtained solution is very sensitive to the amount of (heavily penalized)
gray structure, the linear density filter almost always comes out as a loser when comparing objective
value, even though the generated topology and geometry may in fact be very good. Since it may be
more interesting to compare the quality of different topologies and geometries rather than the amount of
gray, the obtained final solutions for the different filters have also been rounded to pure black and white
solutions as follows: The right hand side of the volume constraint in the SIMP problem is set to 0.333
times the total number of elements, i.e., 0.333 · 19600 = 6526.8. When the convergence criterion has
been fulfilled and the iterations stopped, the obtained (slightly gray) solution is rounded to a completely
black and white solution by letting the 6528 elements with largest values on their physical design variable
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(”density”) be black, and the other 13072 elements white. This means that 6528/19600≈ 0.33306 of the
total design domain becomes black. The obtained topologies turns out to be essentially unaltered by this
final rounding, but the boundaries become much sharper (of course) and the compliances decrease.
Finally, it should noted that symmetry of the structure is not enforced.
The obtained results on the threes test problems are presented in Tables 4–6 and Figures 2–4 where the
physical densities ρ̃i are plotted. Each table contains the following information:
Column 1: Number of MMA iterations for obtaining the gray solution.
Column 2: Penalized objective value for the obtained gray structure divided by objective value for the
completely black structure (19600 black elements).
Column 3: Objective value for the rounded solution (6528 black elements) divided by objective value for
the completely black structure (19600 black elements).
Column 4: Number of holes in the rounded solution.
A comment is perhaps in order regarding the result of the sensitivity filter on Test problem 2. While
providing excellent solutions to Test problems 1 and 3, the sensitivity filter converges to an almost com-
pletely gray solution to Test problem 2. Actually, this solution appears to be a KKT point with respect
to the filtered derivatives, but it is not a local optimum to the considered problem. In fact, looking
more closely at the iteration history, there are, among the earlier iterates, feasible solutions with lower
objective values than the obtained final objective value. It is unclear why Test problem 2 causes this
behaviour, but it shows that even established filters may, on certain problems, encounter difficulties not
encountered by other filters. Again, this is an argument for a filter tool box.

11. Conclusions
One must be extremely careful to draw any conclusions from such a limited number of numerical tests,
but two things can be claimed with certainty: 1. There are topology optimization problems to which
the different filters produce quite different topologies, with different number of holes and quite different
objective values of the gray solutions, but with objective values of the corresponding rounded solutions
which are very close to each other. 2. There are topology optimization problems for which relatively
small changes in the load conditions completely change both the obtained topologies and the relative
ranking of the compared filters. Both these conclusions support the suggestion of a “filter tool box”.
As a final (non-scientific) comment, we think that the obtained results indicate that the suggested new
filters should be included in such a tool box.
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Figure 1: Directions of the applied external forces in the four load cases

Table 1: Coordinates for nodes where the external forces are applied

i 1 2 3 4 5 6 7 8 9 10 11 12
xi 30 52 60 52 30 0 -30 -52 -60 -52 -30 0
yi 52 30 0 -30 -52 -60 -52 -30 0 30 52 60

Table 2: External forces at the node with coordinates (xi, yi)

Load case: 1 2 3 4
fx
ℓi c1yi c2xi c3yi c4xi

fy
ℓi −c1xi c2yi c3xi −c4yi

Table 3: Load coefficients cℓ in the previous table

c1 c2 c3 c4
Test problem 1: 0.0001 0.01 0.01 0.01
Test problem 2: 0.0001 0.02 0.01 0.01
Test problem 3: 0.0001 0.02 0.02 0.01
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Table 4: Results for Test problem 1

Filter Iter Gray Rounded Holes
Sensitivity filter 616 3.23 2.68 26
Linear Density 1112 3.49 2.68 25
Straight Geometric 396 3.23 2.68 26
Reversed Geometric 422 3.35 2.67 36
Straight Harmonic 209 3.30 2.68 32
Reversed Harmonic 842 3.55 2.73 38

Table 5: Results for Test problem 2

Filter Iter Gray Rounded Holes
Sensitivity filter 176 5.70 > 104 1
Linear Density 379 3.31 2.61 17
Straight Geometric 430 3.13 2.60 28
Reversed Geometric 260 3.12 2.60 24
Straight Harmonic 341 3.17 2.62 28
Reversed Harmonic 1018 3.13 2.58 16

Table 6: Results for Test problem 3

Filter Iter Gray Rounded Holes
Sensitivity filter 753 3.11 2.58 36
Linear Density 199 3.47 2.59 32
Straight Geometric 202 3.18 2.60 36
Reversed Geometric 335 3.13 2.63 16
Straight Harmonic 173 3.21 2.62 36
Reversed Harmonic 407 3.28 2.61 24
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a) Sensitivity filter

c) Straight Geometric filter

e) Straight Harmonic filter

b) Linear Density filter

d) Reversed Geometric filter

f) Reversed Harmonic filter

Figure 2: Obtained density distributions for Test problem 1
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a) Sensitivity filter

c) Straight Geometric filter

e) Straight Harmonic filter

b) Linear Density filter

d) Reversed Geometric filter

f) Reversed Harmonic filter

Figure 3: Obtained density distributions for Test problem 2
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a) Sensitivity filter

c) Straight Geometric filter

e) Straight Harmonic filter

b) Linear Density filter

d) Reversed Geometric filter

f) Reversed Harmonic filter

Figure 4: Obtained density distributions for Test problem 3
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