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Abstract. We propose a new algorithm of computation using particle swarm in order to solve multi-objective
problems more quickly and e�ectively. This approach, called accelerated multi-objective particle swarm, is par-
tially based on our previous work [4] and incorporates a vector function as objective function and it uses matrix
computation to develop the Pareto front. Unlike all these studies which use inertia weight to develop Pareto front
and an external archive to save non-dominated solution, we will modify this algorithm for causing it to use matrix
computation, then this algorithm incorporates function vector as objective function and uses Pareto dominance for
selecting best solutions and updating Pareto set. In addition, we also propose a new strategy of initialization that
contributes too to the acceleration of the algorithm. The resulting algorithm is applied to multi-objective topology
optimization of truss structures.
The results produced by such a strategy illustrate that the algorithm is competitive with NSGA-II and MISA in
terms of converging to the true Pareto front. It maintains the diversity of the population, generates better trade-o�s
and demonstrates that the matrix computation PSO can be used as a reliable numerical optimization tool.

Keywords. Topological optimization, Multi-objective optimization, Particle swarm optimization, Non-dominated
solutions, Pareto-optimal front, Matrix computation, Initialization technique, Truss structures.

1 Introduction

In this paper, a novel multi-objective particle swarm optimization (MOPSO) technique is proposed and implemented.
The proposed approach extends the single objective PSO by proposing a matrix computation to develop the Pareto-
optimal front.
There have been several proposals to extend multi-objective PSO. The most important of these are the Dynamic
Neighborhood PSO proposed by Hu and Eberhart [16]; in this algorithm, only one objective is optimized at a
time using a scheme similar to lexicographic ordering. Lexicographic ordering tends to be useful only when few
objective functions are used (two or three), and it may be sensitive to the ordering of the objectives. Praveen et
al. [25] proposes multi-objective PSO with time variant inertia and acceleration coe�cients where inertia weight
and PSO algorithm parameters expressions depend to iteration number. Other study developed in [32] proposes
multi-objective PSO with dynamic population size. Peng and Zhang [24] proposed the multi-objective particle
swarm optimizer based on decomposition MO-PSO/D, this approach uses the framework adopted by MOEA/D,
but replaces the genetic operators (crossover and mutation) by the inertia �ight equations used in traditional
PSO. Moubayed et al. [21] proposed a smart multi-objective particle swarm optimizer using decomposition, this
algorithm is also based on MOEA/D, and adopts an external archive based on ε−dominance. Fieldsend and Singh
[13] incorporates an unconstrained elite archive (in which a special data structure called dominated tree is adopted)
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to store the non-dominated individuals found along the search process. The archive interacts with the primary
population in order to de�ne local guides. This approach also uses a turbulence operator. Coello Coello, Pulido
and Lechuga [8] uses a global repository in which every particle deposits its �ight experiences. Additionally, the
updates to the repository are performed considering a geographically based system de�ned in terms of the objective
function values of each individual; this repository is used by the particles to identify a leader that will guide the
search. It also uses a mutation operator that acts both on the particles of the swarm, and on the range of each
design variable of the problem to be solved. Mostaghim and Teich [20] proposed a sigma method in which the best
local guides for each particle are adopted to improve the convergence and diversity of a PSO approach used for
multi-objective optimization. They also use a turbulence operator, but applied on decision variable space. The use
of the sigma values increases the selection pressure of PSO (which was already high). This may cause premature
convergence in some cases.
The remainder of the paper is organized as follows. In Section 1, brie�y reviews the general formulation of PSO.
In Section 2, the proposed multi-objective optimization algorithm is presented. Experimental results are discussed
in Section 3. Finally, Section 4 presents some applications in structural optimization and gives some conclusion.

2 The Particle Swarm Algorithm

In Particle Swarm Algorithm, each particle i is treated as a point in a space with dimension d, a position Xi, a
velocity Vi and personal best position Xbesti. The personal best position associated with a particle i is the best
position that the particle has visited. The best position of all particles in the swarm is represented by the vector
Xgbest. After �nding the best values, the particle updates its velocity and positions with the following equations

Vi(t + 1) = ωVi(t) + ρ1 · rand(1)[Xbesti(t)−Xi(t)] + ρ2 · rand(2)[Xgbest(t)−Xi(t)] (1)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (2)

ρ1 and ρ2 are the balance factors between the e�ect of self-knowledge and social knowledge in moving the particle
towards the target. Usually the value 2 is suggested for both factors in the literature. rand(1) and rand(2) are
independent random number in the rang [0, 1].
We modi�ed the velocity function by using a new term XNbest in the equation (1), which was introduced by
Bochenek and Fory [5] de�ned as:
XNbest = (pn1, pn2, ......, pnd) The best position of the neighborhood. The equation (1) becomes :

Vi(t+ 1) = ωVi(t) + ρ1 · rand(1)
[
Xbesti(t)−Xi(t)

]
+ρ2 · rand(2)

[
Xgbest(t)−Xi(t)

]
+ ρ3 · rand(3)

[
XNbest(t)−Xi(t)

]
(3)

where the third term of equation (3) represents the distance between the particle position and a position of the
particle neighbors leader, i.e. the best particle among its neighbors. This provides a complementary information of
swarm member behavior and therefore in�uences and improves the swarm performance.
ρ3 is the positive acceleration components called social parameter and rand(3) is the independent random number
in the rang [0, 1].

3 Accelerated Multi-objective Particle Swarm Optimization

Multi-objective optimization involves the simultaneous optimization of several incommensurable and often compet-
ing objectives. In the absence of any preference information, a non dominated set of solutions is obtained, instead
of a single optimal solution. These optimal solutions are termed as Pareto optimal solutions. Simply put, Pareto
optimal sets are the solutions that cannot be improved in one objective function without deteriorating their per-
formance in at least one of the rest [9]. In general, a multi-objective problem consists of a vector-valued objective
function to be minimized, and of some equality or inequality constraints, i.e.,{

min F (x) = (f1(x), ..., fNobj(x))T

subject to gi(x) ≤ 0 , i = 1, ....,m,
(4)
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where x ∈ IRd is the vector of decision variables, f1, ..., fNobj are objective functions, g1, .., gm are possible sets of
inequality constraints, which represent process model. The set S of constraints de�nes the feasible space, while the
set of all possible values of the objective function constitutes the objective space.
Many algorithms have been suggested for generating the Pareto optimal set, for examples, Weighted sum method,
The concept of Pareto optimality can be de�ned as follows: the decision vector x is said to dominate the decision
vector y , and we denote F (y) � F (x), if and only if :

∀ i = 1, 2, · · · , Nobj : fi(x) ≤ fi(y) and ∃ j = 1, 2, · · · , Nobj : fj(x) < fj(y). (5)

The decision vector x∗ ∈ S is said to be Pareto-optimal if and only if there is no x ∈ S for which dominates x∗. The
set of all Pareto-optimal decision vectors is called the Pareto-optimal, e�cient, or admissible set of the problem.
The corresponding set of objective vectors is called the non-dominated set.

3.1 Opposition-Based Population Initialization

Good initialization of the population can increase the convergence speed and sometimes improve the �nal results.
But if no information about the solution is available, then random initialization is the most commonly used method
to generate initial population.
The concept of opposition-based learning was introduced by Hamid R. Tizhoosh [29], and its applications has proven
to be an e�ective Method for some evolutionary algorithm in some optimization problems. The opposite solution x̆
in [a, b] can be calculated as follows [29]:
Let x be a real number in an interval [a, b] ( x ∈ [a, b] ); the opposite number x̆ is de�ned by x̆ = a + b − x. For
a = −b we receive x̆ = −x, and for a = 0 and b = 1 we receive x̆ = 1−x. Similarity, this de�nition can be extended
to higher dimensions as follows :
Let P (x1, x2, · · · , xd) be a point in d-dimensional space, where xi ∈ [ai, bi]∀i ∈ {1, 2, · · · , d}. The opposite point of
P is de�ned by OP (x̆1, x̆2, ..., x̆d) where : x̆i = ai + bi − xi
Now, let P (x1, x2, · · · , xd) a point in an n-dimensional space with xi ∈ [ai, bi] ∀i ∈ 1, 2, · · · , d, be a candidate
solution. Assume F (x) is a �tness multi-objective function which is used to measure non-dominated optimality.
According to opposite point de�nition, at iteration k, the point OPk(x̆1, x̆2, ..., x̆d) is the opposite of Pk(x1, · · · , , xd)
. The opposition-based optimization is de�ned as follow, if OPk dominates Pk, then the point Pk can be replaced by
OPk; if Pk dominates OPk, we continue with Pk, otherwise we continue with Pk. Hence, the point and its opposite
point are evaluated simultaneously to continue with the �tter one. This lead to an acceleration during the execution
of this algorithm and may change the either the concentration of the values of the positions in one region, or the
uniformity of the Pareto graph.

3.2 The proposed approach

The Accelerated Multi-objective Particle Swarm Optimization (AMOPSO) approach updates all the best solutions
at each iteration. AMOPSO approach is based on the improvement of the population of the best positions, denoted
Xmobest, which converges toward the Pareto optimal set. The population in developing Xpart bene�t from the
experiences of the entire developed population. We use the matrix representation of these two populations Xmobest

and Xpart. Let N = PopSize be the population size and K be the population size of nondominated points in
Xpart, then

Xmobest = (Xmobest1 ,Xmobest2 , · · · ,XmobestK ) and Xpart = (Xpart1 ,Xpart2 , · · · ,XpartN ) (6)

The evaluation of these two populations will use a matrix based computation. We apply the vector function

F =
(
f1, f2, · · · , fNobj

)T
on the matrix of population, then:{

Fmobest = F (Xmobest) =
(
F (Xmobest1), F (Xmobest2), · · · , F (XmobestK )

)
F (Xmobesti) =

(
f1(Xmobesti), f2(Xmobesti), · · · , fNobj(Xmobesti)

)T (7)

In this approach, the developed population doesn't follow a single best position but it moves toward each non
dominated position. The main objective of AMOPSO is then to develop the Pareto front of multi-objective problems
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using matrix computation of these functions. Let N = PopSize be the size of the population studied, Xmobest,
Xpmobesti and Xpart are three vectors where Xmobest represent the best position that the entire population has
seen, Xpmobesti the best position of the particle i has seen, and Xpart is the best position that a particle belonging
to this population has seen. In the accelerated particle swarm optimization, the population velocity, at iteration t,
is generated by the following formula:

Vi(t) = ω ·Vi(t − 1)+ρ1 ·rand(1)
(
Xpmobesti−Xparti

)
(t−1)+

ρ2 · rand(2)

K

K∑
k=1

(
Xmobestk−Xparti

)
(t−1) (8)

where ω is the inertia weight, introduced by Eberhart Shi, (see [12]). The optimal strategy is to initially set ω to
0.9 and reduce it linearly to 0.5, allowing initial exploration followed by acceleration toward an improved global
Pareto optimum, ρ1, ρ2 are the the acceleration coe�cients.
The update of the position of the developing population is simply formatted as follow:

Xparti(t) = Xparti(t− 1) + Vi(t) (9)

3.3 The pseudo-code

We start the algorithm by initializing the swarm which includes both the positions and velocities of the two
populations Xmobest and Xpart using the initialization techniques that we explained above.
We evaluate the objective functions that optimize the problem we are dealing with. We try to compare between
improvement of the population of the best positions, denoted Xmobest, which will converge toward the Pareto
optimal set and the population in developing Xpart that will bene�t from the experiences of the entire developed
population, we update both populations. The algorithm stops if the criteria is satis�ed if not then we update the
population Xpart and we restart.
We keep following these steps until we get e�cient positions or solutions to the multi-objective problem suggested.
The following pseudo-code illustrate the mechanism of the algorithm :

Algorithm 1 Accelerated Multi-Objective Particle Swarm Optimization

for each particle i = 1, · · · , N : initialize do

The particle's position with an opposition-based optimization method;
The population's best known position to its initial position: Xmobest ←Xpart;
Fpart, Fmobest and the particle's velocity Vi;
Pareto← 1;

end for

repeat

for each particle i = 1, · · · , N do

Update the particle's velocity using equation (8)
Update the particle's position using equation (9)
if Fpart(:, t) � Fmobest(:, r) then

Fmobest(:, r)← Fpart(:, t), Xmobest(:, r)←Xpart(:, t);
flag ← 1;

end if

if Fpart(:, t) � Fmobest(:, r) then
flag ← 2;

end if

end for

if flag == 0 then
Xmobest ← [Xmobest,Xpart(:, t)], Fmobest ← [Fmobest,Fpart(:, t)];
Pareto← Pareto+ 1;

end if

until a termination criterion is met;

Return Xmobest and plot the function Fmobest;
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3.4 Matlab results

We use only three academic test functions reported in the standard evolutionary multi-objective optimization
literature [10, 30, 31] to valuate the performance of AMOPSO. The benchmark functions include two and three-
objective functions without any inequality and equality constraints. De�nitions of test functions can be found in
Zitzler et al. [30] and Deb et al. [11] respectively. To better understand the importance of AMOPSO it's necessary
to compare this algorithm with others, we take as an example NSGA II and MISA using the functions ZDT3, KUR
and Viennet 3 problem in the three dimensional cases.

Test function ZDT3 Test function KUR Test function Viennet 3

Figure 1: The Pareto front for the tests functions ZDT3, KUR and Viennet 3

4 Multi-objective of truss structures sizing and topology optimization

In this section, we address the multi-objective sizing and topology optimization of truss-like structures which is a
continuous subject of researches in mechanical design ([19, 23, 27, 3, 2]...). Let the design domain comprises a set of
nodes with �xed spatial coordinates, a set of supports and a set of loads, as we can observed for the 10-bar and the
14-bar trusses examples displayed in the �gure 2. It is assumed that the structures will be modelised by linear, two
nodes, bar elements in linear elasticity, subjected only to axial forces and free from imperfections. The geometric
and material parameters used are L = 9.144 m, A = 0.01419352 m2 , P = 448.2 kN, E = 68.95 GPa, ρ = 2, 768
kg/m3 and σ = 172.4 MPa.
Denoting x ∈ Rn the vector of the topological and sizing optimization parameters, such that 0 ≤ xi ≤ 1 for
i = {1, . . . , n} where n is the number of elements, three individual objectives are of interested:

1. the mass w of the structure:

f1 (x) = w =

n∑
i=1

ρAlixi,

ρ being the density of material, li being the length of the i-th element, A being the maximum for the element
cross-section area ∗;

2. the maximum displacement u of the structure:

f2 (x) = u = max

(
u∗ = arg min

S

(
1

2
uTK (x) u− uTF

))
,

where K is the sti�ness matrix and F the vector of loads of the �nite element (FE) model

3. the opposite of the minimum natural frequency f of the structure (in order to maximize it):

f3 (x) = −f = −min

(
1

2π
ω∗
)
, where :

{
ω∗2,u∗

}
= arg min

u∈S

(
ω2 =

uTK (x) u

uTM (x) u

)
, ‖u‖ 6= 0

where M is the mass matrix of the FE model † (see ref. [14]);

∗This constraint is implicitly satisfy thanks to the adopted problem formulation.
†To obtain the best numerical e�ciency for the FE analysis, the FE disassembly strategy proposed in ref. [14] is involved.
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Notice that the sizing and the topology of the structure are optimized concurrently thanks to the introduced
formulation and the domain of de�nition for x. In addition, all these objectives are subjected to mechanical stress
constraints σi foreach element i:

|σi| ≤ σ i = {1, . . . , n}

where σ is the yield strength. Moreover, the set S refers to the kinematic admissible space. It is the one that satis�es
the imposed boundary conditions given by the supports while carrying all the prescribed loads. Hence, kinematic
instabilities that would be activated by loads are forbidden as they can not carried the loads (these situations are
such that ‖K (x) u− F ‖ 6= 0). This constitutes an additional constraint. In practice, we chose to solve mechanical
problems by using temporaries boundary constraints (by using a pseudo-inverse in the numerical method), and a
check is done a posteriori to verify this constraint.
Considering the three objectives two by two, the Pareto fronts are sought using three optimization methods: NSGA-
II, AMOPSO and MISA. NSGA-II algorithm parameters are 0.8 for the value of the crossover fraction, a value of
0.2 for the migration fraction and a value of 20 for the migration interval for a forward direction of migration, and
a value of 0.35 for the Pareto fraction with an elite count of 2. MISA parameters are a clone scale of 100 and a
dominant population size of 100. Constraints are treated in the same way for all the methods by using a penalty
factor of 1010 within a simple exterior penalty strategy. All the optimization procedures are stopped when the limit
value of the number of iterations is reached.
Population size and performance of the algorithms are shown in Table 1. In this table, the number of function
evaluations refers to the number of calls to the FE model. Results of the Pareto fronts obtained by the three
methods for a typical run are shown in the Figure 3 for the 10-bar truss and in the �gure 5 for the 14-bar truss. In
both cases, we can observed that:

• the NSGA-II method failed to produce the true Pareto front for the minimization of F = (f1, f3)
T
when the

limit for the number of generations is �xed to 3.104;

• the AMOPSO method gives not a wide spread of points on the Pareto front nor for the minimization of
F = (f1, f2)

T
nor for the minimization of F = (f2, f3)

T
;

• the MISA method has some di�culties to produce the true Pareto front for the minimization of F = (f2, f3)
T

in the region near to the minimum of f2.

However, these are satisfactory results for a designer: they help to decide for a speci�c solution. For example, if we
request for the minimum weight to satisfy a posteriori a maximum displacement of 5.07 cm, we can learned from
the weight-displacement front that 2824 kg is the optimal value for the 10-bar truss, while it is 2297 kg for the
14-bar truss. As we can see from the shapes of the Pareto fronts, all these objectives are contradictory. Starting
from the minimum weight topology design that involves the minimum amount of material, a higher sti�ness is
obtained by increasing the e�ective area of the element members in order to minimize the maximum displacement.
However, the natural frequency objective is slightly more di�cult to analyze since it is both a function of sti�ness
and a function of mass, i.e. increasing the e�ective area of an element increased both its sti�ness and mass. We
can see however a meaningful result again: to increase the structural frequency, the e�ective area of elements that
are nearer from the embeded boundary conditions is increased, while it is decreased far from this region, leading to
intermediate designs from the minimum weight one and the minimum displacements one.
The results of the optimum parameters of several runs for the best solutions obtained on the Pareto front for the
individual minima are shown in Table 2 and in Table 3 (with di�erent initial population). These are meaningful
results for the minimal weight since all non zero sized elements are fully stressed. Note that two equivalent solutions
are proposed for the 14 bar truss when considering only the mass objective. This is a comprehensive result since the
element 13 is in parallel with the elements 1 and 2, leading to a non uniqueness in sizing them. Note also that a 4-th
column is added in Table 3 that involves only four bars. This result is frequently proposed in the literature, but we
can see that it is a suboptimal topology, although it is also fully stressed. Figures 4 and 6 show all these topologies
as well as mechanical stresses on the element members. As we can see, optimal topologies are signi�cantly a�ected
when traveling from one objective to another. Hence, if the minimum weight design is requested, it does not lead
to the same topology than the minimum displacement design or the maximum �rst natural frequency design.
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Figure 2: Ten-bar (left) and 14-bar (right) trusses ground structures

Table 1: Algorithms main parameters and performance for the ten-bar and the 14-bar trusses

10 bars truss population size # of generation # of function called # of nondominated

NSGA-II 100 3.104 ∼ 3 106 35
MOPSO 5120 3.102 ∼ 1.5 106 140-2.105

MISA 20 103 ∼ 105 160-235

14 bars truss population size # of generation # of function called # of nondominated

NSGA-II 100 3.104 ∼ 3 106 35
MOPSO 16384 102 ∼ 1.5 106 159-1267
MISA 20 103 ∼ 105 100-200

Table 2: 10-bar truss results

10 bars truss min (f1 = w) min (f2 = u) min (f3 = −f)

Weight w [t] 0.724 3.82 1.97
Displacement u [mm] 183 45.5 105
Frequency f [Hz] 21.1 14.5 28.2

x1 0.366 1 1
x2 0.183 1 0.183
x3 0.366 1 1
x4 0 1 0
x5 0.259 1 1
x6 0.259 1 1
x7 0 1 0
x8 0.259 1 0.259
x9 0 0 0.12
x10 0 1 0
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Figure 3: Pareto fronts of the ten-bar truss for the 3 objectives functions considering them two by two

Figure 4: Topologies of the ten-bar truss for the 3 individual objectives functions (stresses are colorized on the bar
element; min (f1 = w) left, min (f2 = u) middle, min (f3 = −f) right)

Table 3: 14 bars truss results

14 bars truss min (f1 = w) min (f1 = w) - min (f2 = u) min (f3 = −f)
Weight w [t] 0.724 0.724 0.789 6.36 1.975

Displacement u [mm] 183 183 206 24.4 105

Frequency f [Hz] 18.8 21.1 15.6 13.6 28.2

x1 0.183 0.366 0.549 1 1

x2 0 0.183 0.366 1 0.183

x3 0.366 0.366 0 1 1

x4 0 0 0 1 0

x5 0.259 0.259 0 1 1

x6 0.259 0.259 0.259 1 1

x7 0 0 0 0 0

x8 0.259 0.259 0 1 0.259

x9 0 0 0 0 0.12

x10 0 0 0 1 0

x11 0 0 0 1 0

x12 0 0 0.409 1 0

x13 0.183 0 0 1 0

x14 0 0 0 1 0

Conclusion The working principle of AMOPSO algorithm is presented in this paper. It is applied to multi-
objective topology optimization of truss structures. While no adaptations of the algorithm are developed speci�cally
for this particular application, it is observed that the general method AMOPSO provides adequate results and
convergence of its strategies are comparable to other algorithms, like NSGA II and MISA. However, we found cases
where diversity of solutions may be relatively poor.
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Figure 5: Pareto fronts of the 14-bar truss considering the 3 objectives functions two by two

Figure 6: Topologies of the 14-bar truss obtained for the 3 individual objectives functions (stresses are colorized on
the bar element, min (f1 = w) left, min (f2 = u) middle right, min (f3 = −f) right). Sub�gure at the middle left is
the representation of the suboptimal case presented in the 4th column of the Table 3
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