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1. Abstract  

This paper proposes a methodology for sampling-based design optimization in the presence of interval variables. 

Assuming that an accurate surrogate model is available, the proposed method first searches the worst combination 

of interval variables for constraints when only interval variables are present or for probabilistic constraints when 

both interval and random variables are present. Due to the fact that the worst combination of interval variables for 

probability of failure does not always coincide with that for a performance function, the proposed method directly 

uses the probability of failure to obtain the worst combination of interval variables when both interval and random 

variables are present. To calculate sensitivities of the constraints and probabilistic constraints with respect to 

interval variables by the sampling-based method, behavior of interval variables at the worst case is defined by the 

Dirac delta function. Then, Monte Carlo simulation is applied to calculate the constraints and probabilistic 

constraints with the worst combination of interval variables, and their sensitivities. The important merit of the 

proposed method is that it does not require gradients of performance functions and transformation from X-space to 

U-space for reliability analysis after the worst combination of interval variables is obtained, thus there is no 

approximation or restriction in calculating sensitivities of constraints or probabilistic constraints. Numerical 

results indicate that the proposed method can search the worst case probability of failure with both efficiency and 

accuracy and that it can perform design optimization with mixture of random and interval variables by utilizing the 

worst case probability of failure search. 

2. Keywords: Interval Variables, Sampling-Based Method, Dirac Delta function, Monte Carlo simulation, 

Surrogate model 

 

3. Introduction 

Reliability analysis and reliability-based design optimization (RBDO) have been developed to take uncertainty 

into consideration, and have been successfully adapted to many engineering applications such as crashworthiness 

of vehicle and structural-acoustic system design [1-10]. The uncertainty is generally categorized into aleatory and 

epistemic uncertainties, where aleatory uncertainty is considered as irreducible whereas epistemic uncertainty is 

reducible by collecting more data. In case when sufficient amount of data for statistical information is unavailable, 

possibility-based (or fuzzy set) methods have utilized membership function to model insufficiently collected data 

[11], and adjusted standard deviation and correlation coefficient involving confidence intervals have been utilized 

to offset an inaccurate modeling of data [12,13]. When degree of insufficiency of data is even greater as only lower 

and upper bounds of data are available, the methods listed above are not applicable anymore, thus the different 

approach is required. 

To deal with data of which only lower and upper bounds are available, a method of multi-point approximation that 

evaluates the weighting function and local approximations separately has been first developed for interval analysis 

[14]. Then, the most probable point (MPP) based first-order reliability method (FORM) has been utilized for 

design optimization with mixture of random and interval variables [15]. As bounds of probability of failure or 

reliability exist in the presence of interval variables, design optimization for the worst and best cases has been also 

developed [16], and sensitivity analysis considering bounds of interval variables and probability of failure has 

been developed accordingly [17].  

By using the MPP-based FORM, a design optimum is very efficiently searched; however it is generally less 

accurate for highly nonlinear performance functions and high-dimensional input variables [18-21]. To improve the 

accuracy on this occasion, the second order reliability method (SORM) can be applied after the MPP search; 

however, its efficiency is sacrificed due to the fact that computation of the Hessian matrix is required by the SORM 

[22-25]. The MPP-based dimension reduction method (DRM) can be also used for approximately assessing the 

reliability of a system, which is used as a probabilistic constraint in RBDO [26-28].  

In absence of accurate sensitivities of performance functions, the MPP-based reliability analysis or RBDO, which 

utilizes sensitivities of performance functions to find the MPP, cannot be directly used, instead the sampling-based 

reliability analysis or RBDO can be used [29-31]. Assuming an accurate surrogate model is given [32-36], Monte 

Carlo simulation (MCS) [37] can be applied to find a design optimum with affordable computational burden.  

This study introduces interval analysis and design optimization utilizing the sampling-based method in the 
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presence of only interval variables and in the presence of both random and interval variables. Due to the presence 

of interval variables, obtaining the worst combination of interval variables for both constraints and probabilistic 

constraints is involved [15]. When both random and interval variables are present, the worst combination of 

interval variables for probability of failure is directly searched using the probability of failure and its sensitivity 

since the design point where the worst case probability of failure occurs does not always coincide with that for the 

worst case performance function; it is highly likely as many studies have assumed, however not always. To 

evaluate sensitivities of probability of failure with respect to interval variables, the Dirac delta function is utilized 

to define behavior of the interval variables at the worst case [38-41].  

Assuming an accurate surrogate model is given, one merit of the proposed method exists not only during the worst 

case probability of failure search but also during reliability analysis after the worst case probability of failure 

search. The worst case probability of failure search, which will be explained in Section 4.2, utilizes a vector of 

interval variables instead of individual components of the vector, and it thus promises efficiency. Also, it resolves 

the problem that the worst case probability of failure does not always occur where the worst case performance 

occurs. During the reliability analysis after the worst case probability of failure search, another merit of the 

proposed method is that it does not make further approximations since it does not require gradients of the 

performance function and transformation of design variables from X-space to U-space, thus there is no 

approximation or restriction in calculating the sensitivities of constraints or probabilistic constraints [30].  

The paper is organized as follow. Section 4 briefly reviews the sampling-based RBDO. Section 5 explains design 

optimization with interval variables only, including the algorithm to obtain the worst combination of interval 

variables for a performance function, mathematical derivation for sensitivities of each constraint with respect to 

interval variables by defining behavior of the interval variables at the worst case using the Dirac delta function, and 

their computation by the MCS. Section 6 explains the sampling-based design optimization with both random and 

interval variables including details to obtain the worst combination of interval variables for probability of failure 

and computation of probabilistic constraints and their sensitivities by the MCS. Section 7 illustrates search for the 

worst combination of interval variables for probability of failure and design optimization with random and interval 

variables using numerical examples. Section 8 summarizes and concludes the paper with discussion of future 

research. 

 

4. Review of Sampling-based RBDO 

4.1 Formulation of RBDO 

The mathematical formulation of RBDO is expressed as 
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where ( )d X  is the design vector, which is the mean value of the NR-dimensional random vector 
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jFP  is the target probability of failure for the j
th

 constraint; and NC, ndv, and NR are the 

number of probabilistic constraints, design variables, and random variables, respectively [30].  

To carry out RBDO using Eq. (1), the probabilistic constraints and their sensitivities must be evaluated. Reviews 

on the reliability and its sensitivity analyses are explained in Sections 2.2 and 2.3, respectively. 

 

4.2 Probability of Failure 

The probability of failure with random variables, denoted by 
FP , is defined using a multi-dimensional integral 
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where   is a matrix of distribution parameters, which includes mean (  ) and/or standard deviation ( ) of R
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is a joint probability density 
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4.3 Sensitivity of Probability of Failure 

With the four regularity conditions satisfied, which are also explained in detail in Ref. [30], taking the partial 

derivative of Eq. (2) with respect to 
i  yields 
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and the differential and integral operators can be interchanged due to the 4
th
 regularity condition in Ref. [30] and 

the Lebesgue dominated convergence theorem [43,44] giving 
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The partial derivative of the log function of the joint PDF in Eq. (5) with respect to 
i  is known as the first-order 

score function [30] for 
i  and is denoted as 
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To derive the sensitivity of the probability of failure in Eq. (2), it is required to know the first-order score function 

in Eq. (6), which is obtained using the following equation for independent random variables 
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where  R

R ;
i

i iX
f x   is the marginal PDF corresponding to the i

th
 random variable R

iX , and obtained using the 

following equation for correlated random variables 
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where c is a copula density function,  R

R ;
i

i iX
u F x   and  R

R ;
j

j jX
v F x   are marginal CDFs for R

iX  and R

jX , 

respectively, and   is the correlation coefficient between R

iX and 
R

jX [30]. The information of marginal PDFs, 

CDFs, and commonly used copula density functions is listed in detail in Ref. [30]. 

 

4.4 Simplification of the nonlinear characteristics of vehicle behavior 

The MCS can be applied to calculate the probabilistic constraints in Eq. (1) and their sensitivities. Denoting a 

surrogate model for the j
th

 constraint function with random variables as  ˆ
jG R

X , the probabilistic constraints in 

Eq. (1) can be calculated as  
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where K is the MCS sample size, ( )kRx  is the k
th

 realization of R
X , and the failure set ˆ

jF for the surrogate model 
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is defined as  ˆˆ : 0
jF jG   

 
R R

xx  [30]. Sensitivities of the probabilistic constraints in Eq. (1) are calculated 

using the score function as 
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where (1) ( ) ;
i

ks   
Rx   is obtained using Eqs. (7) and (8) for independent and correlated random variables, 

respectively. 

 

5. Design Optimization with Interval Variables 

5.1 Formulation of Design Optimization with Interval Variables 

The mathematical formulation of design optimization with interval variables only is expressed as 
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where  I
d X is the design vector, which is the mid-point of the NI-dimensional interval vector 
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X
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in Eq. (11) is the worst case interval 

variables for the j
th

 constraint, which is obtained by solving the optimization problem to 
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where I

i  is the interval length of I

iX . It should be noted that as any statistical information of an interval variable 
I

X  is not available, I,worst
X  must be considered for the design optimization. 

To carry out the design optimization with interval variables using Eq. (11), constraints with the worst case interval 

variables, namely the worst case constraints or the worst case performance, and their sensitivities must be 

evaluated. Each of the worst case constraint is obtained by the worst case performance search that solves Eq. (12) 

and will be explained in Section 3.2, and sensitivity analysis of each of the worst case constraint and its calculation 

are explained in Section 3.3. It is assumed in this study that gradients of performance functions are not available; 

however it can be directly used if available. 

 

5.2 Algorithm Searching for Worst Case Performance 

The algorithm explained in this section searches the worst case performance, and the algorithm was originally 

developed by Liu et al. in Ref. 11 for the maximal possibility search (MPS) for possibility-based design 

optimization. An important merit of the proposed algorithm is that it utilizes a vector of interval variables and a 

vector of sensitivities of a performance function with respect to all interval variables, thus its efficiency is not 

affected by the dimension of the interval variables. The algorithm for the worst case performance search is 

summarized as following, which is also shown in the flowchart in Fig. 1. 

 

Step 1. Normalize interval variables I

iX  using 
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Step 2. Set the iteration counter k = 0 with the convergence parameter  = 10
-3

. Set j = 1. Let (0) .I
Z 0  

Calculate the performance  (0)G I
Z and the sensitivity  (0)G I

Z . It is explained in Section 3.3 how 

to obtain  (0)G I
Z . Let the direction vector be

 
 (0) (0)G  I

d Z . 

Step 3. Search the next point as  ( 1) ( )0.5 sgnk k  I
Z d  where 0.5 is obtained from Step 1. Let k = k + 1.  

Step 4. Calculate the performance  ( )kG I
Z and its sensitivity  ( ) .kG I

Z  Let a conjugate direction vector 

 ( ) ( ) ( 1)k k kG   I
d Z d  where     

2
( ) ( 1)/ .k kG G   I I

Z Z If 

    ( ) ( )sgn sgn ,k kG I I
Z Z  it is the worst case and go to Step 11.  

Step 5. If    ( ) ( )k jG GI I
Z Z , let  j = k and go to Step 3. Otherwise, go to Step 6 with ( )jI

Z ,  ( )jG I
Z  and  

 ( )jG I
Z . 

 

If behavior of the performance function is not monotonic within an interval domain, in other words, if any 

component of the worst case interval vector does not occur at the vertex of its interval domain, interpolation 

algorithm must be additionally applied to obtain more accurate worst case performance [11]. 

 

Step 6. Let l = 0 and a direction vector be  ( ) ( )l jG  I
d Z .  

Step 7. Calculate the new point ( 1)kI
Z  on the boundary of the domain from the start point ( )jI

Z  along the 

search direction ( ) .l
d  Let k = k + 1. 

Step 8. Calculate the performance  ( )kG I
Z and its sensitivity  ( )kG I

Z . If 
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then it is the worst case and go to Step 11. Otherwise, go to Step 9. 

Step 9. Use  ( )jG I
Z ,  ( )kG I

Z ,  ( )jG I
Z , and  ( )kG I

Z  to construct the third order polynomial  ( )f t  

on the straight line between ( )jI
Z  and ( )kI

Z  where t is the parameter for the line. Calculate the 

maximum point t
*
 for this polynomial. Let ( 1)kI

Z  be the point on the line corresponding to t
*
. Let k = k 

+ 1.  

Step 10. Calculate the performance  ( )kG I
Z  and its sensitivity  ( )kG I

Z . Check the convergence criteria 

using the equation in Step 8. If converged, it is the worst case and go to Step 11. Otherwise, let the new 

conjugate direction vector be  ( 1) ( ) ( )l k lG   I
d Z d  where β is given 

by     
2

( ) ( 2)/ .k kG G   I I
Z Z  Let j = k, l = l + 1, and go to Step 7. 

Step 11. De-normalize I,worst
Z  by Eq. (13) in Step 1 to obtain I,worst

X . 

 

The proposed algorithm requires evaluation of sensitivities of a performance function with respect to interval 

variables. When gradients of the performance function are not available, sensitivities of each performance function 

with respect to interval variables can be calculated by the sampling-based method, and derivation of the 

sensitivities of the performance function with respect to interval variables and its calculation are explained in 

Section 3.3.  
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Figure 1. Flowchart for Worst Case Performance Search 

 

5.3 Sensitivity Analysis of Worst Case Performance Function and its Calculation 

The behavior of any point within the interval of an interval variable Ix  can be expressed using the Dirac delta 

function I ( )
X

   [45] as  
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and shifting Eq. (14) by the worst case of I

ix  denoted as I,worst

iX  yields 
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which is constrained to satisfy the identity 
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Also, the property of the Dirac delta function [45] yields 
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Using Eqs. (14)~(17) and assuming  G   is a continuously differentiable function of any real number, sensitivity 
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of the worst case performance function with respect to the i
th

 worst case interval variable in general dimension 

becomes 
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Based on the definition of the Dirac delta function, behavior of a single interval variable Ix  at its worst case 
I,worstX  can be treated as a Gaussian normal distribution with   of I,worstX  and 2  approaching to 0, which 

implies 
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Equation (19) is verified in this section first. Consider sensitivity of an one-dimensional performance function 

 G   with respect to the worst case of interval variable I,worstX , which by using Eq. (18) becomes 
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 IG x  in Eq. (20) using the Taylor series expansion at I,worstX  can be expressed as 
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where  ( ) I,worst / !m

ma G X m . Using Eqs. (19) and (21) and the score function explained in Section 2.3, the right 

hand side of Eq. (20) is evaluated as 
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Using the expectation operator, the Eq. (22) is further simplified as  
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where  I I,worst 0
p

E x X  
  

 if p is odd and    I I,worst 1 !!
p

pE x X p   
  

 if p is even according to the 

property of central moments of a normal distribution. Using Eq. (21), the left hand side of Eq. (20) is evaluated as 
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The identical results in Eqs. (23) and (24) demonstrate the validity of treating behavior of Ix  at I,worstX  as a 

Gaussian normal distribution with   of I,worstX  and 2  approaching to 0.  
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Finally, using Eq. (19), Eq. (18) is further developed as 
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and sensitivity of the worst case constraint with respect to design point I

iX   in Eq. (11) becomes 
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Additionally, it is noted that the Dirac delta function can be also applicable to define behavior of deterministic 

variables when sensitivities of performance functions with respect to deterministic variables are not available. 

Thus, in the presence of deterministic variables, the proposed sampling-based method can be applied to evaluate 

sensitivities of performance functions even when gradients of the performance functions are not obtainable. 

Denote a surrogate model for the constraint function with interval variables as  ˆ .G I
X

 
The MCS can be applied to 

calculate sensitivity of a performance function with respect to the i
th 

worst case interval variable during the worst 

case performance search in Section 3.2 using Eq. (25) as 
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where I,worst
lX

  is IX
  for I,worst

lX
 
coming from   in Eq. (26), and sensitivities of the worst case constraints in Eq. 

(11) can be calculated using Eqs. (26) and (27) as 
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The desired value of IX
  used in Eqs. (28) and (29) for the sampling-based method is determined through the 

following simulation analysis. During the simulation analysis, ratio of IX
  to IX  or 

I

I

X

X


 instead of just IX

  is 

considered since IX
  depends on IX , and sensitivity of a performance function  I I

1 2G X X  with respect to 

IX is calculated by the MCS while 
I

I

X

X


 changes from 0.1 to 0.001 in descending order. The result is then 

compared to the true sensitivity, which is analytically obtained as 2. From the result shown in Figure 2, it is 

demonstrated that  
I

I
0.008 0.02X

X


   for the desired value of IX

 . From the negligible amount of error less than 

0.3% in Figure 2, validity of calculating sensitivities of a performance function with respect to interval variables 

using the sampling-based method with a very small standard deviation can be also shown. 
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Figure 2. Error of Sensitivity as 
I

I

X

X


changes from 0.001 to 0.1 

 

6. Design Optimization with Random and Interval Variables 

6.1 Formulation of Design Optimization with Mixture of Random and Interval Variables 

The mathematical formulation of design optimization with mixture of random and interval variables is expressed 

as 
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To carry out the design optimization with interval variables using Eq. (30), probabilistic constraints with the worst 

case interval variables, namely the worst case probabilistic constraints or the worst case probability of failure, and 

their sensitivities must be evaluated. Each of the worst case probabilistic constraint is obtained by the worst case 

probability of failure search that solves Eq. (31) and will be explained in Section 4.2, and sensitivity analysis of 

each of the worst case probabilistic constraint and its calculation are explained in Section 4.3. It should be noted 

that the worst case probability of failure does not always occur at the point where the worst case performance 

occurs, which is demonstrated with an example in Section 4.2. Thus, by applying an algorithm for the worst case 

performance search in Section 3.2 by directly utilizing probability of failure and its sensitivity in replacement of 

performance value and its sensitivity, the problem pointed out in the previous sentence can be resolved.  

 

6.2 Worst Case Probability of Failure 

The worst case probability of failure with random and interval variables, denoted by worst

FP , is defined using Eq. 

(30) and a multi-dimensional integral as 

 

       
R

.
F F

NR NI

FP I f d d E I



 
   
  I

worst R I R I I,worst R I R I,worst

X X
x ,x x x X x x X , X                (32) 

 

The worst case probability of failure in Eq. (32) is obtained using the algorithm for the worst case performance 

search explained in Section 3.2 by utilizing probability of failure and its sensitivity in replacement of the 

I

I

X

X
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performance function and its sensitivity. Derivation of the sensitivity of the probability of failure with respect to 

the worst case interval variables and its calculation are explained in Section 4.3. Usually, the worst case probability 

of failure occurs at the worst case performance, so conventionally the worst case probability of failure is calculated 

by evaluating the probability of failure at the worst case performance [15-17]. However, this is not always the case 

and the following example demonstrates it. 

Consider a 2D highly nonlinear polynomial function, 

 
2 3 4

2 ( ) 0.7361 (W 6) (W 6) 0.6 (W 6) ZG         X                                     (33) 

 

Table 1. Property of Input Variables 

Variables 
 

Types 
 

Distribution 
 

Parameters 

I

1X  
 

Interval 
 

N/A 
 

I

1 6.5X   
 

I

1 3   

R

2X  
 

Random 
 

Normal 
 2 2.5   

 2 1   

 

where 
I

1

R

2

W 0.8660 0.5000

Z 0.5000 0.8660

X

X

      
    

       
. As shown in Table 1, I

1X
 
and R

2X  are interval and random variables, 

respectively. The mid-point and interval length of I

1X  are 6.5 and 3, respectively. The mean and standard 

deviation of R

2X  are 2.5 and 1, respectively. Then, I

1X  is divided into 100 sub-intervals, for each of which, the 

performance functions and probability of failures are evaluated.  For the evaluation of the probability of failure, 
75 10  MCS sample are used for each sub-interval.  
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Figure 3. Worst Case Performance and Worst Case Probability of Failure 

 

As shown in Fig. 3, the worst case probability of failure does not occur where the worst case performance occurs. 

The worst case probability of failure occurs at I I I

1 1 1 / 2 8X X     where performance and probability of failure 

are −4.1437 and 0.2418, respectively, while the worst case performance occurs at 
I

I I 1

1 1 5
2

X X


   , where the 

performance and probability of failure are −1.1547 and 0.1222, respectively. Thus, this study suggests using the 

algorithm for the worst case probability failure search directly instead of obtaining the worst case probability of 

failure by calculating the probability of failure where the worst case performance occurs. 

The MCS can be applied to calculate probability of failure during the worst case probability of failure search. 

Denoting the surrogate model for constraint functions with random and interval variables as  Ĝ R I
X , X , the 

probability of failure during the worst case probability of failure search can be calculated using Eq. (32) as 

 

 worst ( ) tar

ˆ

1

1
0 ,

F

K
k

F F

k

P P G I P
K 



         R I,worst R I,worst
X , X Xx                                  (34) 
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where the failure set ˆ
F for the surrogate model is defined as  ˆˆ : 0F G   

 
R I,worst

x x ,X .  

 

6.3 Sensitivity Analysis of Worst Case Probability of Failure and its Calculation 

Taking partial derivative of Eq. (32) with respect to the i
th

 worst case interval variable yields 

 

 
I,worst

I Iworst

I,worst 2
1

.
F

i

NI
i iF

ii X

x XP
E I

X 




 
 

   
 R I,worst

x , X                                                    (35) 

 

Then, taking partial derivative of Eq. (32) with respect to the mid-point of the i
th

 interval variable using Eq. (35) 

yields 

 

 
I,worst

I,worst I I I,worstworst worst

I,worst 2I I I
1 1

,
F

l

NI NI
l l l lF F

l ll Xi i i

X x X XP P
E I

XX X X


 

    
  

     

  R I,worst
x , X                        (36) 

 

where 
I,worst

I

l

i

X

X




 is obtained from Eq. (27). Taking partial derivative of Eq. (32) with respect to the mean of the i

th
 

random variable yields 

 

 
 

   
R

ln ;
; .

F

NR NI

F

i i

fP
I f d d

 





 

  I

Rworst
XR I R I I,worst R I

X X

x
x , x x x X x x


                       (37) 

 

Using Eq. (17), Eq. (37) is further simplified as 

 

 
 

   
 worst

R

ln ; ln ;
; .

F F

NR NI

F

i i i

f fP
I f d E I

  

 

  
  

    


R R

X XR I,worst R R R I,worst

X

x x
x , X x x x , X

 
       (38) 

 

The MCS can be applied to calculate sensitivity of the probability of failure with respect to the i
th 

worst case 

interval variable during the worst case probability of failure search in Section 4.2 based on Eq. (35) as 

 

I,worst

I( ) I,worstworst

( )

ˆI,worst 2
1

1
.

F

i

kK
k i iF

ii X

x XP
I

KX 



   

 R I,worst
x , X                                            (39) 

 

Sensitivities of the worst case probabilistic constraints in Eq. (30) with respect to the i
th 

interval variable at the 

mid-point as 

 

I,worst
,

worst I( ) I,worst I,worst

, , ,( )

ˆ 2I I
1 1

,

1
,

j

Fj

j l

kNI K
F j l j l j lk

l k Xi j i

P x X X
I

KX X
 

  
   

 
 R I,worst

x X j
                                  (40) 

 

based on Eq. (36). Sensitivities of the worst case probabilistic constraints in Eq. (30) with respect to the i
th 

random 

variable at the mean point are calculated as 

 
worst

( ) (1) ( )

ˆ

1

1
, ;

j

iFj

K
F k k

ki

P
I s

K


 



       

 R I,worst R
Xx x 

j                                               (41) 

 

based on Eq. (38). 

 

7. Numerical Examples 
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Numerical studies are carried out in this section to verify the algorithm that searches the worst case probability of 

failure in Section 4 for both low-dimensional and high-dimensional cases. Also, design optimization with mixture 

of interval and random variables that utilizes the worst case probability of failure search is carried out. 

 

7.1 Worst Case Probability of Failure Search for Two-Dimensional Inputs 

In this numerical example, the algorithm that searches the worst case probability of failure is applied to a 

two-dimensional case, and one of input variables is an interval and the other is a random. Consider a nonlinear 

performance function given as 

 

   
2

I R I R

1 1 2 1 20.3 0.8 2.8.G X X X X    X                                                (42) 

 

Table 2. Property of Input Variables 

Variables  Types 
 

Distribution 
 

Parameters 

I

1X   Interval  
 

NA 
 

I

1 0.5X    
 

I

1 1   

R

2X   Random 
 

Normal 
 2 2.2   

 2 1   

 

As shown in Table 2,
 

I

1X  is an interval variable with its mid-point at −0.5 and its interval length of 1, and R

2X  is a 

normally distributed random variable with its mean at 2.2 and its standard deviation of 1.  
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Figure  4. Search History of Worst Case Probability of Failure 

 

Table 3. Search History of Worst Case Probability of Failure 

Iteration 
I

1X  
1FP  

1

I

1/FP X   

1 −0.5000 0.3457 -0.00789 

2 −1.0000 0.2541 0.42073 

3 0.0000 0.2737 -0.26648 

4 −0.5136 0.3460 0.00082 

 

With the given property of these input variables and the performance function in Eq. (42), the worst case 

probability of failure is obtained using the worst case probability of failure search explained in Section 4.2. The 

results are shown both in Table 3 and Fig. 4. The worst case interval variables at the 4
th

 iteration in Table 3 is 

obtained by an interpolation of two worst case interval variables candidates at the 2
nd

 and the 3
rd

 iteration during 

Step 9 of the worst case probability of failure search. The obtained result is compared with the result obtained by 

dividing the interval domain into 100 sub-intervals and performing the MCS with 75 10 samples for all 

sub-intervals, which is shown in Table 4. 
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Table 4. Comparison of Results Obtained by 2 Different Methods 

Methods 
I

1X  
1

worst

FP  Number of MCS 

Proposed Algorithm -0.5136 0.3460 4 

Performing MCS for 

all 100 sub-intervals 
-0.5152 0.3465 100 

 

In terms of efficiency, the proposed algorithm requires (4iterations) × (1MCS/iteration) = 4MCSs, and performing 

the MCS for all 100 sub-divided intervals requires (100sub-intervals) × (1MCS/sub-interval) = 100MCSs. Thus, 

the proposed algorithm is 25 times more efficient than the crude MCS while maintaining accuracy in this example. 

 

7.2 Worst Case Probability of Failure Search for High-Dimensional Inputs 

 

 
Figure 5. Schematic Diagram of Cantilever Tube 

 

In this numerical example, the algorithm that searches the worst case probability of failure is applied to a 

high-dimensional case where 2 of input variables are interval and 9 of them are random variables. Consider the 

cantilever tube shown in Fig. 5 subjected to external forces F1, F2, and P, and torsion T [16]. The performance 

function is defined as the difference between the yield strength Sy and the maximum stress
y , namely, 

 

 2 max yG g S  X                                                                  (43) 

 

where 
max  is the maximum von Mises stress on the top surface of the tube at the origin, which is given by 

 

2 2

max 3x zx                                                                         (44) 

 

where the normal stress 
x  is obtained 

 

 

 

 

1 1 1 2 2 21 1 2 2

2 42 4

cos cossin sin

2 2 2
4 64

x

F L F L dP F F

d d t d d t

  


 

 
 

       
   

                                    (45) 

 

and the shear stress xz  is obtained as 

 

 
44

,

4 2
64

xz

Td

d d t





   
 

                                                         (46) 

 

respectively. The property of random and interval variables are given in Tables 5 and 6, respectively. As shown in 

Tables 5 and 6, nine random variables R R

1 9~X X  having various distributions and two interval variables 

I I

10 11andX X   having the identical interval length at different mid-points are used as input variables.  

With the property of input variables and the performance function in Eq. (43), the worst case probability of failure 

is obtained using the worst case probability of failure search. The MCS with 75 10  samples is tried for every 

iteration, and the tolerance of 410  instead of 310  is set for this example since the sensitivity of probability of 

failure with respect to both interval variables is less than 210  throughout the interval domain. By using the  



 

 

14 

Table 5. Property of Random Variables 

Variables 
 

Parameter 1 
 

Parameter 2 
 

Distribution 

R

1 ( )X t  
 

5 mm (mean) 
 

0.1 mm (std
*
) 

 
Normal 

R

2 ( )X d  
 

42 mm (mean) 
 

42 mm (mean) 
 

Normal 
R

3 1( )X L  
 

119.75 mm (lb
**

) 
 

120.25 mm (ub***) 
 

Uniform 
R

4 2( )X L  
 

59.75 mm (lb) 
 

60.25 mm (ub) 
 

Uniform 
R

5 1( )X F  
 

3.0 kN (mean) 
 

0.3 kN (std) 
 

Normal 
R

6 2( )X F  
 

3.0 kN (mean) 
 

0.3 kN (std) 
 

Normal 

R

7 ( )X P  
 

12.0 kN (mean) 
 

1.2 kN (std) 
 

Gumbel 
R

8 ( )X T  
 

90.0 N m (mean) 
 

9.0 N m (std) 
 

Normal 

R

9 ( )yX S  
 

133.7 MPa (mean) 
 

22.0 MPa (std) 
 

Normal 

          *: std-standard deviation 

        **: lb – lower bound of a uniform distribution 

      ***: ub – upper bound of a uniform distribution 

 

Table 6. Property of Interval Variables 

 
Variables 

 
Parameters 

 

 
I

10 1( )X   
 

I

10 5X   , I

10 10    
 

 
I

11 2( )X   
 

I

11 10X   , I

11 10    
 

 

proposed algorithm, the worst case probability of failure is obtained in 8 iterations including the one with the 

interpolation and the discard one.  In Table 7, since the probability of failure at the 4
th

 iteration is smaller than that 

at the 3
rd

 iteration, it is discarded during the Step 5 of the worst case probability of failure search in Section 4.2. 

Search history is shown in both Table 7 and Fig. 6. The worst case probability of failure is obtained as 0.50849 and 

the worst case interval variables are obtained as [3.993, 7.887]. The obtained result is then compared with the 

result obtained by dividing both interval domains into 100 sub-intervals and performing MCS with 75 10 samples 

for all combinations of sub-intervals.  

 

Table 7. Search History of Worst Case Probability of Failure 

Iteration 
I

10 1( )X   I

11 2( )X   
2FP  

2

I

10/FP X   
2

I

11/FP X   

1 5.000 10.00 0.50788 -3.940E-04 -4.0768E-04 

2 0.000 5.000 0.50476 1.505E-03 5.479E-04 

3 0.000 5.000 0.50478 1.486E-03 5.205E-04 

4
* 

10.00 15.00 0.49676 -2.301E-03 -1.345E-03 

3'  10.00 8.502 0.50160 -2.249E-03 -1.190E-04 

4 4.189 6.467 0.50828 -5.640E-05 2.800E-04 

4 '  3.015 15.00 0.50343 3.712E-04 1.362E-03 

5 3.993 7.887 0.50849 -2.790E-05 2.1116E-07 

*: Discarded during Step 5 of Worst Case Probability of Failure Search 

' : Utilized for Interpolation 

 

The result of the comparison is shown in Table 8. In terms of efficiency, the proposed algorithm requires 

(8iterations) × (1MCS/iteration) = 8MCSs, and performing MCS for all combinations of 100 sub-intervals requires 

(100×100combinations) × (1MCS/combination)  = 10000MCSs. Thus, the proposed algorithm is 1250 times more 

efficient while maintaining accuracy in this example. As suggested by the current and the previous examples, the 

more interval variables there are, the less efficient performing the crude MCS exponentially becomes. In general 

dimension, performing the MCS for all combinations of 100 sub-intervals of every interval variable requires (100
NI 
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Figure 6. Search History of Worst Case Probability of Failure 

 

combinations) × (1MCS/combination) = (10)
2NI 

MCSs. On the other hand, the proposed algorithm requires similar 

number of MCSs regardless of dimension of interval variables since it utilizes a vector of interval variables and its 

sensitivity vector instead of their individual components. 

 

Table 8. Comparison of Results Obtained by 2 Different Methods 

Methods 
Worst Case 

Interval Variable 
Probability of Failure Number of MCSs 

Proposed Algorithm [3.993 7.887] 0.50849 8 

Performing MCS for 

all combinations of 

100 sub-intervals 

[3.939 7.879] 0.50850 10000 

 

7.3 Design Optimization with Mixture of Random and Interval Inputs 

This numerical example shows the design optimization with mixture of random and interval variables, utilizing the 

worst case probability of failure search. Consider a 2D mathematical design optimization problem, which is 

formulated to 

 

 

  
1 2

worst tar

L U 2

minimize

subject to 0 2.275%, 1 ~ 3

, R , R, and R

j jF j F

C d d

P P G P j

 

     
 

    

R I,worst

R I

d

X d , X

d d d d X X

j                   (47)

 

 

where three constraints are given by 
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                                     (48) 

 

The properties of two input variables, one interval and one random variable, are shown in Table 9. As shown in Eq. 

(47), the target probability of failure  tar

jFP  is set to 2.275% for all constraints.  

Fig. 7 shows the optimum design of the sampling-based design optimization with interval and random variables. 

As can be seen in Fig. 7, the deterministic design optimum (d
dopt

) was first searched to enhance efficiency of the  
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Table 9. Property of Input Variables 

Input Variables 
 

Variable Types 
 

Ld  
 

Od  
 

Ud  
 

Parameters 

I

1X  
 

Interval 
 

0.0 
 

5.0 
 

10.0 
 

I

1 1.2   

R

2X   Random  0.0  5.0  10.0  2 0.4   

 

design optimization procedure. In Fig. 7, the dotted box illustrated around the design optimum (d
opt

) shows the 

joint range of I

1X  and R

2X . With tar

jFP  of 2.275%, allowed total range of distribution of R

2X becomes 
24 1.6  , 

and with I

1 1.2   of I

1X , size of the dotted box becomes 1.2×1.6. With the dotted box around d
opt 

it is easily 

identified that d
opt

 is the desired optimum as vertices of the box are right on two active constraints,  1 0G X  and 

 2 0G X . 
1

worst

FP  and 
2

worst

FP  occur  on the left and the right bounds of I

1X , respectively where 
1

worst

FP  and 
2

worst

FP  

are 0.0231 and 0.0228, respectively, which are very close to tar

jFP . Design search history and number of iterations 

taken to obtain the worst case probability of failure at each design are shown in Table 10. One MCS for each 

iteration is used to obtain worst

jFP  and worst

jFP  while applying the worst case probability of failure search explained 

in Section 4.2. At the 2
nd

 iteration during the design search, 
2FP  does not behave monotonic within the domain of 

the interval variable, thus the interpolation algorithm is applied to find more accurate worst case probability of 

failure, which is why 5 iterations are taken to obtain 
2

worst

FP . Overall iterations taken to obtain worst

jFP  is around 2 for 

each design search since 
2FP  behaves monotonic most times within the domain of the interval variable. Thus it is 

concluded 
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Figure 7. Optimum Design of Sampling-Based Design Optimization with Random and Interval Variables 

that the computational burden to obtain 
worst

jFP  in this example is affordable. 

 

Table 10. Design Search History and Number of Iterations for Worst Case Probability of Failure 

Iteration 
Design Point 

(d1,  d2) 

# Iterations 

for 
1

worst

FP  

# Iterations 

for 
2

worst

FP  

# Iterations 

for 
3

worst

FP  

1 (3.1139, 2.0639) 2 2 2 

2 (4.3814, 3.6368) 2 5 2 

3 (3.8142, 2.9765) 2 2 2 

4 (2.8478, 3.0296) 2 2 2 

5 (3.1377, 3.0137) 2 2 2 

6 (3.3407, 3.0025) 2 2 2 

7 (3.3741, 3.1111) 2 2 2 

8 (3.3838, 3.1274) 2 2 2 
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8. Conclusions 

Sampling-based design optimizations with only interval variables and with both interval and random variables are 

developed in this study. For the design optimization with interval variables only, each of the worst case constraint 

is evaluated by the developed worst case performance search where interval and sensitivity vector are utilized, thus 

efficiency is promised regardless of the dimension of the interval variables. It is assumed that gradients of 

performance functions are not available in this study. Therefore, sensitivities of a performance function with 

respect to interval variables are derived by defining behavior of the interval variables at the worst case by the Dirac 

delta function to calculate it by the sampling-based method. Through the simulation analysis, desired value of 

standard deviation for the interval variables at the worst case is determined, and the error of the result turns out to 

be negligible at the desired value. Using the obtained value, the sensitivities of each of the worst case constraints 

both at the worst case and design points are calculated by the MCS. For the design optimization with random and 

interval variables, the worst case probabilistic constraints are evaluated by the worst case probability of failure 

search. Since probability of failure does not always occur where the worst case performance occurs as 

demonstrated in this study, the worst case probability of failure is obtained by directly using the probability of 

failure and its sensitivity. Similarly to design optimization with interval variables only, the sensitivities of the 

probability of failure both at the worst case and design points are derived, which are then calculated by the MCS. 

Numerical examples show the worst case probability of failure is obtained efficiently for both low and 

high-dimensional inputs regardless of the dimension of the interval variables and the design optimization with 

random and interval variables is successfully carried out with efficiency utilizing the worst case probability of 

failure search.  
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