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1. Abstract 
Validating models with correlated multivariate outputs involves the comparison of multiple quantities. Considering 

both uncertainty and correlations among multiple responses from model and physical observations impose 

challenges. Existing marginal comparison methods and the hypothesis testing based methods either ignore the 

correlations among responses or are only suitable for reaching Boolean conclusions (yes or no) without accounting 

for the amount of discrepancy between model and the underlying reality. A new validation metric is needed to 

quantitatively characterize the overall agreement of multiple responses considering the correlations among responses 

and the uncertainty in both model predictions and physical observations. In this paper, by extending the concept of 

“area metric” and the “u-pooling method” developed for validating a single response, we propose two new model 

validation metrics for validating correlated multiple responses using multivariate probability integral transformation 

(PIT). One new metric is the PIT area metric for model validation at a single validation site, which measures the 

distance between the PIT distribution of the joint cumulative distribution function (CDF) of model predictions and 

the empirical CDF of transformed observations; the other is the t-pooling metric, similar to the idea of u-pooling for 

a single response, that allows for pooling observations of multiple responses observed at different validation sites by 

comparing the empirical CDF of the twice transformed observations with the standard uniform distribution. The 

proposed metrics provide objective measures of the accuracy of multi-response prediction either at a specified site or 

at multiple sites for assessing the global predictive capability. The proposed metrics have many favorable properties 

that are well suited for the validation assessment of models with correlated responses. The two metrics are examined 

and compared with the direct area metric and the marginal u-pooling method respectively through numerical case 

studies to illustrate their validity and potential benefits.  

2. Keywords: Validation, Uncertainty, Correlation, Area Metric, Multiple Responses, Multivariate PIT 

 

3. Introduction 

Due to the expensive cost for conducting full-scale physical experiments, the prediction of performance of complex 

engineering systems has increasingly relied on the use of computational models. Validation of these models is 

becoming a major issue as a model needs to be either accepted or rejected; sometimes a choice has to be made 

among alternative models. Model validation is defined as the process of determining the degree to which a model is 

an accurate representation of the real world from the perspective of the intended use of the model [1, 2]. In our 

earlier work [3], four categories of existing model validation methods and the associated metrics are classified, 

examined, and compared along with the desired features of validation metrics [4, 5]. A better understanding of the 

pros and cons of each type of metrics has been provided. Among these, the area metric based methods proposed by 

Ferson et al. [5] are shown to be promising due to the many favorable features they have [6]. By direct measuring 

the area difference between the cumulative distribution function (CDF) of the simulation and the empirical CDF of 

the experimental data, the metric provides an objective comparison of the whole distributions between model 

predictions and experimental measurements [7]. Most valuably, by applying the so-called ‘u-pooling’ technique, 

physical observations collected at different validation sites can be incorporated into a single metric to assess the 

global predictive capability of a model for its intended use [3, 8].  

Despite their advantages, the existing area metric (for single site) and u-pooling metric (for multiple sites) only 

make comparisons between marginal distributions, which are better suited for validating a single response model or 

multiple uncorrelated responses rather than correlated multi-responses. There are mainly two situations resulting in 

multivariate responses: (1) A physical experiment and the computational model generate multiple responses or 

measurements [9]. These responses usually have distinct magnitudes and scales, e.g., acceleration versus 

displacement; (2) The responses of interest measured from the same experiment is a function of spatial [10] and 

temporal [4] variables. In both cases, there is a strong correlation between any pair of response quantities from the 
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same experiment. Though several methods for validation of multivariate models have been proposed based on the 

classical or Bayesian hypothesis testing [11, 12], these methods are under normality assumption. The Boolean 

results from the hypothesis test based methods do not quantitatively measure the discrepancy between predictions 

and observations and is not applicable for the case where the asymptotic limit of uncertainty goes to zero.  

Considering uncertainty in prediction and physical observations is important in model validation. Several 

different sources of uncertainty can be identified in engineering computer models and experiments based on the 

work of Kennedy and O’Hagan [13]. For instance, the lack of knowledge uncertainty resulting from model 

parameter uncertainty and model inadequacy; the algorithmic uncertainty introduced from numerical 

implementations of the computer model such as numerical integration; experimental uncertainty in the form of 

measurement error, systematic error, and random errors; and interpolation uncertainty due to lack of samples. To 

account for both uncertainty and multi-response correlation, one intuitive extension of the area metric would be 

comparing the joint cumulative distribution function (CDF) of the model responses and the multivariate empirical 

cumulative distribution function (ECDF) of the observed data [3]. This method, which we term as the “direct area 

metric”, though plausible, is not suitable for pooling experimental data of multiple quantities measured at different 

spatial or temporal points. Besides, the metric would suffer severely from the “curse of dimensionality” for 

computing the high dimensional integration the multivariate ECDF. In lack of proper methods for incorporating 

multiple response quantities observed at multiple validation sites, a practical treatment is to conduct u-pooling 

separately for each response based on the marginal distributions, and then take the average or a weighted sum of the 

u-pooling metrics for multiple responses without considering the correlation among them. 

In this work, two new metrics are proposed for the validation assessment of models with correlated multiple 

responses by extending the idea of “area metric” and the “u-pooling method” [5] through introducing the 

multivariate probability integral transformation (PIT) theorem [14]. The first one is the PIT area metric for 

observations collected at single validation site. The joint CDF of the model responses and the multivariate 

experimental observations are transformed into a univariate CDF and random data sequence following the 

multivariate PIT theorem. The PIT area metric provides a comparison between the empirical CDF of the data 

sequence and the PIT distribution of the joint CDF of model responses. The second metric is the t-pooling metric for 

observations from multiple validation sites, in which case the PIT distributions of the joint CDFs of model responses 

at multiple sites are transformed into a same standard uniform distribution - the observations are simultaneously 

transformed twice based on the relevant joint CDFs and PIT distributions into a univariate data sequence and 

compared with the uniform distribution. With the uncertainty and correlation information captured respectively by 

the transformed data sequences and the multivariate PITs, the issues of both uncertainty and correlation can be 

addressed. Also owing to the univariate nature of the multivariate PIT, the proposed metrics are all univariate 

integrations regardless of the number of response quantities, which significantly cuts down the computational costs 

compared to the direct area metric.  

In the remainder of this paper, a brief introduction of the probability integral transformation (PIT) theorem and 

the area metric/u-pooling technique is provided in Section 4. The proposed PIT area metric and t-pooling metric are 

presented in Section 5. In Section 6, the proposed metrics are tested and compared with the direct area metric and 

the marginal u-pooling method through illustrative numerical examples to show their advantages in assessing both 

the correlation and uncertainty of predictive models. The closure of the paper is provided in Section 7. 

 

4. Background information 

 
4.1. Probability integral transformation 

The probability integral transformation (PIT) for a single random variable is well established in the literature. Given 

any random variable   with a continuous cumulative distribution function   ( ), the PIT of   is a standard uniform 

random variable   that  transformed via the relation     ( ) , i.e.    (   ) [15]. The general proof of this 

theorem is given in an advanced undergraduate textbook [16 Page: 52-54] by Casella and Berger. However, the PIT 

for higher dimensions is far less understood [3]. 

Assume a random vector   (       ) of multi-response is jointly distributed as   (       ) (   ), with 

random variable     (       ) as the analogue d-dimensional PIT of  , the CDF of   is denoted by   ( ) on 

[0,1], by definition,   ( )   (    (       )). However,    ( ) is not generally a uniform distribution as the 

PIT of a random variable. It has been recognized that   ( )  contains valuable information of the correlation 

structure underlying the joint CDF of  , but it does not depend on the marginal distributions of the random variables 

in  . The computation of the PIT distribution   ( ) is quite tractable: the bivariate PIT distributions can be derived 

analytically based on the underlying copulas of the joint CDFs [14]. While in general cases, due to the fact that the 



3 

 

PIT random variable   is a function of the random vector  ,   can be sampled from the function values of the 

random numbers that are generated by the joint CDF of  , and subsequently an empirical   ( )  can be simulated 

based on the random numbers of   . Figure 1 illustrates the PIT of a bivariate CDF. In Figure 1 (a), a random sample 

(     )  ,         generated by the bivariate CDF is put into the distribution to obtain the corresponding sample 

    of the PIT random variable  . As sufficient samples of   are collected in {  }   
 

 with the increase of samples, a 

smooth empirical CDF of   can be simulated, as shown in Figure 1 (b). The multivariate PIT has been successfully 

applied in literature to obtaining the maximum likelihood estimation of dependence parameters [17], testing the 

copula goodness of fit of the dependence structure [18], and evaluating the conditional density forecast in the 

econometric mainstream [19], etc.  

 

(b)

1

0
1

CDF

v

 VK v

ECDF of  
1

n

j j
v



(a)
 

Figure 1: Empirical PIT distribution of a bivariate CDF 

 

4.2. Area Metric and U-pooling Metric 

The area metric proposed by Ferson et al. [5, 7] aims at measuring the disagreement of the entire distributions of 

predictions and observations, of which the metric operator is shown in Eq. (1). For a model that predicts a response 

y at a single validation site, by taking integral over the area differences between the CDF of the model response 

  ( ) and the empirical CDF of the observed data   
 ( ),  the overall disagreement between the predictive model 

and physical experiment can be measured.  

      ,m e m e

n nd F S F y S y dy



    (1) 

 

A larger area difference would indicate larger disagreement at the specified validation site, and vice versa. 

The u-pooling metric was proposed upon the idea of the area metric by Ferson et al. [5] to measure the overall 

disagreement between the predictive model and the physical experiment at multiple validation sites. By applying the 

probability integral transformation for in univariate case, different prediction distributions can all be transformed 

into a standard uniform distribution, i.e.  (   ). Figure 2 provides an illustration of the u-pooling method for three 

experimental data   
  (       ) observed at multiple validation sites which corresponding to different prediction 

distributions   
 ( ). In Figure 2 (b), for each observed data   

 , a corresponding u-value is calculated according 

to   
 ( ), i.e.      

 (  
 ) [3]. Then the area differences (shaded areas in Figure 2 (a)) between empirical CDF of 

the u-values and the standard uniform distribution are added together to provide a single metric that accounts for the 

overall accuracy of a model at multiple validation sites. The value of the metric is between 0 and 1/2, with 0 

indicating a perfect match between the model and experiments, and 1/2  indicating a worst match.  

 
1

0

 1

mF 
 2

mF 
 3

mF 

my1
ey

2
ey 3

ey

2u

1u

3u

1

0

2u

1u

3u

1 1/32/3

CDF

CDF

U(0,1)

ECDF of  
3

1k k
u



(b)(a)
 

 
Figure 2: Illustration of the U-pooling metric 



4 

 

For the measurements of multiple responses at different validation sites, however, the joint CDFs of model 

responses will be transformed into different PIT distributions, and this u-pooling is not possible when data are 

compared against different distributions. As mentioned in Section 3, an average or weighted-sum approach is often 

used in practice without considering the correlation among the responses. The limitations of the marginal u-pooling 

approach will be further examined by comparing it to the proposed t-pooling metric through numerical studies in 

Section 6.1.2. 

 

5. Proposed validation metrics for multiple responses 

In this section, we extend the idea of area metric/u-pooling method and propose two metrics for assessing the 

predictive capability of models with correlated multiple responses considering uncertainty in both physical 

experiments and predictive models. The first one is the PIT area metric for observations collected at a single 

validation site, and the second is the t-pooling metric for observations at multiple validation settings of interest. 

Multivariate PIT is conducted in the validation process of both metrics to incorporate the correlation among the 

responses. 

 

5.1. PIT area metric 

The PIT area metric defined in this subsection provides a comparison between the probabilistic predictions and 

empirical observations of multiple response quantities at a single spatial or temporal location. The physical 

experiment considered has multiple responses,   
 ( )        , where   is a vector of the controllable inputs 

which determines the intended validation sites and d is the number of responses. The candidate computer model for 

predicting these responses are denoted by   
 (   ), with   a vector of model parameters. To address the issues of 

both uncertainty and correlation in the validation assessment, the probabilistic predictions of the computer model 

can be characterized by the joint cumulative distribution function    (            ) of the model responses, 

which contains the information of both marginal distributions and correlations.  
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Figure 3: Flowchart of PIT area metric for single input site 

 

A flowchart of the validation process by the proposed PIT area metric is shown in Figure 3. Based on the 

flowchart, the predictive capability of a computer model is assessed according to the following steps: 

Step 1: On the right side of the flowchart, a number of data sets {(  
      

      
 ) }   

 
are collected from the 

physical experiments at a specified validation site     , where (  
      

      
 )  is the j-th observed data set and n 

is the number of the data sets .  

Step 2: On the left side, the candidate computer model is run at the same validation site      to generate 

simulated responses for constructing the joint CDF of the model responses, i.e.   (            ). 
Step 3: The multivariate joint CDF of the responses is transformed into a univariate CDF   ( ) according to 

the multivariate probability integral transformation theorem, where   is the multivariate PIT random variable of the 

model responses.  

Step 4: Correspondingly, the experimental data sets are transformed into a one-dimensional data sequence 
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{  }   
 

 , in which every v-value is the joint CDF value of the relevant set of data, i.e. 

{    
 ((  

      
      

 )  )}   
 

. Then the empirical distribution    
 ( )  is computed based on these v-values. If 

we assume that the probabilistic predictions are exactly the same as the responses of the physical experiment, these 

v-values would be the samples of random variable  , and therefore   
 ( ) will have the same distribution as   ( ). 

If, however, there is a constant difference between the two distributions that cannot be eliminated by adding more 

observations, we can infer that there is some disagreement between the predictions and the physical experiment. 

Step 5: As a resulting, the two distributions,   ( )and  
 ( ), are compared according to the metric operator 

 (     
 )  ∫ |  ( )    

 ( )|
  

  
  , which is the area difference between the two CDF curves. The integral is 

taken over a unit interval [0, 1] because the PIT random variable    is sampled from CDF values. 

It should be noticed that both the information of correlation and uncertainty has been incorporated in the proposed 

PIT area metric, either by the transformed PIT distribution or the transformed data sequence. Also, different from 

the hypothesis testing based methods, there is neither assumption of normality regarding to the distribution of the 

model responses nor the experimental observations. The metric is applicable for general multi-response problems. 

 

5.2. t-pooling metric 

The u-pooling metric is feasible for pooling incomparable data of single response problems due to the fact that the 

probability integral transformation for any one dimensional CDF is a standard uniform distribution. For multiple 

responses, however, different joint CDFs will be transformed into different PIT distributions. Therefore, the original 

u-pooling metric is not applicable for pooling data of multiple responses observed at different validation sites.  
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Figure 4: Flowchart of the t-pooling metric for multiple input sites 

 

In this subsection, another transformation based area metric, namely, the t-pooling metric, is proposed for 

integrating the evidence from all relevant data of multi-response quantities over the intended validation domain into 

a single measure of the overall disagreement. A flowchart of the t-pooling metric for data observed at different 

controllable input locations is provided in Figure 4. The CDFs of the model responses and observations are 

respectively transformed twice into a standard uniform distribution and comparable data set. Given a series of input 

sites           , which are often selected by the design of experiments methods [20, 21],  the experimental data  

{(  
 (  )     

 (  )     
 (  ))}

   

 

 can be observed by measuring the physical experiment responses 

  
 ( )     

 ( )     
 ( ) at these input settings. The computer model is also simulated at theses input sites in the 

same sense to construct the relevant joint CDFs   
      

      
  of the predictive responses. 

Following the illustration in Figure 4, in the 1st transformation, all joint CDFs   
      

      
  of the model 

responses are transformed to their corresponding PIT distributions   
      

      
 . Simultaneously, the 

observations are transformed by their relevant joint CDFs into a sequence of v-values with 
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 (  
 (  )     

 (  )     
 (  ))  . Each of the v-values can be compared with the PIT distribution 

transformed by its relevant joint CDF. This step is the same as the PIT area metric, however, v-value is only 

comparable with a specified PIT distribution, for example,   
  is comparable with   

 ,   
  is comparable with   

 , 

etc. The pooling is not possible when data are compared against different distributions. 

Therefore, a 2nd transformation needs to be conducted for the v-values and the PIT distributions.  Due to the 

univariate nature of the PIT distributions,   
      

      
  can all be transformed into a standard uniform 

distribution  (   ). Meanwhile the v-values are transformed into a set of u-values {     
 (  

 )}
   

 
 , which are all 

comparable with the CDF of   (   ). This step is similar to the idea of the u-pooling metric, except that the 

distributions and the data are transformed. Furthermore an empirical CDF   
 ( )  is obtained based on these u-

values to compare against the CDF of the uniform distribution. As a result, all evidence of the mismatch between the 

observations and the predictions at different validation sites can be summarized in the metric operator  (    
 )  

∫ |    
 ( )|  

 

 
, and therefore, provides a global assessment for multi-response models. 

For illustration purpose we assume only one observation for each input site, hence the number of observations is 

the same as that of the validation sites. If multiple observations exist at each validation site, the proposed t-pooling 

metric can still be used, and the only difference is that every observation needs to be transformed by the distribution 

relevant to the specified validation site for the observation. 

The metrics proposed in this section have inherited many good features of area metric/u-pooling method for 

single response [5]. For example, the proposed metrics do not include of any criterion or belief of accepting a model 

[3]. On the other hand, the value of the original area metric could be anything larger than 0, thus a distinctive 

disadvantage of the area metric is the difficulty in determining the model acceptance threshold. For the proposed 

PIT area metric and t-pooling metric, however, given the fact that the PIT distribution and the empirical distribution 

of the transformed data are both distributed over [0, 1], the range of the proposed metrics are both ideally 

normalized, so the accuracy requirement of the model acceptance can be easily determined without considering the 

magnitude of individual responses. 

 

6. Numerical case studies 

In this section, a series of numerical studies are designed to compare the proposed metrics with the existing area 

metrics based methods for testing their validity. The PIT area metric is compared with the direct area metric method 

defined in Eq. (2).  The PIT area metric is an immediate extension of the original single response area metric in Eq. 

(1) with higher dimensional integrals: 

      1 1 1 2, , , , , , , , ,m e m e

n i d n i d dd F S F y y y S y y y dy dy dy
 

 
    , (2) 

 

where   (            ) is the joint CDF of model responses and   
 (            ) is the multivariate ECDF 

of the experimental data. The t-pooling metric is compared with the marginal u-pooling method.  

For demonstration purpose, the experimental observations in this section are generated using the following two 

responses: 

    

   

1 1

2 2

, sin 2 0.5

, cos 0.25 0.2

e

e

y x x

y x x x

   

   

  

  

 , (3) 

 

where   
 and   

  stand for experimental responses,   (     ) is a deterministic control variable, and   is a 

model parameter that equals to 1.5. The measurement errors of the two responses,    and   , both follow a zero 

mean Gaussian distribution  (    ) with standard deviation       and a  correlation coefficient            

between them. The responses generated from the above two functions are treated as experimental observations in the 

validation process. It can be noted that since both the function forms of    
 and   

  and the measurement errors    

and    are correlated, the experimental responses are set to be correlated random variables.  

Two test settings are created by using different predictive models. The predictive computer models of the two 

tests are summarized in Table 1. Test 1 aims at examining whether the proposed two metrics can differentiate 

correct and incorrect models. Test 2 focuses on studying whether the metric can differentiate between models with 

larger and lesser uncertainty when the correlation between the model responses varies from site to site. The 

measurement errors are included as a part of the predictive models but with different correlation coefficients in 

different cases. 
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Table 1:  Formulas of the predictive (computer) models in two test cases 

 

Test  Model ID Formulas Model description 

Test 1 1   
  ( )    

 (       ) 

  
  ( )    

 (       ),            

Exactly as the experimental data 

source. 

2   
  ( )    

 (       ) 

  
  ( )    

 (       ),            

Model parameter is incorrect. 

3   
  ( )    

 (       ) 

  
  ( )    

 (       ),             

Both model parameter and 

correlation coefficient are incorrect. 

Test 2 4   
  ( )    

 (     (        )) 

  
  ( )    

 (     (        )),            

Mean of the model parameter is 

exact, uncertainty is smaller. 

5   
  ( )    

 (     (        )) 

  
  ( )    

 (     (        )),            

Mean of the model parameter is 

exact, uncertainty is larger. 

 

6.1. Test 1:  differentiating correct and incorrect Models 

In this section, three predictive models are validated against the physical observations generated by Eq. (3). Model 1 

is considered to be a correct predictive model with model parameter   and the measurement correlation coefficient 

       matches exactly as that of the experimental data source; model 2 is set to have an incorrect model parameter 

with      ; model 3 is assumed to not only have an incorrect model parameter      , but also have a wrong 

measurement correlation coefficient            . 

 

6.1.1. Single validation site:       

 

 
 

Figure 5: Graphical comparisons between observations and model responses at input site       

 
1000 observations are generated from Eq. (3) at a representative input site        for validating each of the three 

models. The scatter plots in Figure 5 provide graphical comparisons between the data from physical experiments and 

the three models, 1000 sets of observations (marked by red dots in Figure 5) are respectively compared with 10000 

sets of simulated responses (the blue circles) generated by each predictive model for visualizing the differences 

between the predictions and the physical experiments. As shown in Figure 5 (a), because model 1 is set the same as 

the experimental data source, the data cloud of the predictions of model 1 overlaps extremely well with the cloud of 

the experimental observations. For model 2 in plot (b), the shapes and orientations of the two data clouds are almost 

the same, but there is a noticeable distance between their centroids, which makes sense because model 2 is set to 

have a discrepancy in the model parameter  . The scatter plot (c) of model 3 demonstrates the worst agreement 

between the predictions and observations: since neither the correlation information nor the marginal distributions of 

the two responses is correctly modeled - not only the centroids of the two clouds are far from each other,  but their 

orientations behave quite differently too. Ideally, a good metric should indicate that model 1 is better than model 2, 

and model 3 is the worst among the three models. 

Figure 6 illustrates when applying the conventional “direct area metric”, the metric measures the differences 

between the joint CDF of the model responses (transparent surfaces) and the multivariate ECDF (colored surface) of 
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the observed data. Figure 7 shows when applying the proposed PIT area metric, the metric provides is a comparison 

between the PIT distribution of the joint CDF (blue curve) and the ECDF of the transformed observations (red 

curve).  All multivariate ECDF surfaces and the ECDF curves in Figure 6 and 7 are smooth, indicating that the 

amount of observations are sufficient to draw trust-worthy metric measures. Results of the two metrics for these 

three models are summarized in Table 2. 

 

 
 

Figure 6: Direct area metric for model 1, model 2 and model 3 

 

 
 

Figure 7: PIT area metric for model 1, model 2 and model 3 

 

Table 2: Comparison of Metric results of the three models for both single and multiple validation sites 

 

Methods/Models Model 1 Model 2 Model 3 

Direct Area Metric 0.041 0.471 0.442 

PIT Area Metric 0.009 0.105 0.184 

Separate U-pooling 0.003 0.083 0.083 

T-pooling Metric 0.012 0.103 0.144 

 

Since model 1 is an accurate model, the metric value of model 1 is expected to be 0. As shown in Table 2, the 

proposed PIT area metric provides a more accurate assessment (0.009) versus the result from direct area metric 

(0.041); the inaccuracy of the latter approach is due to multi-dimensional computations. The results of both metrics 

suggest that model 2 is less accurate than model 1. However, for model 3, the result of the PIT area metric shows 

correctly that model 3 is less accurate than model 2, but the direct area metric result suggests that model 3 is almost 

as good as or even slightly better than model 2. Our comparison shows that the direct area metric is incapable of 

differentiating models with right or wrong correlation coefficients.  

 

6.1.2. Multiple validation sites 

The proposed t-pooling metric is tested against the marginal u-pooling method in this study to assess the global 

predictive capability of the three models. 1000 sets of observations are collected at multiple validation sites with 

only one observation at each site. These validation sites are uniformly distributed on the interval [0, 6] of x. The 
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graphical comparisons of observations and the responses of the three models are provided in Figure 8; 10 sets of 

simulated responses are generated from the models at multiple validation sites for shaping the data clouds of the 

models. Thus the predictive capability of the three models can be easily judged based on the similarity in the shape 

and density of the data clouds between the experiments and the models. Clearly, the data cloud of model 1 shows the 

best match with that of the observations, and model 2 has a better match than model 3. Yet we need to quantify this 

degree of similarity by metrics to provide a quantitative measure of the disagreement between the computational 

model and the experiments. 

 

 
 

Figure 8: Graphical comparisons between observations and model responses over the entire interval of    

 

For pooling these observations of multiple quantities at different sites, the t-pooling metric provides a 

comparison between the ECDF of the transformed data and the standard uniform distribution. The ECDFs of the 

observations transformed by the three models and the CDF of  (   ) are compared in Figure 9 (a) to show the 

accuracy of the three models.  Since the marginal u-pooling approach provides the average of the u-pooling metrics 

of the two responses, the correlation information neither in the observations nor in the model responses is considered. 

The metric results of the marginal u-pooling metric and the t-pooling metric for the three models are listed in Table 

2. It is noted that the marginal u-pooling result for model 2 and model 3 are exactly the same. This is due to the 

reason that the metric only measures the difference of marginal distribution in each response, and totally ignores the 

correlation between them. Since the data used in the proposed t-pooling metric is transformed by relevant joint 

CDFs and the PIT distributions, both correlations and uncertainty among the responses are captured in the metric. 

This explains why the t-pooling metric provides a result consistent with the real accuracy of the three models. 

 

             
                     (a) Model 1, model 2 and model 3                                              (b) Model 4 and model 5 

Figure 9: T-pooling metric for the competing models 

 

6.2. Test 2: differentiating models with smaller or larger uncertainty 

 
In Test 2, we consider two candidate models for testing whether the proposed two metrics can differentiate 

between models of greater and lesser uncertainty. Both predictive models in this test set have an uncertain model 
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Gaussian distribution with a smaller standard deviation, while in model 5, θ follows a Gaussian distribution with a 

larger standard deviation. For testing the performance of the proposed PIT area metric, 1000 sets of observations at 

validation site        are compared with the model responses. The observations are plotted together with 10000 

simulated responses of the two models in Figure 10. Although the data clouds of model 4 covers fewer observations 

than model 5, a large amount of predictions generated by model 5 are quite far away from the boundary of the 

observations. Ideally, the metric should indicate that model 4 is more accurate than model 5. 

 

 
 

Figure 10: Graphical comparison between the observations and responses of model 4 and model 5 at site        

 

The PIT distributions of the two models and the ECDFs of the transformed observations are plotted in Figure 

11 to show the disagreement between the predictive models and the physical observations. The area difference for 

model 5 is 0.117, which is relatively larger than 0.48 for model 4, thus shows that the proposed PIT area metric is 

capable of differentiating between models with more or less uncertainties in their predictions. For testing the t-

pooling metric, we use the same sets of observations collected in Section 6.1.2 to validate the two models in a global 

sense. The empirical CDFs of data transformed by the joint CDFs and PIT distributions of the two models are 

compared with standard uniform distribution in Figure 9 (b), while the corresponding metric results are summarized 

in Table 3 together with the results of the PIT are metric for the two models. The correlation coefficients between 

the responses of the two models are different from site to site due to the change of model input variable x; the 

correlations are captured by the PIT distributions at each site during the t-pooling process. The results (0.039 for 

model 4 and 0.080 for model 5) show that the t-pooling metric is capable of differentiating between models with 

lesser or greater even though the correlation information of the models varies from site to site.  

 

 
 

Figure 11: PIT area metric for model 4 and model 5 at input site       

 

Table 3: Metric results for model 4 and model 5 

Methods/Models Model 4 Model 5 

PIT Area Metric 0.048 0.117 

T-pooling Metric 0.039 0.080 
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6.3. Additional comments on the merits of proposed metrics 

Because the direct area metric depends on the physical units in which the prediction distributions and data are 

expressed, the units of multiple responses are merged in the metric and cannot represent the scale of any of the 

response. It also becomes difficult to set up an appropriate threshold for rejecting or accepting a model. As the 

number of responses increases, the computational cost of the direct area metric would be huge due to the high 

dimensional integrals and the multivariate ECDFs. On the other hand, the proposed PIT area metric is intelligently 

normalized by the transformation which makes it independent from the scales of the responses, thus the model 

acceptance threshold can be easily determined. Besides, the comparisons of multivariate data are transformed into 

one dimensional integral during the validation process. Hence the computational cost of the proposed metric is much 

lower than the direct area metric. The test in subsection 6.1.2 shows both the direct area metric and the marginal u-

pooling metric lack the ability to incorporate the correlation information among the responses, while the proposed 

two metrics could capture the disagreement of uncertainty information as well as the correlation owing to the 

multivariate PITs. In addition, the proposed metrics have many desired features that are inherited from the area 

metric/u-pooling for single response, such as the capability of being used when the amount of physical experiments 

is small and the capability of providing measures of the global accuracy of a model. However, it should be noted 

that when the predictions are sparse, for example, when a computer model is extremely expensive to run to extract 

the uncertainty and correlation information, the risk of underestimation or overestimation the metrics should be 

seriously considered. This risk can be reduced when more information is collected. 

 

7. Conclusion 

For the validation assessment of models with correlated multiple responses, it is important to address both the issues 

of uncertainty and correlations among the responses. In this paper, two metrics are developed for extending the area 

metric/u-pooling based methods into multivariate cases by using multivariate probability integral transformations. 

With the PIT area metric, the experimental data sets observed at a specified validation site are transformed into a 

univariate data sequence based on the relevant joint CDF of the model responses, and then an empirical expression 

of the data sequence is compared with the PIT distribution of the joint CDF to show the disagreement between the 

predictions and observations. For observations of multiple quantities that are collected at different sites, the t-

pooling metric is developed for integrating all the evidence from these sites together to assess the global predictive 

capability of the multivariate predictive models. The pooling is made possible because the observations are 

transformed according to the corresponding model CDFs and PIT distributions into a data sequence that is 

comparable with the standard uniform distribution. The differences in uncertainty and correlations between the 

predictions and observations are addressed through the joint CDFs of the model responses and PIT distributions in 

the proposed metrics without normality assumptions.  After respectively compared with the direct area metric and 

the marginal u-pooling method through numerical test studies, we found that in addition to the metrics of the area 

metric, the proposed approaches (1) could sufficiently capture the correlation information among the responses, (2) 

are convenient for setting model acceptance threshold, and (3) have lower computational cost in face of the 

multivariate models. These features allow the proposed metrics to be well suited for the validation assessment of 

multi-response models, especially in handling the correlation among responses.  

Further research is needed on several issues, including: (1) How the confidence bounds of the metrics can be 

quantified based on the sufficiency of data to reduce the risk of underestimate or overestimate the real discrepancy 

of a model, and (2) How the predictive capability of individual response in a model can be judged based on the 

proposed metrics considering the physical units of the response.  It would also be interesting to investigate the 

possibility of transforming observations once instead of twice before comparison in the t-pooling metric. 
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