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1. Abstract

The current paper describes a new method of combining sensitivity based shape optimization [16, 5, 8]
with a homogenization method, the controller based method [19, 18, 9, 13].
The sensitivity or gradient based method is a classical mathematical approach which uses at least the first
derivative of functions to minimize, maximize or constrain certain structural responses. The controller
based method is a gradient-less homogenization method that uses the physics of a large class of structural
problems where increasing material in highly stressed areas and decreasing material in other areas leads
to a homogeneous stress distribution.
The combination of the two methods is rooted in the assumption that the sensitivity of an objective
function can be approximated with the controller method’s nodal values. This combines the best of both
worlds and opens up the possibility to solve a large amount of problems, which for different reasons could
not be realized within the single framework of either the sensitivity or homogenization approach. The
new method is implemented in an industrial framework and an example from an automotive application
is shown. The shape optimization is non-parametric in the sense that no CAD parameters are used.
Instead, the nodal positions are the shape changing design variables.
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2. Introduction

Structural shape optimization is an important tool in todays industry especially for avoiding stress con-
centrations. Shape optimization is a great option to avoid tedious trial-and-error changes to achieve a
lower stress or other goals. The dream of many engineers is to have a simple and fast solution where
stress concentrations and fatigue issues can be solved without a massive gain of weight or other unwanted
effects. This work is a contribution to get a step closer to a commercially available solution for these
kinds of problems.
Since the ground braking paper from Zienkiewiecz and Campbell [22] from 1973 there have been sug-
gested many methods for structural shape optimization methods using the finite element method (FEM).
Sensitivity based methods in shape optimization have evolved the last 40 years, for overview see e.g.
Choi et al.[5] or Pedersen [16] and the references herein. An easy and efficient implementation of shape
sensitivities uses semi-analytical sensitivities which have an unfortunate error discovered by Barthelemy
and Haftka [2]. Various corrections for this problem has been proposed [17, 11, 4] where the latter by
Bletzinger et al [4] is used in this current work. To avoid too many mesh-irregularities the sensitivities
are filtered according to Bletzinger et al. [3]. Using the semi-analytic method sensitivities can be made
available in the commercial optimization system TOSCA Structure [7] which relies on solving the pri-
mary structural FEM-equations with commercial finite element solvers (e.g. Abaqus, Ansys, Nastran,
etc. [6, 1, 14, 20]). In non-parametric shape optimization we usually have many design variables (de-
sign nodes) and a few (< 100) constraints which makes the adjoint method the adequate choice. This
work is restricted to linear elasticity and sensitivity calculations of displacements and volume. Extending
shape sensitivity calculation with commercial solvers to non-linear analysis and other design responses
e.g. stresses, will be done in other related research.
The great advantage of sensitivity based methods is that complex optimization problems with many
objectives and constraints can be solved using a robust non-linear constrained optimizer. In this work
Svanbergs MMA [21] is used. A major draw back is that only the design responses for which it is
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possible to determine sensitivities can be used. Therefore, some interesting problems can not be solved
e.g. minimizing fatigue using a commercial fatigue code (e.g. Femfat [12]). The reason for missing
sensitivities can either be that functions are non-differentiable, but in our case the main issue is typically
that the necessary information for sensitivity analysis in not readily available when using commercial
products for calculating these results.
In 1979 Schack [19] proposed a non-parametric gradient-less shape optimization process for stress con-
centration problems using FEM. The homogenization method is based on Neuber’s Fade-away Law [15].
Sauter [18] adopted this method in a modified form in the 1990’s which became the commercial opti-
mization product TOSCA Structure [7]. This homogenization method will in the following be referred to
as the controller method.
Simply put, it can be described as adding material where high stresses are present and removing material
in low stressed areas which (mostly) leads to a homogenization of the stresses and mostly a decrease of
the maximum stress. One of the main advantages of controller method is that it can easily be integrated
in commercial finite element solvers ([6, 1, 14, 20]) which makes shape optimization in industrial CAE-
work-flow straight forward [7, 18]. Furthermore, the some key-features made the method successful:

• easy set-up; simply choose nodes in design area

• fast convergence; 5-15 iterations are often sufficient

• extension to support of highly non-linear analysis [13], even fatigue [9]

The major draw back of this gradient-less method is that it is very difficult, if not impossible, to implement
a way to handle constraints. The current version of TOSCA Structure can only handle a single volume
constraint. Constraints are essential in concurrent industrial design because of the increasing amount
of specifications for the structural characteristics of almost any industrial component. Typically, these
specifications include minimal stiffness requirements, maximal allowed stresses, dynamic properties like
minimum eigenfrequencies.
This work will only focus on non-parametric shape optimization [13, 10, 8, 7]. Of course, the optimization
changes geometric parameters, in our case nodal positions, but these are not parameters in the sense of
a CAD-geometry. Discussion of advantages and disadvantages of non-parametric shape optimization can
be found in the aforementioned references.
This paper describes a new shape optimization method combining the controller and sensitivity methods.
This has to the author knowledge never been done before. It opens up for new range of shape optimiza-
tion problems that can be solved in an efficient way. The problems are of industrial interest because it
solves one of main draw backs of the controller method which is already widely used in the industry: The
missing capability of including restrictions to the optimization problem. This is done without loosing the
advantage of doing shape optimization with highly non-linear analysis types, e.g. optimizing for better
fatigue behaviour. The new method is given the name: controller-sensitivity method. The new method is
tested using an industrial example and the results are compared to the existing controller based method.
Finally, the paper concludes and provides the reader an outlook.

3. Sensitivity analysis

In this work we use the semi-analytical adjoint method [11, 8] which is used to minimize, maximize or
constrain a design response Ψ (u(a),a) where a is the vector of design variables and u(a) are the primary
variables in the linear static equilibrium:

K(a)u(a) = f(a) (1)

The stiffness matrix K(a), the displacements u(a) and the forces f(a) are dependent on the shape design
variables. In the following the dependency on design variables (a) is left out of the notation.
A typical optimization problem can be stated as:

min (f (u,a)) (2)

subject to: Ku = f

gi (u,a) ≤ 0 i ∈ [1, N ]
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amin ≤ a ≤ amax

The objective f is minimized subject to N constraints as well as the static equilibrium Eq.(1) and the
side constraints amin and amax. The objective f and the constraints gi are given by one of the supported
design responses Ψ. To solve the optimization problem Eq.(2) the gradients of the objective f and the
constraints gi are needed. Derivative of the design response is calculated using the adjoint method.
Requiring symmetry of the stiffness matrix (K = KT ) the adjoint equation becomes:

Kλ =
∂Ψ

∂u
(3)

Solving the above, the derivative is evaluated by:

dΨ

da
=
∂Ψ

∂a
− λT

(
dK

da
u− df

da

)
(4)

TOSCA Structure uses a commercial FEM-solver to solve the equations Eq.(1) and Eq.(3) which means
we must evaluate ∂Ψ

∂a and ∂Ψ
∂u , which is straight forward in the case of displacements:

∂Ψ

∂a
= 0

∂Ψ

∂u
= 1

Further, to evaluate the second term of Eq.(4) we assume that the external forces f do not change with
the design variables ( df

da = 0). The derivative of the stiffness matrix is approximated with the finite
difference

dK

da
≈ ∆K∗

∆a

Where ∆K∗

∆a is corrected with the correction term from Bletzinger et al. [4].
Volume sensitivities are easily obtained using geometric considerations and these are not dependent on
the finite element equation system as such.

4. Combining the best of both worlds

Adding constraints to the controller method seems to a near impossible task. Instead we assume that
the controller values are good enough to minimize the objective and we use this information as a pseudo-
sensitivity for the objective. The controller values are the stress, strain or fatigue values which are
present for all design nodes. For the constraints we use the correct sensitivities from Eq.(4). Applying a
sufficiently robust optimizer that can handle the inaccurate pseudo-sensitivities in the objective can now
solve the optimization problem.
The new method for shape optimization is called; controller-sensitivity method, were we state the new
optimization problem:

min (f∗(u,a)) (5)

subject to: Ku = f

gi (u,a) ≤ 0 i ∈ [1, N ]

amin ≤ a ≤ amax

where f∗ is a function supported by the controller approach (stress, strain, fatigue, etc. see TOSCA
Structure Manual [7]). Our trick is to set:

df∗

da
= −α c (6)
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Figure 1: Load cases for a conrod where the arrows show the applied force, the colour plot are the stresses
of each load case.

where c are the nodal controller values and α is a scale-factor. This calls for some comments. First of all
we assume that the controller method is really minimizing the objective thus the negative sign in Eq.(6).
That the objective is really minimized is not always given and may be quite problem-dependent. The as-
sumption may not hold rigorous mathematical proof, but the experience of the author and many TOSCA
Structure users show that the minimizing of the objective is very often given by doing homogenization
provided by the controller method. Secondly, we encounter a problem of scale factor α. We assume that
the pseudo sensitivities must be in the same value range as the sensitivities of the constraints. This is
solved by scaling the controller input to the range of the volume sensitivities.

4.1 Controller-sensitivity method example

This example shows a connection rod (conrod) with 4 load cases, see figure 1. The model consists of
68068 linear tetrahedral elements, 15102 nodes (45306 DOFs) and some rigid bodies, bar-elements which
compromises a typical industrial application. The material is linear isotropic and the solving the primary
and adjoint system is done NX Nastran [20]. The fatigue analysis is done with Femfat [12].
The load cases are tension (LC1), compression (LC2) and two stiffness loads; one in the mid-plane of the
conrod (LC3) and one out of this plane (LC4). The optimization problem is minimization/homogenization
of fatigue combined from the load cases LC1 and LC2 (f∗damage) with constraints on the maximum

displacements in LC3 and LC4 (ūLC1 and ūLC2) as well as a volume constraint (V̄ ). The constraint
values are chosen to be 99% of the original. The optimization problem is thus posed as follows:

min
(
f∗damage(u,a)

)
(7)

subject to: KuLCj = fLCj j ∈ [1, 4]

g1(u,a) = uLC1 ≤ ūLC1 = 0.99uORG
LC1

g2(u,a) = uLC2 ≤ ūLC2 = 0.99uORG
LC2

g3(a) = V ≤ V̄ = 0.99 V ORG

amin ≤ a ≤ amax

The figure 2 shows the convergence of the new method (CTRL/SENS ) and for comparison the pure
controller method without displacement constraints, but inclusive the volume constraint, is plotted as
well (CTRL). Both solutions have a final volume of 99% of the original.

4



Figure 2: Convergence of normalized values. CTRL/SENS : Controller-sensitivity method. CTRL: Pure
controller method. DAMAGE : The maximum damage calculated by Femfat. DISP1 and DISP2 : Dis-
placements of load cases LC3 and LC4

a) b)

Figure 3: Optimization displacements. Red colour: +3mm. Blue colour: -3mm. a) New combined
controller-sensitivity method. b) Pure controller based method.
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The convergence of the controller method is very rapid, but it is not possible to constrain the displace-
ments of LC3 and LC4 (see figure 2). The combined controller-sensitivity method has a much slower
convergence, but it keeps the constraints on the displacements. The displaced nodes from the shape
optimization are shown in figure 3.

5. Conclusion

The controller-sensitivity method shows a large potential for industrial relevant applications. Using highly
non-linear responses like fatigue is a typical industrial application for shape optimization with TOSCA
Structure.shape. The ability to use extra constraints will get a warm welcome by the industrial users.
Although, we were able to show a successful application here there is still some work to be done to make
the method robust enough for to be used in a standard industrial work flow.
Another major issue is the extension of possible constraints of the method. The possibility to support
linear stress constraints is a currently being pursued in another research project (ShapeOpt2CAD1). Con-
straints based on non-linear analysis using commercial finite element solvers will be investigated further
in a near future.
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