
10th World Congress on Structural and Multidisciplinary Optimization
May 19 - 24, 2013, Orlando, Florida, USA

Multidisciplinary Optimization with VisualDOC

Santosh Tiwari, Hong Dong, Srinivas Lankalapalli, and Juan Pablo Leiva

Vanderplaats Research & Development, Inc., Novi, MI, USA. Email: {stiwari, hdong, slankal, jp}@vrand.com

1. Abstract
In this paper, we describe how to formally and systematically perform multi-disciplinary optimization
(MDO) using VisualDOC. Typically, when performing MDO studies, the user is required to identify
the linking/coupling variables, dependent and independent inputs/outputs, formulate the system-level
and sub-system level optimization problems, integrate different disciplines and sub-systems together, and
model the data flow and link the modeled problems with optimization to perform the design study.
It is specifically demonstrated how VisualDOC can automate this entire process without requiring the
user to write a computer program or manually perform the integration. With VisualDOC, the user is
only required to identify the linking/coupling variables, formulate the system-level and sub-system level
optimization problems, and define the flow of execution. This paper primarily focuses on the specific
challenges in process integration, data transfer between different systems, and coordinated execution of
optimization to perform the design study. The available computational and algorithmic tools and their
solution as provided by VisualDOC are presented. For the purpose of demonstration, a heat exchanger
design problem is considered with designable structural and thermal components. The computational
model for heat exchanger is treated as black-box (i.e. no information is available to the optimizer about
the analysis program and it is not possible to decompose/split the analysis for any system/sub-system)
and is provided as a computer simulation. Three different MDO techniques: i) multiple disciplines feasible
(MDF), ii) individual disciplines feasible (IDF), and iii) collaborative optimization (CO) are modeled in
VisualDOC. A complete flowchart using standard VisualDOC components is presented for each MDO
technique. The performance, efficiency, and suitability of each of these techniques are compared and their
advantages and disadvantages are discussed. It is shown that the proposed approach for model creation
and design process integration enables one to perform such design studies easily and reliably.
2. Keywords: VisualDOC, Multidisciplinary Optimization, Process Integration, MDF, IDF, CO

3. Introduction
Multi-disciplinary optimization (MDO) as the name suggests involves optimization with analysis com-
ponents spanning multiple different (more than one) disciplines. Multi-disciplinary optimization as an
optimization methodology is well established and is widely used in academia and industry [1, 2, 3, 4, 5, 6,
4, 7, 8, 10, 11]. A comprehensive overview and description of some of the most common MDO methods
can be found in [3] and [11]. In this paper, a systematic solution procedure to solve a given MDO problem
using a given formal MDO method is presented. Typically, when solving a MDO problem, the user is
required to identify the system and sub-systems, linking/coupling variables, inputs/outputs, formulate
the optimization problem, etc. to obtain the solution. The user relies on a programming-like environment
and hand-crafts (implements) the code to execute the entire design process. With the advancements in
MDO software such as VisualDOC, it is not necessary any more to write a computer program to solve a
MDO problem.
Before introducing the formal MDO methods and their proposed solution procedure using VisualDOC,
a distinction is made based on the coupling (linking) of multiple disciplines (or a set of equations). The
type of dependence of a set of sub-systems (or disciplines) can be classified into two categories.

1. Acyclic Dependency : When more than one set of sub-systems (disciplines) are linked such that a
multi-disciplinary analysis (MDA) can be performed without resorting to an iterative process to
achieve consistency, then such a dependency is referred to as acyclic dependency in this paper. In
this case, sub-systems are linked such that there is no reverse dependency (sub-system A can depend
on sub-system B, but not vice versa). A dependency graph of such a set of sub-systems will not
have a link (edge) emanating from a node that will point to any of its ancestors. To perform MDA,
the sub-system(s) that is (are) not dependent on any other sub-system is (are) evaluated first, then
the sub-systems that only depend upon the already evaluated sub-system(s) are evaluated, and so

1



on. The complete MDA is accomplished in a single evaluation of each sub-system and all the inputs
and outputs are consistent.

2. Cyclic Dependency : When more than one set of sub-systems (disciplines) are linked such that a
multi-disciplinary analysis (MDA) cannot be performed without resorting to some sort of iterative
process to achieve consistency, then such a dependency is referred to as cyclic dependency in this
paper. In this case, sub-systems are linked such that there does exist at least one reverse dependency
(sub-system A can depend on sub-system B, and sub-system B can depend on sub-system A or its
predecessors). A dependency graph of such a set of sub-systems will have at least one link (edge)
emanating from a node that will point to one (or more) of its ancestors. In this case, performing
a single evaluation of each sub-system will not accomplish MDA and the set of inputs and outputs
need not be consistent.

Cyclic dependency is pictorially depicted in Figures 1 and 2. It should be noted that if the dependency
is acyclic, then none of the MDO formulations proposed in literature are necessary to perform MDA
and solve the optimization problem. The entire set of sub-systems behaves as a single system so far
as optimization is concerned. At each iteration of the optimization process, all the sub-systems can be
evaluated correctly in a single step, and therefore the formal MDO methods are not needed to solve such
problems. Such problems typically do not fall under the purview of MDO. Only when the dependency is
cyclic, formal MDO methods are necessary. Since, in such a case, MDA cannot be performed in a single
step (iteration) to obtain consistent inputs and outputs, researchers have proposed various methods to
perform optimization and achieve consistency in as few function evaluations (iterations) as possible. The
focus of the MDO methods is not only to facilitate consistency, but also decouple them (e.g. to run them
in parallel or achieve interdisciplinary independence) or reduce the associated computational cost. It is
also important to note that all MDO formulations aim at obtaining convergence to a set of consistent
inputs and outputs. In this paper, VisualDOC is used to model and solve different MDO formulations.

A B

Figure 1: Cyclic dependency (2 systems)

B

A C

Figure 2: Cyclic dependency (3 systems)

VisualDOC [12, 13] is a general-purpose multidisciplinary design and optimization software. It is a
tool for design process definition, integration, execution, and automation. It includes design modules
such as Optimization, Design of Experiments, Responses Surface Models, and Probabilistic (Robust and
Reliability-based) Models. VisualDOC can be used to add these modules to almost any design task.
It allows the designer/user to graphically create a connected workflow of components and define each
component in the flowchart appropriately. More information about VisualDOC can be found on its
webpage http://www.vrand.com/visualdoc.html. VisualDOC includes tools for: i) specifying a process as
a flowchart, defining the flow of execution (coordinate execution of different components), defining flow
of information (communication of data between different components), interfacing with different kinds of
analysis programs, and a large number of design algorithms. Thus, in essence, it includes all the pieces
necessary to model a solution to a MDO problem. The user is still required to identify (specify) all the
inputs and outputs for each discipline, and formulate the system-level and sub-system-level optimization
problems.
An important aspect when formulating the MDO problem is the issue of system and sub-system bound-
aries. In an analytical problem [3, 11], the user often has the flexibility (freedom) to choose the system
and sub-system boundaries. If the system boundaries are chosen appropriately then it may help the
optimization process by minimizing the number of iterations (or function evaluations). There is no spe-
cific rule that governs the choice of the system boundaries. However, a general guideline is to choose
the boundaries such that the number of linking variables (number of dependent inputs and outputs) is
minimized. Lesser number of linking variables results in fewer optimization variables as well as fewer
iterations to achieve consistency. Therefore, the associated computational cost is minimized. In this
paper, the sub-systems (analysis programs) are treated as a black-box simulation. Hence, the system
boundaries are a given, and the user does not have the freedom to define system boundaries. This is

2



almost always the case when working with domain-specific simulation software as the analysis program.
The inputs and outputs to a given analysis program are fixed and the designer (user) cannot choose a
different set of inputs or outputs to run a simulation. In this paper, the sub-systems are assumed to be
black-boxes (closed simulation software) which have clearly defined inputs and outputs that cannot be
altered.
The remainder of this paper is organized as follows. The following section contains an overview of the
three different MDO methods presented in this study. In the next section, the example problem (Elec-
tronic Packaging Design) used for the purpose of demonstration is described. Section 6 contains the
description of the formulated optimization problems and obtained simulation results. Finally in section
7, conclusions from this study are presented and the ongoing future work is described.

4. MDO Formulations
Numerical optimization algorithms have seen extensive development for over fifty years and, today, we
can solve nonlinear constrained optimization problems involving many thousands of variables and con-
straints. In engineering, formal numerical optimization has been successfully applied to structures, fluid
mechanics, heat exchangers, gas dynamic lasers etc. to name a few. Furthermore, optimization is not
confined to a single discipline and multi-disciplinary optimization, or MDO, is now commonplace. It is
therefore necessary to include facilities in optimization software to make it easy and efficient to solve
MDO problems. MDO involves using Optimization to solve design problems that span multiple disci-
plines. Generally, the disciplines involved are coupled (linked) to each other such that the output of one
discipline depends upon the output of another. Often, this dependency is cyclic in that the output of first
depends upon the output of second and vice versa. In such a case, the optimization process must not
only find the optimum but also ensure that the disciplines (their inputs and outputs) are consistent with
each other. To solve such linked systems, several MDO strategies have been proposed. In this section, a
brief description of three MDO techniques (MDF, IDF and CO) is presented. For a more comprehensive
overview of these MDO formulations, the reader is referred to [3] and [11].
The following general description of a coupled optimization problem (figure and notation taken from [11])
is used in this paper. There are two disciplines in the coupled example problem shown in Figure 3. The
description of each symbol in Figure 3 is as follows.

• x1 is the independent input to sub-system 1 only

• x2 is the independent input to sub-system 2 only

• x is the common independent input to sub-systems 1 and 2

• y1 is the output from sub-system 1 that is not input to any other sub-system

• y2 is the output from sub-system 2 that is not input to any other sub-system

• y12 is the output from sub-system 1 that is input to sub-system 2

• y21 is the output from sub-system 2 that is input to sub-system 1

Hence, to evaluate (simulate) sub-system 1, the inputs x, x1, and y21 are required. The outputs from
sub-system 1 are y1 and y12. Similarly to evaluate (simulate) sub-system 2, the inputs x, x2, and y12 are
required. The outputs from sub-system 2 are y2 and y21. The design variables are x, x1, and x2. The
optimization problem statement is as follows.

Minimize f(x, x1, x2, y12, y21, y1, y2)
Subject to g(x, x1, x2, y12, y21, y1, y2) ≤ 0

h(x, x1, x2, y12, y21, y1, y2) = 0
(1)

4.1 Multi-disciplinary Feasible (MDF)
This is a single-level method. In the MDF formulation, as the name suggests, all the disciplines are
feasible (consistent) at each iteration. In this strategy, only those inputs that are not output from any
sub-system (independent inputs) are treated as design variables. All the linking variables are treated as
part of the system. A local iteration between the sub-systems is performed until the linking variables
(both the inputs and outputs) become consistent. This is why this formulation is also called All-In-One
(AIO) formulation. In this case, MDA is achieved for each discipline at each iteration. After the con-
sistency is achieved, the objectives and constraints are then evaluated and sent to the optimizer. This

3



2

1

x

y

2

x x

y
1

1

2

2

12

21

21

2 12

y  = l (x, x , y  )
11

y  = l (x, x  , y  )

Figure 3: MDO Problem with Two Disciplines

process repeats till the optimization has converged. The problem statement for the MDF formulation is
as follows (it is identical to original optimization problem statement). The MDF formulation is pictori-
ally depicted in Figure 4. The optimizer generates the value of variables (independent inputs) x, x1, and
x2 at each iteration. Then the linking variables y12 and y21 are determined using a local iteration till
consistency is achieved. After y12 and y21 are determined, the objective function f and constraints g can
be determined. The responses are then propagated to the optimizer.

Design variables: x, x1, x2

Minimize f(x, x1, x2, y12, y21, y1, y2)
Subject to g(x, x1, x2, y12, y21, y1, y2) ≤ 0

h(x, x1, x2, y12, y21, y1, y2) = 0

(2)

h

1 x2

y
1

y
2

y
21

12
y

x2x1

y
21 12

yy
2

y
1

1 2

x

x

f g

x

Figure 4: MDF Formulation

4.2 Individual Discipline Feasible (IDF)
IDF also is a single-level method. The IDF formulation decouples different sub-systems by using auxiliary
optimization variables. With this strategy, it is possible to analyze (simulate) each sub-system at once
in parallel. Therefore, this formulation is also called distributed analysis optimization. With this for-
mulation, a complete multi-disciplinary analysis (MDA) is not required, and the optimization drives the
complete system to feasibility and optimality by controlling the interdisciplinary coupling variables. Cor-
responding to each dependent (linking) variable, surrogate variables are introduced. All the sub-systems
are evaluated using the surrogate variables. The objectives and the constraints are also evaluated using
the surrogate variables. To maintain consistency, additional equality constraints are introduced that at-
tempt to match the surrogate variables with the corresponding dependent outputs. The IDF formulation
is pictorially depicted in Figure 5. With IDF, it can be noticed that there is an increase in the number of
variables as well as addition of nonlinear equality constraints. Both these modifications generally increase
the computational cost (number of iterations) associated with optimization. This increase in computa-
tional cost is generally offset by the fact that MDA is not required in the case of IDF and therefore local

4



iteration of sub-systems is not performed.

Design variables: x, x1, x2, y12, y21
y12 = l1 (x, x1, y21)
y21 = l1 (x, x2, y12)

Minimize f(x, x1, x2, y12, y21, y1, y2)
Subject to g(x, x1, x2, y12, y21, y1, y2) ≤ 0

h(x, x1, x2, y12, y21, y1, y2) = 0
∥y12 − y12∥ = 0
∥y21 − y21∥ = 0

(3)

h21
y
2

y
1

x1 x2

y
1 12

y y
2

y
21

y
21 12

y

x2x1 y
21 12

y

12
y

x

x

1 2

f gy

Figure 5: IDF Formulation

A significant issue with the IDF formulation (and with any formulation that uses surrogate variables) is
that the optimizer needs the lower bound and upper bound for the surrogate variables. This information
may not always be available. The initial value is also needed for optimization but this limitation is present
with every MDO method including MDF.

4.3 Collaborative Optimization (CO)
CO is a bi-level approach which has system level optimization and the subsystem level optimization. The
system level optimization drives specific system-level targets towards the optimum. The sub-system level
optimization control the discipline design variables and the linking variables to match the system level
targets. At any iteration of system-level optimization, the sub-system level optimization is run to match
the system-level targets. Since CO is a multi-level formulation, it is generally very expensive compared
to MDF, IDF, and other single-level approaches. The advantage of CO however is that it promotes
disciplinary autonomy whilst achieving interdisciplinary compatibility. With CO, the subsystems are
maintained at a feasible state which prevents a breakdown of disciplinary analysis. The CO formulation is
pictorially depicted in Figure 6. Since there are system-level and sub-system level optimization problems,
it is necessary to define a convention. The convention is shown in Table 1 and is taken form [11]. In
Table 1, x1 and x2 are surrogate for the independent common design variable x. With this convention
for the design variables, the CO formulation (for two subsystems) is as follows.

System-level optimization
Design variables: x, y12, y21
Minimize f(x, x1, x2, y12, y21, y1, y2)
Subject to g(x, x1, x2, y12, y21, y1, y2) ≤ 0

h(x, x1, x2, y12, y21, y1, y2) = 0
J1 = ∥x1 − x∥+ ∥y12 − y12∥ = 0
J2 = ∥x2 − x∥+ ∥y21 − y21∥ = 0

(4)

5



Table 1: CO Variable Naming Convention

Original System Subsystem
x x x1, x2

x1 - x1

x2 - x2

y12 y12 y12
y21 y21 y21

2
1 12

yy
21

x1 12
yx2 y

2
y

21

y
21 12

yy
21 12

y

y
1

x1

J1
J
212

yy
21

x2 y
2

System Optimizer

x x

Subsystem 1 Optimizer

Subsystem 1 Analysis

Subsystem 2 Optimizer

Subsystem 2 Analysis

Responses

f hx g

x1 xy

Figure 6: CO Formulation

Subsystem 1 optimization
Design variables: x1, x1, y12
Input parameters: x, y12 (from system optimizer)
Minimize J1 = ∥x1 − x∥+ ∥y12 − y12∥
Subject to g1(x

1, x1, y12, y1) ≤ 0
h1(x

1, x1, y12, y1) = 0

(5)

Subsystem 2 optimization
Design variables: x2, x2, y21
Input parameters: x, y21 (from system optimizer)
Minimize J2 = ∥x2 − x∥+ ∥y21 − y21∥
Subject to g2(x

2, x2, y21, y2) ≤ 0
h2(x

2, x2, y21, y2) = 0

(6)

5. Description of the Electronic Packaging Problem
The electronic packaging design [1, 14, 15, 3] is a famous multidisciplinary optimization (MDO) problem.
It has two subsystems which are electrical and thermal subsystems. The task in this problem is to design
a heat sink which is used to dissipate the heat generated by the resistors. The objective in this problem
is to maximize the watt density of the system by choosing i) suitable dimensions for the heat sink, ii)
deciding on the material to be used for the resistor, and iii) their normal resistances. An important
feature of this problem is that the two systems are coupled and therefore they affect each other and
hence one system cannot be solved independently of the other. Watt density of the system is defined
as the total power dissipated by the circuit divided by the volume of the heat sink. There are various
constraints that limit the current division, maximum temperature reached, reliability, and weight. Most
of the details of this problem are omitted in this paper and the reader is referred to [14] and [15] for a
complete description of the this problem. The problem description and the source code can be down-
loaded from http://www.eng.buffalo.edu/Research/MODEL/mdo.test.orig/class2prob3.html. There are
eight independent design variables (x1 to x8), 13 state variables (y1 to y13), two inequality constraints
(g1 and g2) and one equality constraint h. The lower bound and the upper bound for the design variables

6



is taken from [3]. The electrical subsystem is available in analytical form as equations, and the thermal
subsystem is available as an executable program with fixed number of inputs and outputs. The inputs
and outputs for the two subsystems are as follows.

Thermal subsystem
Inputs: x1, x2, x3, x4 and y2, y3
Outputs: y11, y12, y13

Electrical subsystem
Inputs: x5, x6, x7, x8 and y11, y12, y13
Outputs: y1, y2, y3, y4, y5, y6, y7, y8, y9, y10

The objective function f , inequality constraints g, and the equality constraint h are computed using the
state variables y. The inputs and outputs for each sub-system are shown in Figure 7.

8       9       10  

x  , x  , x  , x1       2       3      4 

y  , y  , y
11     12     13

y  , y
2       3

x  , x  , x  , x5       6       7       8 

Thermal Subsystem Electrical Subsystem

y  , y  , y  , y  , y  , y  , y  , y
1       4       5       6       7

Figure 7: Inputs and Outputs for the Thermal and Electrical Subsystems

6. Solution using VisualDOC
In this section, the solution to the Electronic Packaging Design problem using VisualDOC is presented.
For an optimization software to be able to solve MDO problems involving MDF, IDF, and CO (and
various other) formulations, it should provide certain capabilities apart from the usual optimization and
process integration capability. These capabilities enable a software to easily, efficiently, and reliably solve
a MDO problem. The list of needed capabilities are as follows.

• It should support multi-level optimization (needed for bi-level MDO formulations). A system level
optimizer should be able to drive sub-system level optimizers. This also implies that an analysis
component (or sub-flow) must be able to contain optimization and other sub-flows.

• The sub-system level optimizers are seeded with information generated in the system level optimizer.
The software should thus be able to not only communicate the value of design variables, objectives,
and constraints; but transfer lower bound, upper bound, initial value, optimum value etc. from one
component to another across different levels.

• The sub-system level optimization is run multiple times. Each time, the optimizers start from
some initial value. It is desired (for faster convergence) that subsequent runs of an optimization
component use the best found solution in the previous run as the starting point.

VisualDOC includes all the above capabilities to facilitate solution of MDO problems. The solution
using the three MDO (MDF, IDF, and CO) strategies is presented next.

6.1 VisualDOC Solution for MDF Formulation
The MDF formulation is akin to regular optimization in which the linking variables are part of the analysis
sub-flow. A fixed point iteration like scheme is used inside the analysis sub-flow to achieve consistency
between the linking variables. The variables, objectives, and constraints for the optimizer are as follows.

7



Variables: x1, x2, x3, x4, x5, x6, x7, x8

State variables: y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13
Responses: f , g1, g2, and h

The VisualDOC flowchart is shown in Figure 8. The VisualDOC convergence plot for the MDF for-
mulation is shown in Figure 9. The optimization algorithm took 186 iterations to converge (find the
optimum). Since the analysis-subflow executes a fixed point iteration to achieve consistency, for each
optimization iteration, there are multiple simulations of the analysis programs. The total number of
function evaluations (one function evaluation implies an evaluation of each sub-system) in this case is
492. The obtained optimum value of the objective function is -6.39e-5.

Figure 8: VisualDOC Flowchart for MDF Formu-
lation Figure 9: Convergence Plot for MDF Formulation

6.2 VisualDOC Solution for IDF Formulation
In the IDF formulation, surrogate variables are introduced for all the linking variables. The symbol z is
used for the surrogate variables (i.e. zi is a surrogate for variable xi and zij is a surrogate for linking
variable yij). The analysis are decoupled and therefore can be run in parallel if desired. In this example,
there are no common independent variables. The variables, objectives, and constraints for the optimizer
are as follows.

Design variables: x1, x2, x3, x4, x5, x6, x7, x8, z2, z3, z11, z12, z13
Input to Thermal subsystem: x1, x2, x3, x4, z2, z3
Output from Thermal subsystem: y11, y12, y13
Input to Electrical subsystem: x5, x6, x7, x8, z11, z12, z13
Output from Thermal subsystem: y1, y4, y5, y6, y7, y8, y9, y10
Original Objectives and Constraints: f, g1, g2, h (evaluated using surrogates instead of output linking

variables)
Additional Equality Constraint 1: h1 = ∥y2 − z2∥+ ∥y3 − z3∥ = 0
Additional Equality Constraint 2: h2 = ∥y11 − z11∥+ ∥y12 − z12∥+ ∥y13 − z13∥ = 0

(7)
The VisualDOC flowchart is shown in Figure 10. The VisualDOC convergence plot for the IDF for-
mulation is shown in Figure 11. The optimization algorithm took 220 iterations to converge (find the
optimum). Since the analysis-subflow executes exactly once for each optimization iteration, the total
number of function evaluations (one function evaluation implies an evaluation of each sub-system) in
this case is 220. We notice that IDF is more than twice as fast (as compared to MDF) on this example
problem. The obtained optimum value of the objective function is -5.86e5 which is slightly worse than the
solution obtained using MDF. The convergence plot in Figure 11 shows red markers since the constraints
are very slightly violated (1e-4 instead of the specified tolerance of 1e-6).

6.3 VisualDOC Solution for CO Formulation

8



Figure 10: VisualDOC Flowchart for IDF Formu-
lation

Figure 11: Convergence Plot for IDF Formulation

In the CO formulation, system-level and sub-system level optimization are performed. As in IDF, sur-
rogate variables are introduced for all the linking variables. Since there are no common independent
variables in this problem, no surrogates are introduced for them. The symbol z is used for the surrogate
variables (i.e. zi is a surrogate for variable xi and zij is a surrogate for linking variable yij). The analysis
are decoupled and are optimized separately. The variables, objectives, and constraints for the optimizer
are as follows.

System-level Optimization
Design variables: z2, z3, z11, z12, z13
Original Objectives and Constraints: f (evaluated using surrogates instead of output linking variables)
Additional Equality Constraint 1: J1 = ∥y11 − z11∥+ ∥y12 − z12∥+ ∥y13 − z13∥ = 0
Additional Equality Constraint 2: J2 = ∥y2 − z2∥+ ∥y3 − z3∥ = 0

(8)

Thermal Subsystem Optimization
Design variables: x1, x2, x3, x4, y2, y3
Input parameters: z2, z3, z11, z12, z13 (from system optimizer)
Input to Thermal subsystem: x1, x2, x3, x4, y2, y3
Output from Thermal subsystem: y11, y12, y13
Minimize J1 = ∥y11 − z11∥+ ∥y12 − z12∥+ ∥y13 − z13∥ = 0
Subject to Thermal constraints evaluated using output linking variables

(9)

Electrical Subsystem Optimization
Design variables: x5, x6, x7, x8, y11, y12, y13
Input parameters: z2, z3, z11, z12, z13 (from system optimizer)
Input to Electrical subsystem: x5, x6, x7, x8, y11, y12, y13
Output from Thermal subsystem: y1, y4, y5, y6, y7, y8, y9, y10
Minimize J2 = ∥y2 − z2∥+ ∥y3 − z3∥ = 0
Subject to Electrical constraints evaluated using output linking variables

(10)
The VisualDOC flowchart is shown in Figure 12. The VisualDOC convergence plot for the CO formula-
tion is shown in Figure 13. The system level optimization took 141 iterations to converge. This implies
that the sub-system level optimizers were run 141 times each. The total number of function evaluations
used by the Thermal subsystem optimization (for all the runs) is 4532, whereas for the Electrical sub-
system optimization is 2272. Hence, the Thermal subsystem optimization took an average of 32 function

9



evaluations and Electrical subsystem optimization took an average of 16 function evaluations to converge.
It can easily be noticed that the CO (bi-level) formulation is significantly more expensive than MDF and
IDF (single-level). The obtained optimum value of the objective function for this example problem is
-6.47e5 which is slightly better than the solution obtained by MDF.

Figure 12: VisualDOC Flowchart for CO Formu-
lation

Figure 13: Convergence Plot for CO Formulation

7. Conclusion and Future Work
In this paper, the Electronic Packaging problem is solved in an MDO framework using VisualDOC. Three
different MDO techniques (multi-disciplinary feasible - MDF, individual discipline feasible - IDF, and col-
laborative optimization - CO) are demonstrated. The focus of this paper is on using VisualDOC instead of
writing a computer program to solve these problems. The specific capabilities that an optimization soft-
ware should support for the solution using MDO formulations are discussed and it is demonstrated how
the process integration and parameterization capability of VisualDOC facilitates such solution approach.
Acceptable solutions were obtained with all the MDO formulations. It was observed that IDF was faster
(220 function evaluations) than MDF (492 function evaluations) and CO (4532 Thermal simulations and
2272 Electrical simulations). CO however was able to obtain a slightly better solution than MDF and IDF.

It is also shown in this paper, that a software system such as VisualDOC can automate the entire process
of solving a multi-disciplinary optimization problem using any of the MDO formulations, but the user is
still responsible for making all the decisions. The decisions include defining system and sub-system bound-
aries, determining inputs and outputs to each analysis program, and formulating system and sub-system
level optimization problems. After the user has formulated the optimization problems, VisualDOC can
then be used to obtain the optimum solution. It was also observed that all the three MDO formulations
presented in this paper require the user to make an educated guess for the bounds and initial value of
the surrogate variables. The performance and the total execution time vary significantly on the choice of
surrogate variables and the starting point (initial value) for the optimization. It was also observed that
adding non-linear equality constraints almost always makes the optimization problem harder (the number
of optimization iterations in MDF is lesser than in IDF). The other MDO techniques namely Simultaneous
Analysis and Design (SAND), Bi-level Integrated System Synthesis (BLISS), and Concurrent Sub Space
Optimization (CSSO) are not presented in this paper which are part of the currently ongoing future work.

10



8. References

[1] S. Kodiyalam and J. Sobieszczanski-Sobieski. Multidisciplinary design optimization - some formal
methods, framework requirements, and application to vehicle design. International Journal of
Vehicle Design, 25(1–2):3–22, 2001.

[2] K. F. Hulme and C. L. Bloebaum. A simulation-based comparison of multidisciplinary design opti-
mization solution strategies using CASCADE. Structural Multi-disciplinary Optimization, 19:17–35,
2000.

[3] K. F. Hulme. The Design of a Simulation-based Framework for the Development of Solution Ap-
proaches in Multidisciplinary Design Optimization. PhD thesis, University of NewYork at Buffalo,
2000.

[4] K. F. Hulme, C. L. Bloebaum, and Y. Nozaki. A performance-based investigation of parallel and serial
approaches to multidisciplinary analysis convergence. In Proceedings of the 8th AIAA/USAF/NASA
/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2000.

[5] N. M. Alexandrow and R. M. Lewis. Comparative properties of collaborative optimization and other
approaches to MDO. In Proceedings of the 1st ASMO UK/ISSMO Conference on Engineering
Design Optimization, 1999.

[6] N. M. Alexandrow and S. Kodiyalam. Initial results of an MDOmethod solution study. In Proceedings
of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
pages 1315–1327, 1998.

[7] J. Sobieszczanski-Sobieski and R. T. Haftka. Multidisciplinary aerospace design optimization: Survey
of recent developments. Structural Optimization, 14(1):1–23, 1997.

[8] N. M. Alexandrow and M. Y. Hussaini. Multidisciplinary Design Optimization: State of the Art
(Proceedings in Applied Mathematics Series: No. 80). Soc for Industrial & Applied Math, 1997.

[10] J. Sobieszczanski-Sobieski. Multidisciplinary design optimization: An emerging new engineering
discipline. Advances in Structural Optimization, pages 783–496, 1995.

[11] C. C. Johnson. An introduction to multidisciplinary design optimization methods. Master’s thesis,
Clemson University Clemson SC, 2012.

[12] S. Tiwari, H. Dong, B. Watson, and J. P. Leiva. Visualdoc: New capabilities for concurrent and in-
tegrated simulation and design. In 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, number AIAA 2010-9177.

[13] S. Tiwari, S. Lankalapalli, and J. P. Leiva. Design process integration and optimization with
visualdoc. In 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, number
AIAA 2012-1358798.

[14] J. Korngold, G. Gabriele, J. Renaud, and G. Kott. Application of multidisciplinary design optimiza-
tion to electronic package design. In Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium
on Multidisciplinary Analysis and Optimization, number AIAA-92-4704-CP.

[15] D. Xiaoping and W. Chen. Efficient uncertainty analysis methods for multidisciplinary robust
design. AIAA Journal, 40(3):545–552, 2002.

11


