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Computer model is a useful tool that gives solution by physical modeling instead of expensive testing. In the 

reality, however, it often disagrees due to the simplifying assumption and unknown or uncertain input parameters. 
In this study, a Bayesian approach is proposed, that calibrates the computer model in probabilistic way using the 
measured data. Elasto-plastic analysis of a pyrotechnically actuated device (PAD) is employed to demonstrate the 
approach, which is a component that delivers high power in remote environments by combustion of a 
self-contained energy source. A simple mathematical model that quickly evaluates the performance is developed. 
Unknown input parameters are calibrated conditional on the experimental data using Markov Chain Monte Carlo 
algorithm, which is a modern computational statistics method. Finally the results are applied to determine the 
reliability of the PAD. 
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1. Inrtoduction 

In various fields of engineering, experiments are often conducted for the design of a device and its validation, 
which is in most cases time-consuming or even impossible due to many limitations. Thus, efforts have been 
exerted to develop a simple but well-fitted model that simulates the underlying physics. The simulation has been 
actively applied to various fields and is regarded now as necessary process in the industries. However, the 
simulation performance is generally limited by simplifying assumptions, unknown input parameters and 
computing performance, which often leads to the disagreement from the reality in more or less degree. In order to 
resolve this issue, there have been various studies on calibration of the difference between the simulation and 
experiment. The most common and simple practice has been to tune some unknown parameters of the model to 
match the experiments via trial and error, which was usually implemented in the deterministic way. During the 
process, however, several uncertainties exist in the model including the model error and insufficient information of 
input parameters, and in the experiment including the limited number of tests and measurement error. Recently, 
there have been active research on how to account for these uncertainties in the model calibration. For instance, 
Bayarri et al. [1] studied on probabilistic calibration of input parameters based on the field data for the spot weld 
and automotive crash problems. Bayesian approach is employed to calibrate unknown parameters, which can 
estimate the parameters in the form of probability distribution conditional on the field data. Then the simulation 
results are given by the predictive interval, instead of a single value.  

The objective of this study is to apply the same method to the calibration of the model of pyrotechnic actuated 
device (PAD). PAD is a device that delivers high power in remote environments by combustion of a self-contained 
energy source. The PAD function consists of two steps with one being the explosive combustion within the 
chamber, and the other the piston insertion due to the generated pressure from the chamber into the housing to 
activate the intended operation. As the device is to perform critical functions in the aerospace and defense 
applications, the performance analysis as well as its reliability assessment is needed at the design phase. The 
analysis is however demanding because of its nonlinearity and some unknown parameters. In this study, a simple 
mathematical model for the piston insertion that involves elasto-plastic deformation is developed. Unknown 
parameters are calibrated based on the field data, which are obtained in the form of probability distribution, 
reflecting the associated uncertainties. Then, the results are used as the input to evaluate the reliability of the PAD 
function. In section 2, brief explanations are given to the PAD, and elasto-plastic insertion model of the piston. In 
section 3, Bayesian formulation is addressed for the model calibration, followed by the sampling algorithm 
Markov Chain Monte Carlo(MCMC) that brings us the distributions of the calibrated parameters. Before 
calibration, approximation model is introduced to implement MCMC more efficiently instead of the original 
model. Section 4 conducts the reliability analysis using the crude Monte Carlo simulation based on the posterior 
distributions of the parameters obtained in section 3. The distinguishing feature of the current approach is that 
instead of employing the arbitrary assumed distributions for unknown input parameters, calibrated distributions  
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(a) before activation              (b) after activation  

 
Figure 1: Illustration of PAD 

 
are used for the reliability analysis, which are more trustworthy. 
 
2. Pyrotechnically Actuated Device 
 
2.1. Pyrotechnically Actuated Device 
Pyrotechnically actuated device (PAD) takes a variety of forms such as pin pullers, cable cutters, pyro-valves and 

so on. In this study, the target device is a valve type as shown in Figure 1, which is introduced by [2]. The figure is 
just a conceptual introduction of the operating principles. Actual shape is more complex than as it appears, but is 
not given here due to the proprietary reason. The mechanism of this device is as follows. Once the combustion and 
expansion of gas arise in the chamber shown in the upper part, high gas pressure exerts the piston to move into the 
small space toward bottom. The cutter installed on tip of the piston penetrates the diaphragm that encloses nitrogen 
gas. As the gas flows out of this device, the operation is activated. In this regard, the PAD plays the role of valve 
that opens a gas flow. According to the mechanism, in the PAD analysis, analytical model can be integrated by two 
disciplines that are coupled with each other. First is the analysis of explosive combustion within an actuator and 
resulting gas flow in an expansion chamber. Second is the elasto-plastic analysis that simulates insertion of tapered 
piston into the housing by the pressure generated in the chamber. While the former is relatively well established 
over the times, the latter is less paid attention. So the main objective of the study is to develop a mathematical 
model that can evaluate the piston movement against the housing under the given pressure history. A 
straightforward solution for this is to employ commercial FEA code, which is, however, computationally 
demanding in case of reliability analysis. In this study, simpler model is proposed to obtain solution in much faster 
way based on the closed form analysis under some assumptions. 
 
2.2. Elasto-Plastic Insertion Model 
Tapered piston in Figure 1(a) undergoes large deformation as it is forced into the housing as shown in Figure 1(b). 

As a result, contact pressure is generated around the contact surface between the piston and the housing. Then the 
friction force is generated that resists the movement of the piston due to the pressure. The resistance force can be 
expressed as a function of the position of the piston. In order to calculate this, the main idea is that during the piston 
insertion, each cross sectional segment of the piston and outer housing is assumed as a shrink fit of two cylindrical  

 
(a) segments                              (b) cross-section of segment 

 
Figure 2: Calculation method for problem 



 
 

3 

members with given interference, as is shown in Figure 2. Figure 2(a) and (b) show cross sectional segments along 
the movement direction and the top view of each segment, respectively. Depending on the degree of interference, 
the inner and outer part may undergo elastic, elasto-plastic or full plastic deformation. Tresca criterion is employed 
to identify plastic part, in which linear strain hardening rule is used for plasticity, which consists of the yield 
strength and strain hardening parameter that represents the tangent modulus. The interface pressure is computed by 
closed form solution for each of these cases. The resistance force is obtained by applying friction coefficient to 
these and integrating the axial components over the whole interface. The analytical model is constructed in this 
way and more detail about the process is given in reference [2] and [3]. MATLAB is used for the implementation, 
in which the resistance force is computed at 51 displacement points along the range of 2.5mm with the interval 
being 0.05mm. Though not addressed here, commercial code ANSYS is also employed to solve the problem, 
which takes 10 minutes or more. On the other hand, the MATLAB model takes only 1~2 seconds for the same 
problem, which reduces the computing time remarkably while producing the similar solutions. 
 
2.3. Unknown Parameters 
The resistance force calculated by the elasto-plastic insertion analysis of PAD is affected by several input 

parameters, which include the material properties such as Young’s modulus, Poisson’s ratio, plastic behavior and 
shapes of the piston and housing. Among these, there are some unknown parameters that are not easy to 
characterize by separate lab test or too costly to measure. They are the strain hardening parameter of the piston and 
the coefficient of friction at the interface. Consequently, these parameters are estimated and calibrated in this study 
based on the experimental data. 
 
3. Calibration and Validation 
 
3.1. Bayesian approach for model calibration 

In this study, Bayesian theory is employed to address the calibration in the following form 

      | |f y f y f     (1) 

 
where  is the unknown parameter to estimate, which consist of the coefficient of friction and the strain hardening 
parameter, y is the experimental data,              is likelihood of the data under the given     ,          is the prior 

distribution of       and                  is the posterior distribution that are updated by the data     . The theory states that 
our degree of belief on the unknown parameters is given by a probability distribution that is updated by the 
measured data from the prior knowledge. Assuming that the error between the model and the measurement of the 
resistance force follow a normal distribution with zero mean and standard deviation  , the posterior distribution 
of the unknown parameter can be expressed by  
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where       is measured resistance force,         is resistance force by the model and n  is the number of the data. In this 
study, the prior distribution is not applied due to the ignorance of the prior knowledge. Based on this expression, 
one can obtain the posterior distribution of the unknown parameters. For the practical implementation, sampling 
method such as MCMC are used as is addressed in the following section. 
 
3.2. Markov Chain Monte Carlo 
Markov Chain Monte Carlo (MCMC) is a sampling algorithm that stochastically estimates uncertainties of 

unknown parameters and determines the distribution of each parameter based on measured data. In this method, 
initial value was set and Markov Chain sampling in which the previous value affects the next value is used. As a 
result, influence of the initial value disappears eventually and only samples that reflect uncertainties based on field 
data are accumulated. Generally, for this, calculations of 104 times are required. From that, it is possible to obtain 
probability distribution and the output is given by the confidence bounds, which have adequately accounted for the 
uncertainties conditional on the given experimental data. There are various ways to implement the Markov Chain 
algorithm such as Gibbs sampling. In this study, the Metropolis-Hastings algorithm, which is an algorithm 
commonly used in the MCMC, is adopted.  
 

3.3. Approximation Model 
 
3.3.1. Necessity of Approximation Model 
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The MATLAB model, taking about 1.7 seconds on average to calculate the resistance force with respect to the 
displacement, is very efficient program compared to the ANSYS. In spite of it, about 5 hours is consumed to run a 
single MCMC for sampling of 104 numbers. Besides several runs are needed as the trial and error to find out proper 
setups for the successful runs of the algorithm. Therefore, in order to further reduce the computation time, an 
approximation model that substitutes the analytical model needs to be developed. 
 
3.3.2. Approximation Model 
MATLAB analytical model for the resistance force is given as         as follows, where      is the piston displacement, 

and    is the set of unknown parameters, which include the coefficient of friction    and strain hardening 
parameter     .  

    , , ,M M My y z y z      (3) 

 
Now we would like to establish an approximation model using the regression technique that can replace the 
original model and computes the response in much quicker way. For the approximation, we put symbol ^  as 
follows. 

  ˆ ˆ , ,M My y z     (4) 

 
In order to establish the approximation model with respect to the displacement, 3rd-degree and 5th-degree 
polynomials are attempted by regression at 11 points with arbitrary   and   at 0.2 and 0.35 respectively. The 

fitted results are compared with the original response as shown in Figure 3, from which we can find the 5th degree 
model fits the original very precisely. So the 5th degree model is chosen as follows 
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Figure 3: Regression analysis of computer model           Figure 4: Effect of coefficient of friction and strain   
                                                                                                     hardening parameter on resistance force  
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Figure 5: Effect of coefficient of friction on nb             Figure 6: Effect of strain hardening parameter on nb  
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where        ~       are the polynomial coefficients to be fitted via the original responses. By the way, these coefficients 
are again functions of two unknown parameters because they change with respect to the two parameters as shown 
in Figure 4. In order to investigate these behaviors, polynomial regression is carried out and the coefficients are 
determined at each grid point of the two parameters ranging from 0.1 to 0.5. The resulting figures are given in 
Figure 5 and Figure 6 which exhibit the functions in terms of a parameter while fixing the other parameter at a 
constant. Based on this observation, we can approximate all the coefficients by 2nd order polynomial with respect 
to the two parameters as follows 

 
2 2

0 1 2 3 4 5n n n n n n nb                   (6) 

 
where           means m th coefficient of       .  Therefore, to build an approximation model, total of 36            of          are 
obtained and the approximation model is constructed as follows. 
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3.4. Calibration 
In this section, by using the approximation model (7), calibration is performed using the MCMC algorithm. 

Before applying the real experimental data, virtual data are generated and used for the calibration as a preliminary 
step in Section 3.4.1. Then in the next section, real calibration of parameters is performed using the field data.  
 
3.4.1. Calibration Based on Virtual Data 
Using the MATLAB model, 26 virtual data were generated which play the role of experimental data. The values 

used are                  ,                       and measurement error are assumed to follow normal distribution,                        with 
400  . Assuming that we don’t know the true values for    ,    and  , MCMC using the polynomial 

approximation model is performed based on the data. As a result, posterior distributions of two parameters       and  
  can be obtained as shown in Figure 7. The mean values of these are 0.2114  , 0.3330   and 425.6  . 
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Figure 7: Posterior distribution of two parameters using the virtual data 
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Figure 8: Posterior predictive distribution using the virtual data 
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It can be confirmed that they are close to the true values. Using the distributions of the two parameters, we can 
simulate the resistance force and get the posterior predictive distribution with respect to the displacement, which 
are shown in Figure 8. As expected, the mean of the predictive distribution denoted by        is close to the true model. 
The 95% predictive bounds given by       and       enclose the data quite well. Consequently, it is concluded that the 
proposed method calibrates the unknown parameters correctly conditional on the data and the predicted results 
include the uncertainty quite well.  
 
3.4.2. Calibration Based on Field Data 
In this section, by using the 99 field data which are obtained through the real experiment, MCMC is performed 

similar to the section 3.4.1. As a result, posterior distributions of the two parameters are as shown in Figure 9, and 
their mean values and measurement error are obtained as 0.280  , 0.1051   and 571.8  . From this, 

predictive distribution is obtained in Figure.10. Unlike the previous example in 3.3.1, the model and data show 
significant difference. This may be attributed to the simplifying assumption for the MATLAB model which is the 
segmentation of the device and application of interference fit of concentric cylinders. In the future, we should 
study on how to overcome this difference. Nevertheless, favorable results are obtained from the field data because 
the prediction bounds encloses all the field data, which indicates that the model is as reliable as it is based on the 
assumptions and field data, and can be used in the future simulation. 
 
4. Reliability Analysis 
 
4.1. Definition of Failure 
The posterior distributions of unknown parameters acquired in the previous section are used for reliability 

analysis of the PAD. In order to do this, we need to define failure. As shown in Figure 1, the PAD is regarded as 
failure if it stops before reaching the target distance that cuts the diaphragm. This occurs when the pressure is not 
enough from the chamber or when the resistance force is too large. According to Newton’s 2nd law, the piston 
motion can be expressed by the equation: 

  
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Figure 9: Posterior distribution of two parameters with field data  
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where m ,         and         are piston mass, pressure force and resistive force, respectively.         can be obtained by 
combustion analysis coupled with the piston motion. In this study, however, it is assumed given a priori with 
respect to the time for the sake of convenience. The resistance force         in this equation is the same as the model  

 given in eq. (7). While input parameters     are the two parameters       and      in the previous sections, 
more parameters exhibiting uncertainty are added here in the reliability analysis. Equation (8) is solved to obtain 
the displacement history of the piston over the time, from which the final distance of the piston is obtained as      . 
Let us denote the critical distance that the piston should reach as     . Then the limit state function     can be 
expressed as follows.  

    p fg X z X z 
  (9) 

and failure probability is defined as 

  0P g  .  (10) 

 
4.2. Analysis and Result 
 
4.2.1 Input Parameter 

In the computer model                 , input parameters     consist of 9 parameters including      and      that were 
calibrated in section 3. The information are stated in Table 1. Only the distribution type and coefficient of variation 
(COV) of the parameters are given here for proprietary reason. Materials of the piston and housing are STS303 and 
STS630 respectively. Young’s modulus and yield strength are assumed by Weibull distributions. Dimensions of 
each cylinder are assumed by normal distributions.  
 
4.2.2. Calculation 
In order to determine failure probability, crude Monte Carlo simulations are carried out. In this case, the 

calculation is made by the MATLAB model, not the approximation model because it cannot consider the input 
parameters except the unknown parameters  and  . Also the command ‘parfor’ is used for parallel computation, 

in order to save computing time, which enables the division of calculation by the number of cores of the computer.  
 

Table 1: Properties of input parameter 
 

Input Parameter Distribution COV 
Inner cylinder Young’s modulus Weibull 5% 

Yield strength Weibull 5% 
Radius Normal 2% 

Outer cylinder Young’s modulus Weibull 5% 
Yield strength Weibull 5% 
Inner radius Normal 2% 
Outer radius Normal 2% 

Coefficient of friction - - 
Strain hardening parameter - - 
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Figure 11: Result of Monte Carlo simulation 
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Random samples with 104 numbers are generated for the input parameters according to the Table 1, in which the 
two calibrated parameters are taken from the samples already made by the MCMC. Limit state function g  are 

calculated using the generated samples. As a result, the failure probability is obtained as                                . Also 
the frequency diagram of the g  values is given in Figure 11, in which the area less than 0 is the failure probability 

0.0359.  
 
5. Conclusion 

In this study, a simplified analytical model is established for the elasto-plastic piston insertion model in the PAD. 
The unknown parameters in this model are calibrated in the probabilistic way using the Bayesian formulation, 
which estimates the parameters as the posterior distribution conditional on the field data. MCMC is employed as 
the numerical implementation tool to obtain the unknown parameters in the form of samples. In the model, the 
coefficient of friction and the strain hardening parameter are given as the unknown parameters, which are not easy 
to measure in the lab experiments. In order to further facilitate the computation, polynomial approximation model 
is developed in addition and used in the MCMC implementation that determines the posterior distribution of the 
two parameters. The method proves to be useful as is found in the virtual data example. The model is then applied 
to the calibration based the real experimental data in the same way. Unlike the case of the virtual data, however, the 
prediction does not closely match the field data. Nevertheless, the predictive bounds favorably enclose the field 
data, which proves that the model is as reliable as it is based on the model and the field data. Reliability analysis is 
carried out using the 9 input variables to obtain the failure probability of the PAD function. Probability 
distributions of the two variables are taken from the posterior distributions of the previous run while the others are 
assumed by existing distributions as specified in Table 1. Crude Monte Carlo simulation with the total of 104 
numbers is conducted, from which the failure probability of PAD is obtained. 

In this study, several limitations are observed. First, as shown in Figure 10, substantial difference between the 
prediction by the analytical model and the field data is observed. This may be due to the modeling assumption to 
accommodate numerical efficiency. One option is to develop more elaborate model to reduce the gap between the 
two, but the efficiency will be compromised instead. Otherwise, the bias can be dealt with from the Bayesian view 
point, which can be used to compensate the difference. The detail can be found in the reference [1]. Second is 
about the range of the two unknown parameters, both of which are arbitrarily bounded between 0.1 and 0.5 in the 
approximation model. As a result, the posterior distribution of the strain hardening parameter seems to be limited 
at the lower bound as shown in Figure 9, which implies that the value may be lower than 0.1. This problem can be 
avoided by using the MATLAB model directly, instead of the approximation model in the MCMC implementation, 
which leads to the much longer computing time.  
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