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1. Abstract
The present paper describes a solution to a non-parametric shape optimization problem of a brake model
suppressing squeal noise. The brake model consists of a rotor and a pad between which the Coulomb
friction occurs. A main problem is defined as a complex eigenvalue problem of the brake model obtained
from the equation of motion. As an objective cost function, we use the positive real part of the complex
eigenvalue causing the brake squeal. The volume of the pad is used as a constraint cost function. The
Fréchet derivative of the objective cost function with respect to the domain variation, which we call the
shape derivative of the objective cost function, is evaluated using the solution of the main problem and
the adjoint problem. A scheme to solve the shape optimization problem is presented using an iterative
algorithm based on the H1 gradient method (the traction method) for reshaping. A numerical result of
a simple rotor-pad model illustrates that the real part of the target complex eigenvalue monotonously
decreases satisfying the volume constraint.
2. Keywords: shape optimization, brake squeal, complex eigenvalue, self excited vibration, H1 gradient
method, traction method

3. Introduction
Brake squeal is known as a vibration phenomenon in the frequency range between 1 and 15 kHz caused
by the friction between the rotor and the pad. Since it causes customer dissatisfaction, some effective
method to prevent it in design stage is strongly desired.
Until now, many studies have been conducted in order to unravel brake squeal phenomenon. Mills [1]
explained the brake squeal using the stick-slip vibration phenomenon caused by the friction force. North
[2] introduced a simple model of a rotor and a pad between which the Coulomb friction occurs, and
considered that the brake squeal is a self-excited vibration induced by the friction force. Based on North’s
idea, Millner [3] revealed that the stiffness matrix becomes asymmetric in the rotor and pad model with
the Coulomb friction, and that the natural vibrations are determined by solutions of a complex eigenvalue
problem. Then, he pointed out, if the real part of a complex eigenvalue is positive, a dynamic instability
occurs. Many researchers analyzed the dynamic instability with the asymmetric stiffness matrix by the
finite element method [4, 5].
Moreover, the researches finding the optimum shape which minimize the positive real part of the complex
eigenvalue have been started since the 2000s. Lee et al. [6] and Guan et al. [7] presented formulations of
parametric optimization problem by choosing eigenvalues of the components in the brake model as the
design variables and the real part of the complex eigenvalue causing the brake squeal as the objective cost
function, and showed numerical examples. Based on the assumption that the ideal eigenvalues reducing
the positive real part of the complex eigenvalue were determined for the components in the brake model,
Goto et al. [8] presented a method to find the shapes of the components as a solution of the non-parametric
shape optimization problem using the error of the eigenvalues from the ideal values as the objective cost
function.
In recent years, non-parametric optimization methods are applied to the optimum design problems in the
brake model. Nelagadde et al. [9] presented a method to obtain optimum shapes of the components of the
brake model to increase frequency separation between the critical modes while constraining the frequency
separation between other selected modes by using a commercial software. Soh et al. [10] analyzed the
optimum shape of the caliper housing by the topology optimization method using the real part of the
complex eigenvalue as the objective function. However, an approach based on a formulation of the non-
parametric shape optimization problem using the real part of the complex eigenvalue as the objective
function has not been presented yet.
In the present paper, we formulate a shape optimization problem of a brake model consisting of a rotor
and a pad between which the Coulomb friction occurs, and presents the solution of the problem.
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Figure 1: Brake model

We discuss these as follows. In Section 4, we define initial domains of the brake model and choose
mapping from the initial domain of the pad to varied domain as design variable. Using the domains, in
Section 5, we formulate the complex eigenvalue problem of the natural vibrations as a main problem in
shape optimization problem. In Section 6, using the solution of the main problem, we formulate a shape
optimization problem using the real part of an eigenvalue as an objective function and the volume of
the pad as a constraint function. The evaluation methods for the shape derivatives of the cost functions
are shown in Section 7. Using these shape derivatives of the cost functions, we present in Section 8 a
method to obtain the domain mappings that decrease the cost functions. A scheme to solve the shape
optimization problem with constraints is presented in Section 9. Finally, in Section 10, we show the
numerical result for shape optimization of a simple brake model.

4. Brake model
Let us define initial domains for a brake model as depicted in Fig. 1. Let ΩR0 and ΩP0 be d ∈ {2, 3}
dimensional bounded domains of linear elastic continua denoting a rotor and a pad, respectively. ΓR0

and ΓP0 denote contact boundaries on the boundary of rotor ∂ΩR0 and the boundary of pad ∂ΩP0,
respectively. Let νR and νP be the normals, and τR and τP be the tangents on ΓR0 and ΓP0, respectively.
In the present paper, we assume that ΩP0 is variable. To define a shape optimization problem of ΩP0,
∂ΩP0 is required to be at least the Lipschitz boundary, i.e. the C0,1 class.
In the present paper, we use the notation W s,p

(
Ω0;Rd

)
to denote the Sobolev space for the set of

functions defined in Ω0 and having values in Rd that are s ∈ [0,∞] times differentiable and p ∈ [1,∞]-th
order Lebesgue integrable, and call its smoothness the W s,p class. The notation Hs

(
Ω0;Rd

)
and Cs,α

for α ∈ (0, 1] are used as W s,2
(
Ω0;Rd

)
and W s+α,∞ (

Ω0;Rd
)
.

Moreover, we assume that domain variation of ΩP0 as follows. Let D0 be a fixed domain such that
D0 ⊃ ΩP0. Denoting D0 ∪ ∂D0 by D̄0, domain variation of ΩP0 is given by a map ϕ : D̄0 → Rd as shown
in Fig. 2 belonging to the admissible set

D =
{
ϕ ∈ W 1,∞ (

D0; Rd
) ∣∣∣ ∥ϕ− ϕ0∥W 1,∞(D0; Rd) < 1,

ϕ (ΩP0) ⊆ D0, ϕ = ϕ0 on ΓP0 ∪ ΓD0

}
(1)

where, ϕ0 is an identity mapping such as ϕ0 (x) = x for x ∈ D0. ∥ϕ− ϕ0∥W 1,∞(D0; Rd) < 1 is used so that

ϕ ∈ D is a one-to-one mapping. With respect to ϕ ∈ D, we denote the new domain {ϕ (x) | x ∈ ΩP0}
as ΩP (ϕ).

5. Main problem
Using the domains for the brake model, let us define a main problem for brake squeal. At first, let us
consider the natural vibration of the brake model of Fig. 1.
Let u be the displacement expressing natural vibration and its admissible set is given for q > d as

U =
{
u ∈ W 2,2q

(
D0 × R;Rd

)
| u = 0Rd on ΓP0 ∪ ΓD0

}
. (2)

The condition that u belongs to W 2,2q class will be used in the process of deriving the shape derivative
of the objective cost function after converting u into the eigenmode ûk for k ∈ {1, 2, · · · } belonging to S
defined in Eq. (4).
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In the present paper, let uR and uP denote the displacements u in ΩR (ϕ) and ΩP (ϕ), respectively.

Let E (u) = 1
2

(
∇uT +

(
∇uT

)T)
and S (u) = CE (u) denote strain tensor and Cauchy stress tensor,

respectively. Moreover, let α denote stiffness on relation between rotor and pad, µ denote the coefficient
of the Coulomb friction, ρR and ρP denote the densities of the rotor and the pad, respectively. In this
paper, we assume that α, µ, ρR and ρP are given as positive constants.
Based on these definitions and the notation ˙( · ) for the time derivative, let us define the equations of
motion for the brake model.

Problem 1 (Free vibration problem) For ϕ ∈ D and intial displacement ū0 ∈ W 2,2q
(
D0;Rd

)
and

initial velocity v̄0 ∈ W 2,2q
(
D0;Rd

)
, find u ∈ S such that

ρRüR − (∇ · S (uR))
T
= 0Rd in ΩR (ϕ)× R,

ρPüP − (∇ · S(uP))
T
= 0Rd in ΩP (ϕ)× R,

S (uR)νR = 0Rd on (∂ΩR (ϕ) \ ΓR0)× R,
S (uP)νP = 0Rd on (∂ΩP (ϕ) \ ΓP0)× R,
S (uR)νR = α {(uR − uP) · νR}νR on ΓR0 × R,
S (uR) τR = µα {(uR − uP) · νR} τR on ΓR0 × R,
S (uP)νP = α {(uP − uR) · νP}νP on ΓP0 × R,
S (uP) τP = −µα {(uP − uR) · νP} τP on ΓP0 × R
uR = uP on (ΓR0 ∪ ΓP0)× R,
u = ū0 in ΩR (ϕ) ∪ ΩP (ϕ)× {0} ,
u̇ = v̄0 in ΩR (ϕ) ∪ ΩP (ϕ)× {0} ,
u = 0Rd on ΓD0 × R.

Here, the negative sign of the Coulomb friction in the equation on ΓP0 × R makes the term of strain
energy in the weak form of Problem 1 be asymmetric with respect to u and its adjoint function. Then, the
eignvalue problem for the natural vibrations of the brake model becomes a complex eigenvalue problem.
Since this brake model is a linear system with respect to u, the form of separation of variables is given
for some s ∈ C as

u (x, t) = estû (x) + es
ctûc (x) , (3)

where ( · )c denotes the complex conjugation. From the definition of U in Eq. (2), the admissible set for
û is given by

S =
{
û ∈ W 2,2q

(
D0;Cd

) ∣∣ û = 0Rd on ΓP0 ∪ ΓD0

}
. (4)
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By substituting Eq. (3) into Problem 1, we have a complex eigenvalue problem for natural vibrations.
For compact expression of the weak form, we define the Lagrange function of the complex eigenvalue
problem as

LM (ϕ, sk, ûk, v̂) = h (sk, ûk, v̂
c) + h (sck, û

c
k, v̂) (5)

for (sk, ûk, v̂) ∈ C× S × S for k ∈ {1, 2, · · · }, where

h (s, û, v̂c) = aR (ûR, v̂
c
R) + s2bR (ûR, v̂

c
R)− cR (ûR − ûP, v̂

c
R)− dR (ûR − ûP, v̂

c
R)

+ aP (ûP, v̂
c
P) + s2bP (ûP, v̂

c
P)− cP (ûP − ûR, v̂

c
P) + dP (ûP − ûR, v̂

c
P) , (6)

and, for ( · ) ∈ {P,R},

a( · ) (û, v̂) =

∫
Ω( · )(ϕ)

S (û) ·E (v̂) dx,

b( · ) (û, v̂) =

∫
Ω( · )(ϕ)

ρ( ·)û · v̂dx,

c( · ) (û, v̂) =

∫
Γ( · )0

α
(
v̂ · ν( · )

) (
v̂ · ν( · )

)
dγ,

d( · ) (û, v̂) =

∫
Γ( · )0

µα
(
v̂ · ν( · )

) (
v̂ · τ( · )

)
dγ.

Using the definitions above, we define the weak form of the eigenvalue problem for natural vibrations of
the brake model as follows.

Problem 2 (Eigenvalue problem for natural vibrations) For ϕ ∈ D, find (sk, ûk) ∈ C × S for
k ∈ {1, 2, · · · } such that

LM (ϕ, sk, ûk, v̂) = 0

for all v̂ ∈ S.

6. Shape optimization problem
Using the solution sk of Problem 2, let us define a shape optimization problem for the brake model. In the
present paper, referring to the previous researches using the positive real part of the complex eigenvalue,
we assume that the mode number k is given, and define an objective cost function as

f0 (ϕ, sk) = 2Re [sk] = sk + sck. (7)

Moreover, we define a constraint cost function by the volume of the pad as

f1 (ϕ) =

∫
ΩP(ϕ)

dx+ c1, (8)

where c1 is a positive constant for which there exists ΩP (ϕ) such that f1 (ϕ) ≤ 0.
Useing these cost functions, we defined shape optimization problem as follow.

Problem 3 (Shape optimization problem) Let D and S be defined in Eq. (1) and Eq. (4). For
ϕ ∈ D, let (sk, ûk) ∈ C × S be the solution of Problem 2 for given k. Let f0 and f1 are defined in Eq.
(7) and Eq. (8), respectively. Find ΩP (ϕ) such that

min
ϕ∈D

{f0 (ϕ, sk) | f1 (ϕ) ≤ 0, (sk, ûk) ∈ C× S, Problem 2} .
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7. Shape derivative of cost functions
To solve Problem 3 by the gradient method, the Fréchet derivatives of the cost functions with respect to
the domain variation, which we call the shape derivatives, are required. Then, let us derive the shape
derivatives of f0 and f1 here.
Since the objective cost function f0 (ϕ, sk) contains sk, we have to consider that the main problem is
equality constraint. Hence, we put

L0 (ϕ, sk, ûk, v̂0) = f0 (ϕ, sk)− LM (ϕ, sk, ûk, v̂) (9)

as the Lagrange function for f0, where LM (ϕ, sk, ûk, v̂) is defined in Eq. (5), and v̂ is used as the
Lagrange multiplier for f0. The shape derivative of L0 with respect to arbitrary domain variation
φ ∈ W 1,∞ (

D0;Rd
)
can be obtained, by applying the formulae of shape derivatives for domain and

boundary integrals [11], as

L̇0 (ϕ, sk, ûk, v̂0) [φ, s
′
k, û

′
k, v̂

′
0] = L0ϕ (ϕ, sk, ûk, v̂0) [φ] + L0sk (ϕ, sk, ûk, v̂0) [s

′
k]

+ L0ûk
(ϕ, sk, ûk, v̂0) [û

′
k] + L0v̂0

(ϕ, sk, ûk, v̂0) [v̂
′
0] , (10)

where (s′k, û
′
k, v̂

′
0) ∈ C×S×S denote the shape derivatives of (sk, ûk, v̂0) with respect to domain variaiton

φ ∈ W 1,∞ (
D0;Rd

)
.

The 4th term of the right-hand side of Eq. (10), which is written as

L0v̂0
(ϕ, sk, ûk, v̂0) [v̂

′
0] = −hv̂0

(sk, ûk, v̂
c
0) [v̂

′
0]− hv̂0

(sck, û
c
k, v̂0) [v̂

′
0]

= −h (sk, ûk, v̂
c′
0 )− h (sck, û

c
k, v̂

′
0) , (11)

becomes 0, if (sk, ûk) is the solution of Problem 2. On the other hand, the 2nd term of the right-hand
side of Eq. (10) is written as

L0sk (ϕ, sk, ûk, v̂0) [s
′
k] = f0sk (ϕ, sk) [s

′
k]− hsk (sk, ûk, v̂

c
0) [s

′
k]− hsk (s

c
k, û

c
k, v̂0) [s

′
k]

= s′k + sc′k − 2sks
′
kbR (ûk, v̂

c
0)− 2scks

c′
k bP (ûk, v̂

c
0)

= s′k (1− 2skbR (ûk, v̂
c
0)) + sc′k (1− 2sckbP (ûk, v̂

c
0)) . (12)

Moreover, the 3rd term of the right-hand side of Eq. (10) is written as

L0ûk
(ϕ, sk, ûk, v̂0) [û

′
k] = −hûk

(sk, ûk, v̂
c
0) [û

′
k]− hûk

(sck, û
c
k, v̂0) [û

′
k]

= −h (sk, û
′
k, v̂

c
0)− h (sck, û

c′
k , v̂0) . (13)

Then, Eq. (12) and Eq. (13) become 0, respectively, if v̂0 is the solution of the following weak form of
the adjoint problem.

Problem 4 (Adjoint problem for f0) For ϕ ∈ D, let (sk, ûk) be the solution of Problem 2 for k.
Find v̂0 ∈ S such that

h (sk, û
′
k, v̂

c
0) + h (sck, û

c′
k , v̂0) = 0 (14)

for all û′
k ∈ S, and

2skb (ûk, v̂
c
0) = 2sckb (û

c
k, v̂0) = 1. (15)

For the solution v̂0 of Problem 4, from Eq. (14), we have

v̂0 = cûk

for all c ∈ C. Moreover, by using Eq. (15), we have

c =
1

2skb (ûk, ûc
k)

.

Then, v̂0 is obtained by normalization of ûk with c above.
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Based on the results, if sk, ûk and v̂0 are the solutions of Problem 2 and Problem 4, respectively,
L̇0 (ϕ, sk, ûk, v̂0) [φ, s

′
k, û

′
k, v̂

′
0] in Eq. (10) becomes

L0ϕ (ϕ, sk, ûk, v̂0) [φ] =

∫
∂ΩP(ϕ)\(ΓP0∪ΓD0)

g∂Ω0 ·φdγ = ⟨g0,φ⟩ , (16)

where

g∂Ω0 = 2Re
[
S (ûk) ·E (v̂c0) + s2kρPûk · v̂c0

]
νP. (17)

Here, we used the condition φ = 0Rd on ΓP0 ∪ ΓD0 as given in Eq. (1).
On the other hand, for f1 (ϕ), we have

f ′
1 (ϕ) [φ] =

∫
∂ΩP(ϕ)\(ΓP1∪ΓD0)

g∂Ω0 ·φdγ = ⟨g1,φ⟩ . (18)

where

g∂Ω1 = νP. (19)

We call g0 and g1 the shape derivatives of f0 and f1, respectively.

8. The H1 gradient method
The H1 gradient method is proposed as a method for finding the variation of the design variable, such as
the domain mapping or the density parameter that decreases a cost function, as a solution to a boundary
value problem of an elliptic partial differential equation [12–14]. In the case that a shape derivative gi of
a cost function fi (ϕ) for i ∈ {0, 1}, the H1 gradient method can be described as follows.

Problem 5 (H1 gradient method for shape optimization) LetX be a Hilbert space ofH1
(
D0;Rd

)
,

and let a : X ×X → R be a coercive bilinear form on X such that there exists β > 0 that satisfies

a (w,w) ≥ β ∥w∥2X

for all w ∈ X. For gi ∈ X ′ (dual space of X), which is a Fréchet derivative of cost function f (ϕ) at
ϕ ∈ X, find φgi ∈ X such that

a (φgi,w) = −⟨gi,w⟩ (20)

for all w ∈ X.

Problem 5 can be solved numerically with the standard finite element method by considering that Eq.
(20) is a weak form of a boundary value problem of an elliptic partial differential equation. In the present
paper, we use

a (φ,ψ) = ca

∫
Ω(ϕ)

S (φ) ·E (ψ) dx (21)

for φ ∈ S and ψ ∈ S, where E ( · ) and S ( · ) are the same as in Problem 2, and ca is a positive constant.
The coerciveness is secured by the Dirichlet condition on ΓP0 ∪ ΓD0 in Eq. (4). The strong form of the
H1 gradient method using Eq. (21) is written as follows.

Problem 6 (H1 gradient method for Problem 3) For gi, find φgi ∈ H1
(
Ω(ϕ) ;Rd

)
such that

− ca∇TS (φgi) = 0T
Rd in ΩP (ϕ) ,

caS (φgi)ν = −g∂Ωi on ∂ΩP (ϕ) \
(
Γ̄P0 ∪ Γ̄D0

)
,

φgi = 0Rd on ΓP0 ∪ ΓD0.

Figure 3 shows the boundary condition of Problem 6.
If û satisfies the conditions in S, we can confirm that the solutionφgi of Problem 5 belongs toW 1,∞ (

D0;Rd
)
.
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9. Solution to the shape optimization problem
To solve Problem 3, we use an iterative method based on sequential quadratic programming. The domain
variation decreasing f0 (ϕ, sk) while satisfying f1 (ϕ) ≤ 0 is determined with the solution of the following
problem. In this section, we denote f0 (ϕ, sk) as f0 (ϕ) and its shape derivative as g0.

Problem 7 (SQ approximation) For ϕ ∈ D, let gi be the shape derivatives of fi (ϕ) for i ∈ {0, 1},
and let f1 (ϕ) ≤ 0. Let a ( · , · ) be given as in Eq. (20). Find φ such that

min
φ∈W 1,∞(D0;Rd)

{
q (φ) =

1

2
a (φ,φ) + ⟨g0,φ⟩

∣∣∣ f1 (ϕ) + ⟨g1,φ⟩ ≤ 0
}
.

The Lagrange function of Problem 8 is defined as

LSQ (φ, λ1) = q (φ) + λ1 (f1 (ϕ) + ⟨g1,φ⟩)

where λ1 ∈ R is the Lagrange multiplier for the constraint f1 (φ) ≤ 0. The Karush–Kuhn–Tucker
conditions for Problem 8 are given as

a (φ,φ) + ⟨g0 + λ1g1,φ⟩ = 0, (22)

f1 (ϕ) + ⟨g1,φ⟩ ≤ 0, (23)

λ1 (f1 (ϕ) + ⟨g1,φ⟩) = 0, (24)

λ1 ≥ 0 (25)

for all φ ∈ W 1,∞ (
D0;Rd

)
. Here, let φgi for i ∈ {0, 1} be the solutions to Problem 5, and set

φg = φg0 + λ1φg1. (26)

Then, by substituting φg of Eq. (26) for φ in Eq. (22), Eq. (22) holds. If the constraint in Eq. (23) is
active, i.e. Eq. (23) holds with the equality, we have

⟨g1,φg1⟩λ1 = −f1 (ϕ) + ⟨g1,φg0⟩ . (27)

Equation (27) has a unique solution of λ1. Moreover, if f1 (ϕ) = 0, we have

⟨g1,φg1⟩λ1 = −⟨g1,φg0⟩ . (28)

Since Eq. (28) is independent of the magnitude of φg0 and φg1 to determine λ1, Eq. (28) is used in the
numerical scheme for the initial domain Ω0 in which we assume f1 (ϕ) = 0 is satisfied. If λ1 < 0 in the
solution λ1 to Eq. (27) or Eq. (28), by putting λ1 = 0, we have λ1 satisfying Eq. (22) to Eq. (25). The
detail of the numerical scheme is shown in the previous paper [14].
The magnitude of φg in Eq. (26), which means the step size for domain variation, is adjusted by selection
of ca in Eq. (21) using criteria such as the Armijo and Wolfe’s criteria to ensure the global convergence in
Problem 7. The outline of the numerical scheme is shown in Fig. 4. The detail is shown in the previous
paper [14].
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Figure 5: Finite element model

Table 1: Numerical results of complex eigenvalues

k Re Im

1 -1.189E+04 1.2836E+05
2 -1.922E+04 1.8024E+05
3 -3.093E+04 3.2078E+05
4 -3.331E+04 3.5971E+05
5 -3.732E+04 3.8596E+05
6 -5.122E+04 4.5752E+05
7 3.320E+04 5.0126E+05
8 -1.356E+05 5.2225E+05
9 -4.934E+04 5.3131E+05
10 -5.338E+04 5.3989E+05

k Re Im

1 -1.199E+04 1.2834E+05
2 -1.916E+04 1.7289E+05
3 -3.056E+04 3.1931E+05
4 -3.471E+04 3.2881E+05
5 -3.702E+04 3.8540E+05
6 -4.936E+04 4.3695E+05
7 -2.158E+04 5.0336E+05
8 -5.636E+04 5.1569E+05
9 -5.548E+04 5.3397E+05
10 -1.604E+04 5.7519E+05

(a) Initial shape (b) Optimized shape

10. Numerical example
We developed an original computer program based on the numerical scheme described above using the
finite element method to solve Problem 2 and Problem 4.
To show that the present method is effective, we solved a shape optimization problem of a simple brake
model which finite element model is shown in Fig. 5. In this figure, the nodal points with the fixed signs
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Figure 7: Comparison of shapes

are assumed to be fixed in Problem 2 and Problem 4, i.e. the Dirichlet condition is assigned. The length
of the larger edge in ΩR0 is 0.0095 [m]. We used 210 [GPa], 0.3 and 7.8×103 [kg/m3] for Young’s modulus,
Poisson’s ratio and the density of the rotor, respectively, and 16 [GPa], 0.3 and 2.1 × 103 [kg/m3] for
those of the pad. Moreover, 5.0× 106 [N/m] and 0.05 are used for the contact stiffness α and the friction
coefficient µ, respectively.
The numerical results of the complex eigenvalues for the initial shape, i.e. the numerical solution of
Problem 2, is shown in Table 1 (a). Among the results, the 7th eigenvalue has a positive number in the
real part. Then, we assumed k = 7 in Problem 3.
The iteration histories of cost functions f0 and f1 with respect to the number of reshaping are shown in
Fig. 6. In this figure, f0 init and c1 denote the value of f0 and the volume of ΩP0 at the initial shape,
respectively. We see that f0 decreases monotonically under satisfying the domain measure constraint
of f1. Table 1 (b) shows the numerical results of the complex eigenvalues after 50 times iteration of
reshaping. We see that the 7th eigenvalue has a negative value in the real part. Figure 7 shows the
comparison of the initial and optimized shapes. Remarkable change of the shape is observed.

11. Conclusions
In the present paper, we presented a numerical solution to shape optimization problems of a brake
model consisting of a rotor and a pad between which the Coulomb friction occurs. The main problem
was constructed as a complex eigenvalue problem of the brake model obtained from the equation of
motion. The shape optimization problem was formulated with the positive real part of the complex
eigenvalue assigned as a cause of brake squeal as an objective cost function, and the volume of the pad as
a constraint cost function. The evaluation method of the shape derivative of the objective cost function
was derived using the stationary conditions of the Lagrange function, and shown with the adjoint problem.
A standard scheme to solve the shape optimization problem using the H1 gradient method for reshaping
was used to construct the numerical scheme. Finally, a numerical result for a simple rotor-pad model
was illustrated. In the result, the real part of the target complex eigenvalue monotonously decreases
satisfying the constraint for the volume of the pad. From the result, in the present paper, a methodology
to find the optimum shape which minimize the real part of the complex eigenvalue assigned as a cause
of brake squeal was presented.
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