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1. Abstract  

This paper proposes a convenient numerical form-finding method for designing the minimal surface, or the equally 

tensioned surface of membrane structures with specified arbitrary boundaries. The area minimization problems are 

formulated as a distributed-parameter shape optimization problem. The internal volume or the perimeter is added 

as the constraints according to the structure type such as a pneumatic or a suspension membrane. It is assumed that 

the membrane is varied in the normal and/or the tangential direction to the surface. The shape sensitivity function 

for the problems is derived using the material derivative method. The minimal surface is determined without the 

shape parameterization by the free-form optimization method, a gradient method in a Hilbert space, where the 

shape is varied by the traction force in proportion to the sensitivity function under the Robin condition. The 

calculated results will show the effectiveness and practical utility of the proposed method for the optimal 

form-finding of membrane structures. 

2. Keywords: Membrane structure, Form finding, Shape optimization, Minimal surface, Free form 

 

3. Introduction 

Sheet-like solid as cloth and resin film is called membrane, which is very thin and flexible. Mechanical 

characteristics of membrane structure are that its bending is negligible, while it keeps its shape and carries external 

force with the stress consisting of the in-plane tensile stress and the shear stress. Not only isotropic materials but 

anisotropic ones are used for membrane. Membrane structure has a lot of advantages: they contribute to safety and 

economy, they are light weight and not bulky, and they have good aesthetic aspects due to its curved surface and 

the translucency. Making good use of these characteristics or advantages, various membrane structures have been 

developed and widely used for industrial products. In the field of architecture, membranes tend to be used as roofs 

because of constructing long span structures, short construction period, and excellent earthquake resistance. They 

also can be functional structures because automotive air-bags absorb the impact energy, while the sails of yachts 

and the wings of paragliders generate the lifting power. Further, they’re used as airship, balloon, playground 

equipment, and daily commodity (e.g. umbrella and chair). 

As mentioned above, membranes need to be maintained their shapes only with the in-plane tension due to 

negligible bending stiffness, which makes themselves difficult to maintain the shapes as required. Therefore the 

form-finding is highly important in the design process. In order to keep the shape and to secure the sufficient 

stiffness and strength against self-weight and external force, initial tensions must to be appropriately applied to 

membranes. Membrane structures are classified into the pneumatic (air-support) membrane structure which 

tensions are generated by the differential pressure and the non-pneumatic membrane structure which tensions are 

applied by the mechanical force [1]. The non-pneumatic structures are also classified into the frame membrane 

structure and the suspension membrane structure. The non-pneumatic structures must have non-positive Gaussian 

curvature over the whole surface to maintain the shape. Fig. 1 shows the classification of membrane structures. 

Regardless of the structure type, we can’t expect its bearing capacity that much due to its thinness even if the 

material of membrane itself is strong. Therefore designers are required to determine the shape so that the 

membrane has a uniform stress field throughout the surface. 

 

 
 

(a) Pneumatic membrane structure   (b) Frame membrane structure   (c) Suspension membrane structure 

Figure 1: Classification of membrane structures 
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It’s well known that a shape that has a uniform stress field conforms to the minimal surface which has zero mean 

curvature throughout the surface if the deformation due to the self-weight is negligible. In the case a constraint 

condition is given, it has a certain amount of the curvature. Such surface with a constant curvature is also regarded 

as the minimal surface under the constraint condition. Even though these surfaces are just ideal ones and different 

from the optimal shape subjected to an external force, they are considered as the base of an optimal shape. 

Therefore finding this basic shape is imperative, and many approaches using experiments and calculation have 

been done. A physical experiment as soap-film has been used for centuries as it can easily find minimal surfaces 

with frames [1]. It was also mathematically studied as a variational problem and many minimal surface functions 

were found [2]. However it’s difficult to find minimal surfaces within arbitrary boundaries taking account of 

structural characteristics or aesthetic satisfaction. Thus the applicable range of the both approaches can never be 

extended. In order to get over the disadvantage, versatile numerical solutions making use of computer have been 

studied. Monterde [3] determined approximate minimal surfaces using Bezier surfaces, and Arnal et al. [4] also 

used them and obtained surfaces with a constant mean curvature. These are efficient methods since design 

variables were decreased by shape parameterization, while the obtained shape and its characteristics are restricted 

by the parameter. Bletzinger et al. [5] represented a method that simulates classical physical experiments as the 

soap-film and the hanging-model by the finite element analysis taking geometric non-linearity into consideration. 

It takes a lot of computation cost, yet it doesn’t need shape parameterization and is applicable in the both cases that 

an anisotropic material is used and that an initial tension is applied. They also showed a method combined with 

mesh regularization. [6] 

In the wake of these studies, in this paper we proposed a new numerical solution for finding a minimal surface, i.e. 

an equally tensioned surface, with an arbitrarily specified boundary. The authors have been developing numerical 

solutions for three-dimension continua [7], shell structures [8],[9] and frame structures [10] as a 

distributed-parameter free-form optimization method without shape parameterization. This study shows a 

numerical solution for form-finding of membrane structure by applying our shape optimization method for shell 

structures. This method finds a minimal surface by formulating the form-finding problem as the 

distributed-parameter shape optimization problem based on the variational method, and applying the sensitivity 

function derived by the material derivative method to the shape optimization method for shell structures. 

Advantages of this method are the efficiency against large-scale problems and that a smooth shape can be obtained. 

In the shape design of a membrane structure, the shape could vary in the in-plane direction and/or out-of-plane 

direction. We consider the both directions as design variables. Form-findings with constraint conditions (e.g. 

perimeter and internal volume) can be performed for a pneumatic membrane structure, a frame membrane 

structure and a suspension membrane structure. 

In the following chapters, first we will show the formulations of minimal surface problems as the 

distributed-parameter optimization problem and derive the each sensitivity function which is called shape gradient 

function. Then the free-form optimization method for membrane structures will be proposed. Finally we will show 

the examples of each type of membrane structure. 

 

4. Definition of shape variation for free-form design 

As shown in Fig. 2, consider that a membrane having an initial domain A with the boundary A  is varied into the 

one having domain 
sA with the boundary

sA  by the shape variation (the design velocity field) V  distributed 

throughout the surface. It is assumed that the boundary A  is included in the domain A ( A A  ) and that the 

thickness h is constant during the deformation. The shape variation V consists of the out-of-plane variation 
nV  

which deforms in the normal direction to the surface and the in-plane direction 
tV  which deforms in the tangential 

direction to the surface. The membrane shape is varied by 
nV (A) distributed on A and 

tV ( A ) distributed on A  

since 
tV (A) doesn’t affect to the shape variation except on A . The shape variation is expressed by the piecewise 

smooth mapping : ( ) ,  0S s sT A A s    X X X  [9],[11], where  and ( )s indicate small integer and 

iteration history of the shape variation worth the time. With the relations ( ),   ( )s s s sT A T A X X , the small shape 

variation around the s-th variation is expressed as 

 
2

( ) ( ) ( ) s s sT T s O s    X X V + ,                                                               (1) 

 

where the design velocity field ( ) ( ) /  sT s  
s

V X X is given as the Euler derivative of the mapping ( )sT X  ,and 

2
( ) O s is assumed to be neglected due to high-order term. The optimal design velocity field ( )

s
V X is 

determined by the free-form optimization method proposed in this paper, which will be explained later.  
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Figure 2: Shape variation of membrane by V 

 

5. Form-finding problems of membrane structures and derivation of shape gradient function 

In order to find the minimal surface, the area of a membrane is set up as an objective functional. In addition to the 

boundary shape, internal volume or perimeter is set as another constraint condition according to the structure type. 

In this chapter, for the each structure type, we will formulate the distributed-parameter shape optimization problem 

so as to determine the design velocity field which leads to the minimal surface, and then the shape gradient 

function will be derived. 

 

5.1. Frame membrane structure problem 

Consider a shape optimization problem for minimizing the area of a frame membrane structure shown in Fig. 1(b). 

When an initial membrane shape 0A  and a specified boundary shape made of frame which may be open boundary 

are given, this problem is expressed as 

 

0Given    A ,                                                            (2) 

find     (or )sAV ,                                                         (3) 

that  minimizes     (= )
A

A dA .                                                                                                                   (4) 

 

The Lagrange functional L for this problem is expressed as 

 

( )
A

L A dA  .                                                                              (5) 

 

The material derivative L  of the Lagrange functional L with respect to shape variation is expressed as 

 

, , ,A A A AL n t C       G V G V V                                                      (6) 

 

where the notations of ,A An G V  and ,A At  G V   are defined as 

 

,A A A A n
A A

n G dA G dA     G V n  V V ,                                                        (7) 

 

,A A A A t
A A

t G d G d    
 

     G V t V V ,                                                    (8) 

 

,    .   A A A AG H G H                                                                 (9)(10) 

 

C  indicates the admissible function space which satisfies the specified geometric boundary condition. The 

coefficient functions AG  and AG  of velocity field components nV  and tV  are called shape gradient function and 

are distributed on the surface and on the boundary, respectively. Eq. (6), (9) and (10) imply that when the Lagrange 

functional L has the minimum (i.e. 0L  ), both the mean curvatures on the surface and the curvature on the 

boundary vanish (i.e. 0A AH H  ). If the arbitrary boundary is closed one, second term of the right-hand side in 

Eq. (6) is omitted. 
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5.2. Pneumatic membrane structure problem 

Consider a problem for minimizing the area of a pneumatic membrane structure subjected to differential pressure, 

which is shown in Fig. 1(a). Setting up respectively a specified boundary as the geometric constraint condition and 

an internal volume  (i.e. a space bounded by the membrane) as the equality constraint condition (the constraint 

value is represented as ̂ ), this problem is expressed as 

 

0Given    A ,                                                            (11) 

find     (or )sAV ,                                                         (12) 

that  minimizes     (= )
A

A dA ,                                                                                                                   (13) 

ˆsubject to     (= ) = d


   .                                                (14) 

 

The Lagrange functional L for this problem is expressed as 

 

( , ) ( ˆ
A

L A dA d


      .                                                           (15) 

 

The material derivative L  of the Lagrange functional L with respect to shape variation is expressed as 

 

, ˆ( ,A AL n Cd


    
    G V V                                                   (16) 

 

.   A AG H                                                                            (17) 

 

When the constraint condition with regard to the internal volume is met, Eq. (16) can be written as 

 

, .A AL n C   G V V                                                                  (18) 

 

Eq. (17) and (18) imply that when the Lagrange functional L has the minimum (i.e. 0L  ), the mean curvatures  

have a constant value   throughout the surface. 

 

5.3. Suspension membrane structure problem 

Consider the problem for minimizing the area of a suspension membrane structure is shown in Fig. 1(c). Setting up 

respectively specified fixed points on the boundary as the geometric constraint condition and a perimeter   of the 

boundary as the equality constraint condition (the constraint value is represented as ̂ ), this problem is expressed 

as 

 

0Given    A ,                                                            (19) 

find     (or )sAV ,                                                         (20) 

that  minimizes     (= )
A

A dA ,                                                                                                                   (21) 

ˆsubject to      (= ) = 
A

d  
 .                                               (22) 

 

The Lagrange functional L for this problem is represented as 

 

( , ) ( ˆ
A

L A dA d


   


   .                                                           (23) 

 

If the constrained perimeter condition is met, the material derivative L  of the Lagrange functional L with respect to 

shape variation is represented as 

 

, , ,A A A AL n t C      G V G V V                                                      (24) 

 

,    1 .   A A A AG H G H                                                               (25)(26) 

 
The shape gradient functions derived here are used for determining the optimal shape (or the optimal design 

velocity field or the optimal shape variation). We will explain the method in the next chapter. 
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6. Free-form optimization method for form-finding of membrane 

The free-form optimization method was developed by the authors, and solutions to the optimal shape design 

problem of shell [9] and frame structure [10] have been proposed so far. This distributed-parameter shape 

optimization method is based on the traction method [11] which is a gradient method in a Hilbert space, and can 

deal with all nodes as the design variables without parameterization. In this study, we apply the free-form 

optimization method for shells with respect to the in-plane variation [8] and the out-of-plane variation so as to find 

an optimal free-form of membrane, i.e. minimal surface. 

In order to determine the design velocity field that minimize the objective functional using both the derived shape 

gradient function and the gradient method in a Hilbert space, a tensor with positive definitiveness must be 

introduced. Unfortunately, a unit matrix only having diagonal component cannot maintain the smoothness of the 

shape since it leads to jagged problem [12]. For this reason, a stiffness matrix of elastic shell under the Robin 

condition similar to membrane in the shape is used for this method, which makes the computation simple, i.e. 

linear computation. This stiffness tensor serves not only to maintain the mesh smoothness, but also to restrain the 

rigid motion. With the optimal design velocity field V obtained by applying the distributed external forces in 

proportion to the negative shape gradient function to this pseudo-elastic shell, the reference shape is updated. 

Consider the design velocity field 1,2,3={ }i iV V  divided between in-plane component 0 1,2={ }
 0V V  and 

out-of-plane component V3 on the local coordinate systems. Using the Kirchhoff’s theory as a plate bending theory, 

the each governing equation of the design velocity field is explained as Eq. (27) and (29), respectively. In the case 

of the in-plane variation, the out-of-plane velocity field needs to be constrained (i.e. 3 0V ). Therefore after the 

each design field is determined separately, they are synthesized as required with the relation = n tV V V+ . Fig.3 

shows the schematics of the velocity analysis for (a) out-of-plane shape variation and (b) in-plane shape variation. 

 

 

 
 

(a) Out-of-plane shape variation               (b) In-plane shape variation  
Figure 3: Schematics of the free-form optimization method for membrane 

 

0 3 0 0 0(( , , ), ( , , )) + ( ) ( , , ) , ( , , ) ,  A AA
a V w w wn  V u V n n, u G u     

0 3 0 ( , , ) ,   ( , , )V C w C   V u  ,      (27) 

 

1 2

1 5
0 0 3 1 2, , , , ( , , )   }3C V V H A V satisfy the constraints of  shape variation on A    V0{( ) ( ( ))V  .       (28) 

 

0 3 0 0 0(( , , ), ( , , )) + ( ) ( , , ) ( , , )   , ,
A A Aa w w tV w  V u V t t, u uG     

0 3 0 ( , , ) ,   ( , , )  V C w C   V u  ,    (29) 

 

1 2

1 5
0 0 3 1 2, , , ,C V V H A   {( ) ( ( ))V  

3( , , )  variation on   0   }3V satisfy the constraints of  shape S and V on A0V .   (30) 

 

Here, the bilinear form  ,  a(  )  which represents virtual work related to internal force and the linear forms 

 ,  A ,  ,  A  are expressed as Eq. (31) and Eq.(32), (33) , respectively. ( )  and C  express the variation 

and the admissible function space which satisfies the constraints of shape variation for shape design, respectively. 

 

0 0 0 , 0 ,(( , , ), ( , , )) { + }B M

A
a w w c c dA           u u  ,                                                    (31) 
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0( , ,, )A
A

A Aw An wG d  uG  ,                                                                                 (32) 

 

0 0,( , , ) ( )A A A
A

t w G u d
  


    G u  ,                                                                         (33) 

 

where w and 0 0 1,2{ }uu  represent the out-of plane displacement and the in-plane displacement vector at the 

center plane, respectively. , 1,2{ }     and 0 , 1,2{ }     represent the curvature tensor and the strain tensor at 

the center plane, respectively, which are defined as 

 

, , 0 0 0

1 1
( ),         ( )

2 2
α α,β β,αw +w u +u .                                           (34)(35) 

 
The fact that the shape variation due to the design velocity field V obtained in the velocity analysis, i.e. Eq. (27) 

and/or Eq. (29), decreases the objective functional, is verified as noted below. In the case of Eq. (27), when the 

constraint condition equation is met, the perturbation expansion of the Lagrange objective functional L is written 

as 

 
2

, ( ) ( )A A
L G s s    n V, .                                                                (36) 

 

Substituting Eq. (30) into Eq. (32) and taking account of the positive definitiveness of 0 3 0(( , , ),( , , ))a V wV u  

and 0( ) ( , , )wV n n, u , Eq.(37) can be obtained if s  is sufficiently-small. 

 

{ ( ( ), ( )) ( ) ( ) } 0
A

L a s s s s         V, V, V n n, V,   .                                       (37) 

 
The same approach can be applied to the case of Eq. (29). These relations indicate that, on the problem having the 

convexity, the Lagrange objective functional L is necessarily decreased by updating the shape according to the 

velocity field V determined in the velocity analysis. We use the method proposed as a solution to a multiconstraint 

problem by the traction method [13] in order to satisfy the constraint conditions (e.g. internal volume and 

perimeter) according to the type of the membrane structure. 

 

The minimal surface with the optimal free-form can be obtained by repeating the three processes: (i) computation 

of the shape gradient function, (ii) velocity analysis and (iii) shape updating. In this study, the general-purpose 

FEM code is used in the velocity analysis. 

 

7. Computed results of minimal surface 
7.1. Frame membrane structure problem (Area minimization) 

In order to verify the validity of this form-finding method for frame membrane structures, it was applied to a 

problem which finds a catenoid known as one of the minimal surfaces. The initial shape of a cylinder, both ends of 

which were framed as the specified boundaries is shown in Fig. 4(a). In the velocity analysis the boundaries were 

simply supported. By the out-of-plane variation according to the shape gradient function, i.e. Eq.(15), the minimal 

shape shown in Fig. 4(b) was determined.  Fig. 5 and Fig. 6 show the iteration convergence histories of the area and 

the mean curvatures of the optimal shape along A-B. The results show that the shape obtained is a 

well-approximated catenoid with smoothness. The area decreased by around 7% and converged steadily while the 

mean curvatures were almost vanished similar to the theoretical value. From the results, validity of this 

form-finding method for frame membrane structures was verified. 
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(a) Initial shape                           (b) Optimal shape 

Figure 4: Optimization result of frame membrane structure (catenoid) 

 

 
 

Figure 5: Iteration histories of frame membrane      Figure 6: Mean curvatures along A-B of frame membrane 

structure (catenoid)                                                 structure (catenoid) 

 

7.2. Pneumatic membrane structure problem with frame (Area minimization subjected to internal volume 

constraint) 

The proposed method is applied to a pneumatic membrane structure combined with frame structure. The initial 

shape of hemisphere, the surface of which was partly framed and the bottom edge of which was fixed as a specified 

boundary is shown in Fig. 7(a). The internal volume constraint was set as 120% of the initial shape. In the velocity 

analysis, the boundary was simply supported. By the out-of-plane variation according to the shape gradient 

function, i.e. Eq.(23), the minimal surface was determined. The internal volume was computed by space 

discretization using tetra elements. Fig. 7(b) shows the optimal shape obtained. The smooth shape was created. Fig. 

8 shows the iteration convergence histories of the area and the internal volume, while Fig. 9 shows the mean 

curvatures of the final shape along A-B.  

The graphs show that the area was minimized yet increased by around 15% as the internal volume constraint was 

satisfied, while the mean curvatures have the constant value. From the results, it was verified that the valid result 

for pneumatic membrane structure subjected to an internal volume constraint can be obtained.  

 

  
 

      (a) Initial shape                            (b) Optimal shape 

 Figure 7: Optimization result of pneumatic membrane structure with frame 
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Figure 8: Iteration histories of pneumatic membrane          Figure 9: Mean curvatures along A-B of pneumatic 

structure with frame                                                       membrane structure with frame 

 

7.3. Suspension membrane structure problem (Area minimization subjected to perimeter constraint) 

The initial shape, the five vertexes of which were fixed is shown in Fig. 10(a). Under a perimeter constraint 

condition, the area minimization analysis was conducted. In the velocity analysis, the fixed points were simply 

supported. By the out-of-plane and in-plane variations according to the shape gradient functions, i.e. Eq.(31) and 

Eq. (32), the minimal surface was determined. The perimeter constraint was set as 120% of the initial shape. Fig. 

10(b) shows the optimal shape obtained. The area was minimized and decreased by around 58%, while the 

perimeter constraint was satisfied. The smooth surface and boundary shape having the almost constant curvatures 

was obtained. 

 

 
 

(a) Initial shape                                               (b) Optimal shape 

Figure 10: Optimization result of spatial suspension membrane structure 

 

8. Conclusions 
In this paper, we formulated various form-finding problems of membrane as the distributed-parameter shape 

optimization problems aiming at equally tensioned surface (i.e. minimal surface) which is essential for the 

membrane design, and proposed a new numerical solution for finding the optimal shape. This is what the 

previously-reported free-form optimization method for shells were applied to membrane structures. According to 

the type of membrane structure (e.g. frame membrane structure, pneumatic membrane structure and suspension 

structure), the in-plane shape variation and/or the out-of-plane shape variation was set as the variable for the 

form-finding. Applying the derived sensitivity function to the gradient method in a Hilbert space and determining 

the optimal design velocity field based on the assumption of small variation, we found the minimal surfaces by the 

iterative computation. With this method, the optimal and smooth free-forms of membranes can be obtained 

without shape parameterization. The validity and the versatility of the proposed method were verified by the result 

of the examples for the each type of membrane structure. 
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