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1. Abstract  

The isotropic elastic mixtures composed of two isotropic materials of the bulk moduli (2
>1

) and shear moduli 

(2
>1

) are characterized by the effective bulk and shear moduli *
 and *

. In the planar problems the theoretically 

admissible pairs (*
, *

), for given volume fraction 𝜌0 of material (2
, 2

), lie within a rectangular domain of 

vertices determined by the Hashin-Shtrikman bounds. The tightest bounds in 2D known up till now are due to 

Cherkaev and Gibiansky (CG). The microstructures corresponding to the interior of the CG area can be of arbitrary 

rank, in the meaning of the hierarchical homogenization. In the present paper a family of composites is constructed 

of the underlying microstructures of rank 1. The consideration is confined to the microstructures possessing 

rotational symmetry of angle 120. To find the effective moduli (*
, *

) the homogenization method is used: the 

local basic cell problems are set on a cell Y of the shape of a hexagonal domain. The periodicity conditions refer to 

the opposite sides of Y. Such a non-conventional basic cell choice generates automatically the family of isotropic 

mixtures. The subsequent points (*
, *

) are found by solving the inverse homogenization problems with the 

isoperimetric condition expressing the amounts of both the materials within the cell. The isotropy conditions, 

usually explicitly introduced into the inverse homogenization formulation, do not appear, as being fulfilled by the 

microstructure construction. The method put forward makes it possible to localize each admissible pair (*
, *

) by 

appropriate choice of the layout of both the constituents within the repetitive sub-domain of Y. 
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3. Introduction 

Knowing all microproperties of the representative volume element (RVE) of a considered composite material one 

can obtain its effective properties by the direct homogenization method [9]. This can be done by treating RVE as a 

repetitive cell Y with accurate approximations under some commonly accepted assumptions of randomness,  

see [15]. According to the homogenization theory the effective moduli are expressed by the formulae involving 

solutions to the so-called basic cell problems. The problems can be solved by the Finite Element Method (FEM) 

[7], [16], preceded by a proper discretization of the RVE identified here with a periodicity cell Y. 

The inverse homogenization means reconstructing the layout of given materials (usually isotropic) within RVE to 

achieve prescribed effective properties of the composite. This topic is indissolubly bonded with the topology 

optimization [13] since the optimal designs turn out to possess composite structure with highly complicated local 

properties of the underlying microstructure [2]. The first approximation of the effective moduli of two-phase 

composites of materials M
(1)

 and M
(2)

 distributed arbitrarily is due to Voigt (of 1889 expressed by the arithmetic 

mean, VR bounds), the lower bounds are due to Reuss (a harmonic mean, 1929). More accurate estimates for an 

isotropic composites composed of two well-ordered isotropic materials were specified by Hashin and Shtrikman in 

1963 and extended by Walpole in 1966 to the case of non-ordered materials. these bounds are called 

Hashin-Shtrikman-Walpole bounds (HSW). The tightest bounds CG in 2D known up till now are due to Cherkaev 

and Gibiansky [3]. The generalization of the CG bounds for the Kirchhoff plates can be found in [5]. The CG 

bounds are described by a curvilinear rectangle of vertices A, B, C, D, the vertices A and C being 

Hashin-Shtrikman points, B being attributed to the Walpole result see fig.(1). In the planar problems the 

theoretically admissible pairs (*, *), for given volume fraction 𝜌0 of material M
(2)

 = (2
, 2

), should lie within a 

curvilinear rectangular domain determined by Cherkaev and Gibiansky. The challenge is to design a 

microstructure whose effective properties correspond to the extreme points of the CG bounds. By obtaining such 

microstructures we verify the theoretical results by Cherkaev and Gibiansky. Such task is a structural topology 

optimization problem and is known as inverse homogenization regarding to the extreme composites. New extreme 

composite structures and the proposed new microstructures reaching the CG limits are shown in [10], yet there are 

some points on the boundaries of the admissible CG area for which the structure is not known until today  

(e.g. point B). Many optimization techniques have been used to attain the CG bounds, including the Method of 

Moving Asymptotes (MMA) [14] and Sequential Linear Programming SLP [13] to mention the most promising. 

Nevertheless, due to numerical properties of the FE method used for homogenisation, the problem is still tough to 

solve and only approximate solutions can be obtained. The present paper refers to the topology optimization 

formulation in which invariants of the constitutive tensor, here bulk and shear moduli, are predefined at each point 
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of the feasible domain [4]. We present a numerical algorithm to reconstruct in RVE the 2D layout of two isotropic 

materials of given bulk moduli 2
 > 1

 > 0 and shear moduli 2
 > 1

 > 0 (well-ordered materials) for the 

corresponding shapes of Y, i.e. the hexagon for 2D, and its relevant internal topology fig.(2) i.e. rotational 

symmetry of angle 120. This algorithm allows to obtain for a fixed ratio 𝜌0 of materials amount (isoperimetric 

condition) such layout with the assumed (admissible) pair (*, *) representing the effective isotropic properties 

of the periodic composite. The goal of this work is to find isotropic composites whose parameters (, ) are as near 

as possible to, or even reach the Cherkaev-Gibiansky bounds. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Theoretically admissible (*
, *

) for M
(1)

 =(5/7, 5/13) /20, M
(2)

 =(5/7, 5/13), 𝜌0=1/2.  

Dotted-VR bounds, Dashed – HS bounds. 

  

4. Numerical homogenization 

The algorithm used follows from imposing the FE approximation on the solution to the basic cell problems of the 

homogenization theory [16] . It can be shortly summarized as follows:  

Let periodic Y be uniformly divided into k elements (k=1..m) each element-wise constant material Ek, the nodal 

displacement q determine the displacement field u = Nq and the strain field  = Bq within k, with N being shape 

functions and B being the geometric matrix and formally B=D N where D is the matrix of the differential operators 

for plane stress/strain problem. Ek =E(k, k) describe constitutive matrix of the k-th element 
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We define for each element k the matrices 
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Due to uniform mesh we have for each element Bk= B0 . Let 
k

 and dY
1

 stand for the finite elements 

aggregations over all elements and the averaging over the Y respectively. The effective constitutive matrix reads 
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The periodicity condition is fulfilled by the corresponding numbering of nodes at opposite edges with the identical 

meshing on them. Corresponding nodes have the same numbers i.e. the same degree of freedoms. By a process of 

aggregation this is automatically taken into account in the construction of global matrices K and H. The H matrix 

comprises three separate, self-equilibrated load cases. Thus, the three different FEM problems for three column 

vector q are to be solved, namely 

 T
HqK   (4) 

and finally Eq.(3) can be written as 
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Assuming the results within the class of the rank-1 microstructures the layout of the material properties is 

parameterized by the density function   [0, 1] distributed element-wise k constant within Y. At each element k 

we assume k-dependent isotropic material. One can assume SIMP-like or RAMP-like material approximation 

with arbitrary chosen “penalty” parameter p (usually p=3).  
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(Note, that classical SIMP or RAMP involve only on the Young moduli E1, E2 while the Poisson ratio  remains 

unperturbered [1], [8]. Other approximations of the material properties for the intermediate 𝜌 may also be used 

[12] and [6].  

Prior to solving the optimization problem we construct the formulae for the gradient of E
eff

 with respect to the 

variables k. These derivatives are expressed by  
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5. Optimization problem for isotropic periodicity 

In general, the inverse homogenization problem, which is in fact 01-optimization problem to be solved, is relaxed 

by allowing intermediate values of 𝜌. This relaxation allows the use of the gradient methods. The relaxed problem 

reads: 
 

(P1) 

For some mesh density and initial distribution of 𝜌k for Y and given desired homogenized parameters 

Minimize: the gap between the desired and actual parameters 

Subject to: - bounds for design variables 

   - constrains for volume fraction 

   - isotropy conditions 
 

The actual homogenized parameters are calculated from some homogenization formula on given distribution of 

element-wise 𝜌k  e.g. Eq.(4). Variables 𝜌k are changed according to the gradient of the objective function and 

constraints, and the process is repeated until the material is distributed sufficiently close to the exact 01-solution 

(i.e. for each element 𝜌k  0, or 𝜌k  1). Due to nonlinearity respect to 𝜌k (i.e. H = H(𝜌k), K = K(𝜌k) see Eq.(3b)) 

many local minima occur so the direct application of the gradient method is problematic. This can be partially 

avoided by additional penalty component incorporated to the objective function forcing the 01-solution. The 

proper material approximation for intermediate values plays also important role. The parameter p in Eq.(6), often 

called as “penalization parameter”, aims to penalize the intermediate value of variables. Moreover one can apply 

some filtering techniques to avoid or rather escaping from the local minima. These can be used for filtering 𝜌k or to 

filtering the components of the gradient [11]. These methods are controlled by many parameters, the nature of 

which is not entirely clear. Despite the simplifications and tricks used the obtained results are still relatively far 

from the CG bounds.  

One way to obtain more accurate results is a simplification of the optimization by decreasing number of constraints 

(reformulate the problem to the convex one is rather impossible). This can be achieved by a suitable choice the 

shape of the Y (i.e. the periodicity) and it internal structure. The hexagonal repetitive cell with internal rotational 

symmetry of 120 degree gives strictly isotropic homogenized constitutive matrix for 2D linear elasticity 

homogenization problem. It is known from theory of the 4
th

 rank tensors. For 2
nd

 rank tensors in 2D (governing e.g. 

thermal problems) the isotropy is realized by the square repetitive cell with internal rotational symmetry of 180 

degree. So the last constraint(s) in (P1) relating to the “isotropic conditions” may be omitted. What's more, the use 

of hexagonal cells significantly reduces the number of variables. Due to its internal symmetry only one-third the 

entire cell elements is treated as independent variables 𝜌k. Finally, a rectangular cell usually used to obtain the 

isotropic properties is far greater than hexagonal one, and requires a much larger number of the finite elements to 

achieve the same level of accuracy, see fig.(3).  
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Figure 2: Topology of the hexagon isotropic cell.  

 

It should be noted that the selection of a periodic cell shape greatly affects the quality of the results obtained in 

terms of isotropy conditions. In the problems of the homogenization of the isotropic tensor of the 4-th rank, the 

solution of the problem for a square-shaped cell, even when if the cell is divided to a very large number of 

elements, will never fulfils conditions of isotropy exactly. Thus solution of the (P1) for a square-shaped cell of 

periodicity is not possible. It is possible to fulfils the conditions of isotropy on a cells of rectangular but only for 

rectangles of the right dimensions ratio. Of course there are many other shapes of cells of periodic for which can be 

attained the condition of the isotropy, for example some groups of adjacent hexagonal cells. But, the hexagonal 

cell is the smallest of the possible shapes of the cells realizing the structures of a periodic for the constitutive 

isotropic tensor the 4-th rank and requires the least number of elements, so the problem (P1) contain the smallest 

number of the decision variables. The smallest for two-materials a isotropic structure is realized on a cell of rhomb 

shaped of which is divided along shortest diagonal into two triangles and each of the isotropic materials occupy its 

own triangle and therefore as such is rather useless for a practical use. 

 

 
 

Figure 3: Comparing the sizes of the hexagon and the rectangular cell of periodicity. 

 

The last technical improvement of the presented algorithm is due to the nature of the load matrix H imposed on the 

cell in the process of homogenization Eq.(4). Non-zero loads i.e. matrix components, are generated only on the 

nodes located on the interface of materials thus nodes lying within the area of each material are “unnecessary”, see 

fig. (4). This fact is exploited by applying superelements. It mimics the “virtual” dense mesh in each element (its 

subdivision) but without any internal nodes in it. This allows for increased accuracy by applying a higher degree of 

elements i.e. higher degree of the shape functions. Thus the common dimensions of the matrixes K and H are 

slightly reduced. In the case of a six node triangular element the number of Degrees Of Freedoms (DOF) is reduced 

by about 20% for “virtual” subdivision into 4 sub-elements and at least 35% for subdivision into 9 sub-elements, 

see fig.(5). Given that the cost of solving the system of linear equations is proportional to n
3
 (n is the number of 

DOFs) savings are respectively about 50% and 80% of the time needed to solve Eq.(4) and calculating Eq.(7) in 

case of standard dense mesh. It should be noted, however, that then the time needed for calculating the matrices Kk 

increases. The calculation of each of them requires solving a system of linear nh equations (nh is the number of 

internal DOFs which in the superelement are eliminated). Leaving aside the question of saving time, it should be 

noted that the use of superelements clearly increases the accuracy of the results of numerical homogenization 

process. Consequently, the calculated components of the gradient of the objective function are more precise. 
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Figure 4: Visualization of the structure of the matrix H. The periodic displacements. 

 

 

 
 

 
 

Figure 5: Nodes of the superelements: for 4-nodes four edge element 

and for 6-nodes triangular element 

 

The objective function for the discussed inverse problem and  = {𝜌k} is chosen as below:  
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The optimization problem assumes the form 
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 (9) 

In Eq.(8) the pair (, ) is calculated from the homogenized constitutive matrix for the data values of , namely 

E
eff

=E(, ). Hereafter in this article this interpretation of the pair (, ) will be kept.  

Due to the shape and the topology of the periodicity cell Y no penalty terms are needed to enforce isotropic results. 

The only, weighted by its own scalar coefficient w01 penalty term aims to speed up the convergence to 01-solution 

in each element (i.e. k=0 or k=1). It can be omitted by the adoption of a modified gradient method. This 

modification forces the 01-solution in some elements selected according to the gradient at each steps of the 

optimization process. Such 01-solutions must be maintained for those elements till the process stops.  
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The gradient of the objective function P() = {k}is calculated from  
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To solve Eq.(9) the SLP method is used. It is assumed that the solution to the problem can be achieved by a 

sequence of solutions to the problems of linear. Expanding the objective function at the point  in a Taylor series 

and taking into account only the linear members we develop 
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Such local linearization of Eq.(8) allows finding approximated minimum of problem (9) near to point  by solving 

the following linear problem: 
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where arbitrarily chosen scalar parameter d specifies the maximum allowable changes in the values of variables k 

also limited by the 01 bounds. The latter constraint is assumed that the point  satisfies the isoperimetric condition 

hence the sum of the changes 𝜌k of the variables 𝜌k has to be zero. This assumption does not affect the process of 

solution to the problem (9). Just is enough to select the appropriate starting vector { 𝜌k }satisfying this condition, 

but this is trivial. After the solution of (12) the new point 
new

 = { 𝜌k +𝜌k } is calculated and then the value of the 

objective function P(
new

) is examined. If P(
new

) < P() then the values { 𝜌k } are updated and for   
new

 the 

process repeats otherwise it stops and the point  can be regarded as a local minimum of the problem (9) with 

respect to the fixed distance d. 

 

 6. Algorithm 

At the starting point  the distribution of the k is randomly selected, yet satisfying isoperimetric condition in 

problem (9). Material approximation model is used to calculate Kk and Hk. according to Eq.(6). Other models of 

approximation of the material can also be used. The homogenization process starts, see Eq.(5), and then 

components of the gradient k of the objective function are calculated according to Eq.(7) and Eq.(10). Next, the 

local linear optimization problem (12) is solved sequentially with updating the elements of the gradient k and  at 
each step. If the process stops at a local minimum then the new starting point 

f
 is selected, namely.  

  ρρ f  (13) 

The function  is generally a function of the filtering of the {k}. In this paper, to set a new starting point a simple 

volume preserving diluting filter for  is used. New  values are calculated from the formula 
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w
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where set Nk contain a collection of elements of the neighboring to the element k and himself. It's a simple, familiar 

with operations on bitmap images, graphics filter. The weight values wi are shown in fig.(6). The effect of this 

filtering is a blurring of the 𝜌k values in the elements that are at the interface of materials. Filtering takes into 

account the periodicity of the cell by momentarily its extension to the adjacent elements. More complex methods 

of morphological filtering ρ and the gradient of the objective function are described in [11]. The optimization 

process (12) is further continued with the 
f
. However, this approach does not guarantee a 01-solution to the 

problem even if the w01 > 0, see Eq.(8). In the presented examples it is assumed that w01=0, and a different 

technique to force the 01 solutions is used. The obtained 01-solution for some of the elements at previous steps of 

(12) during the subsequent steps is preserved till the end of the process. They can be only modified by filtering 
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process (13) in case of stop in local minimum. This method allows to speed up the optimization process because 

the components of the gradient for these elements need not be calculated. Calculating the gradients k is most time 

consuming part of the inverse homogenization process. 

 

 

 

 

 

 

 

 

Figure 6: Filtering of the variables 𝜌k. Weights for quadrangle and triangle elements of the mesh. 

 

It is well known that for the nonconvex nonlinear optimization problems, even tackled by the well-tuned 

approximation method, the final result depends strongly upon the choice of the starting point. So the several 

optimization processes should be executed, each for different starting point. This, of course, does not guarantee 

finding the global solution but only suboptimal one and is time-costly. To reduce the computation time we have 

adopted the following “adaptive” computation system: 

the process departs from a coarse mesh h
(1)

 for a randomly assumed vector (1). Upon obtaining the 

01-solutions or even to achieve a local minimum for this mesh, we make it denser, creating the mesh of smaller h
(2)

. 

For this mesh we define a new vector (2) such that (1). = (2). Practically, the structure of the material 

placement described by h
(1)

 is covered by new mesh h
(2)

 and for such covering the new value (2) are calculated 
see. fig.(7). This step can be completed by one or more pass filtering (13) and becomes a departure point for 

the next optimization process.  

 

 

Figure 7: Creating a new 6-layers (for quad) and 7-layers (for triangle) meshes for next step of the optimization. 

 

The proposed “adaptive” routine helps to overcome the problems with stopping the optimization process at a local 

minimum. Furthermore, in the first steps of optimization, for the coarse mesh, can be found the exact solution to 

the problem with using a binary optimization method, so for dense mesh the next step starts from point which is as 

close as possible from the optimal solution considering to the mesh size. The time needed to solve the problem in 

“adaptive” manner and to reach the desired mesh density h is almost the same as in case of the solution for the 

problem for the adopted starting point with the size of the mesh of h. For the final mesh consisting of 5400 

twelve-nodes elements (three combined 6-nodes triangle elements ie. in total 1800 decision variables, 54 000 

DOF) solution time was approximately 1-2 hours on desktop computer (Intel i7 3.6 GHz processor, 16GB RAM). 

  

7. Results  

The structure of the representative cells and the corresponding composite structures recovered by this process for 

triangular 12-nodes superelements (4 x 6-nodes elements) are shown. For all the presented cases adopted  

(1, 1) = (5/7, 5/13) /20, (2, 2) = (5/7, 5/13) and 0 = 0.5. Material for the k was approximated as SIMP* with 

p=3. For a given objective function (8) the coefficient w01=0.0 is assumed. For all the presented results 
were the same fixed starting point, i.e.  = start,  dim(start) = 18, start. = 0  and 0.4  𝜌start

  0.6.  Sequential 

solution (12) was carried out for initial d = 0.1. This value was reduced to zero iteratively of d = 0.01 when the 

value of the objective function at the point new was greater than for . For final  was done single pass filtering 
(14). Then sequential solution (12) was repeated until the convergence of the local minimum, or to obtain a 
01-solution. Then the denser mesh was created and process repeats. 
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Figure 8: Final results on each “adaptive” step of inverse homogenization process and approximated 01-solution. 

Number of layers L are shown. (numbers of elements = 3 ( 2 L
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Figure 9: Selected points (, ) within the CG domain (a..m) and the underlying microstructures.  

The dashed lines show the assumed (*
, *

). The mesh size: for (a..f) L=30, for (g..m) L=40. 
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 b) (, ) = (0.099, 0.072), (*, *) = (0.090, 0.076) c) (, ) = (0.106, 0.80), (*, *) = (0.097, 0.089) 

 

      
 

 e) (, ) = (0.157, 0.103), (*, *) = (0.153, 0.111) g) (, ) = (0.219, 0.109), (*, *) = (0.224, 0.116) 

 

      
 

 k) (, ) = (0.210, 0.072), (*, *) = (0.223, 0.067) m) (, ) = (0.209, 9.608), (*, *) = (0.224, 0.061) 

 

Figure 10: Images of the isotropic composites for selected results. 



 

 

10 

8. Final remarks 

The present paper put forward a new algorithm of the numerical inverse homogenization for the planar isotropic 

composites. The paper is aimed at finding the rank-1 subclass of the isotropic composites of effective moduli 

achieving the Cherkaev-Gibiansky (CG) bounds. The key point of this algorithm is the use of the hexagonal cell of 

periodicity instead of periodicity with a rectangular cell. It is assumed that the internal structure of the hexagonal 

cell possesses rotational symmetry of angle 120. This assumption results in a significant reduction in the number of 

design variables to the optimization problem considered (approximately 6 times less than for the case of the cell of 

a rectangular shape). Moreover, such a cell shape (and its internal symmetry) ensures isotropy of any periodic 

composites of such class thus essentially reducing the number of constraints involved in the optimization problem. 

The  optimization problem considered has been solved by the SLP method augmented with appropriate filters. It is 

worth emphasizing that the results obtained lie fairly close to the assumed ones located on the CG bound, but the 

bounds are not attained. Our results show that the points along the CG bound are attainable only within the class of 

microstructures of the rank higher than 1. The question: “how big the G-closure for one length-scale isotropic 

composites is ? “ has been partly answered, but the complete answer remains as an open problem. 
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