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1. Abstract
In this paper, we describe and evaluate the parallel implementation and performance of a hybrid

parallel finite-element code for large-scale gradient-based optimization. Realistic high-fidelity structural
design optimization problems for modern composite aircraft involve hundreds to thousands of load cases,
tens of thousands of design variables and up to hundreds of thousands of constraints. For these opti-
mization problems, the single most expensive computational operation is the evaluation of the constraint
derivatives. This can be a significant bottleneck during the optimization, even when efficient gradient
evaluation techniques are employed, such as the adjoint method. In this paper, we describe methods for
analysis and gradient-evaluation that exploit the structure of these large-scale optimization problems to
achieve optimal computational performance on machines built using clusters of multi-core CPUs. In this
research we have extended the capabilities of our in-house parallel finite-element code, called the Toolkit
for the Analysis of Composite Structures (TACS), to use a hybrid parallel architecture that combines the
Message Passing Interface (MPI) and POSIX threads (Pthreads). This two-level hybrid scheme enables
us to achieve finer-grain parallelism on performance-critical tasks required for gradient evaluation. In
particular, we use this hybrid scheme to achieve better scalability when evaluating the partial derivatives
required for the adjoint and when solving multiple adjoints simultaneously. We demonstrate the efficiency
of the implementation of the new algorithms on a large-scale finite-element wing-box model.

2. Keywords
Large-scale optimization, high-performance computing, structural optimization

3. Introduction
The increasing use of high-performance parallel computers will enable the solution of large-scale, high-

fidelity structural design optimization problems of increasing complexity [10]. Numerous authors have
developed methods for a variety of large-scale structural design optimization problems including three
dimensional topology optimization [1, 11], shape and sizing of aerospace structures [7, 8] and large-scale
static aeroelastic design optimization of aircraft [6, 5, 3]. The vast majority of optimization methods
for large-scale applications have employed gradient-based optimization methods with efficient analytic or
semi-analytic gradient evaluation techniques. Gradient-based methods are preferred due primarily to the
poor scalability of gradient-free methods with increasing numbers of design variables.

Most complex, large-scale structural design optimization problems require the simultaneous consid-
eration of multiple design conditions to ensure that the structure can safely operate at all points within
the design envelope. Frequently, the design problem will be formulated in such a manner that a new set
of stress or failure constraints is added to the problem for each additional load case. Depending on the
constraint formulation, this can quickly lead to design problems with thousands to tens of thousands of
constraints, even for problems with a moderate number of loading conditions. As a result, the critical
bottleneck in a structural optimization problem is often the evaluation of constraint gradients.

In this paper, we address the constraint gradient bottleneck by optimizing the performance of a finite-
element code with large-scale gradient-based design optimization in mind. In particular, we utilize a
hybrid parallel paradigm to extract better performance for gradient evaluation. Modern high-performance
computers use shared memory symmetric multi-processors (SMPs). In this type of architecture, each SMP
contains a group of processing cores with a local cache and shared memory hierarchy. The SMPs are
typically connected through a low-latency interconnect that can be used to communicate between non-
local SMP cores. As a result, there is non-uniform communication latency between any two processor
cores. Furthermore, within each SMP there is a memory hierarchy where certain cores will be able to
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access local memory faster than non-local memory. This non-uniform memory access (NUMA) is a result
of the nature of the shared memory and local cache architecture for each processing core. In this type
of computing environment, it is often beneficial, for memory and performance reasons, to implement
algorithms that take into account the non-uniformity of memory access and communication latency.

In the past, many advanced high-performance scientific applications have exclusively employed the
Message Passing Interface (MPI) to achieve parallelism. However, the MPI standard treats communica-
tion amongst any given pair of processors uniformly and may not take full advantage of the hierarchical
SMP architecture of many modern computers. In order to increase computational efficiency on very
large scale problems, many researchers are employing a hybrid approach in which groups of SMP cores
implement parallelism using a shared-memory model, while MPI is used to communicate between groups.
The advantage of this approach is that local cores can access the same memory and avoid communication
overhead. On the other hand, algorithms must now be developed or adapted to reflect this change. In
this work, we implement a hybrid approach for large-scale structural analysis and optimization problems
using POSIX threads, or Pthreads. The Pthreads library is a standard interface developed for UNIX
systems for initiating and controlling threads within a shared memory environment.

The goal of this work is to develop parallel methods to solve large-scale structural optimization
problems that make effective use of available high-performance parallel computing resources. We focus
on large-scale structural optimization problems of the form:

min f(x,u1)

w.r.t. x

governed by Kui − fi = 0 i = 1, . . . , N

such that ci(x,ui) ≥ 0 i = 1, . . . , N

(1)

where x are the design variables, f(x,u1) is the objective function, ui are the state variables for each load
case i = 1, . . . , N , K is the stiffness matrix, ci are the stress or failure constraints for each load case, and
fi is the load vector for each load case. We refer to Problem (1) as a large-scale structural optimization
problem due to the size of the design space, the number of constraints, and the number of degrees of
freedom in the governing equations. In particular, we focus on structural optimization problems with
thousands of design variables and constraints and millions of structural state variables.

The remainder of the paper is outlined as follows: In Section 4 we outline the hybrid MPI/Pthreads
scheme employed in this study including how the approach is adapted to direct factorization methods and
derivative computation. In Section 5, we present results from two problems: a simple clamped square
plate and a large-scale wing-box problem. Finally, in Section 6 we draw conclusions from the results
presented herein.

4. Parallel performance
In this work, we enhance the parallelism of an existing finite-element code with a hybrid MPI/Pthreads

scheme. For this study, we use the finite-element code called the Toolkit for the Analysis of Composite
Structures (TACS), which uses domain decomposition to achieve parallelism for finite-element matrix and
residual assembly, direct matrix factorization, and gradient-evaluation. While TACS is highly optimized
for parallel performance, there are two important areas in which further improvements are possible: mem-
ory usage and matrix-factorization. As the number of domains in the domain decomposition increases,
the memory requirements grow in an absolute sense such that the memory usage per domain decreases,
but the total memory usage increases. Typically, the additional memory requirements do not pose a
significant problem for machines with a large amount of memory per core. However, this trend may be
a significant issue for more memory-limited computer architectures. The second potential improvement
lies in the direct matrix factorization. As the number of domains increases, the number of arithmetic
operations required to perform the direct factorization often increases as well. Furthermore, with in-
creasing numbers of domains, the load balancing may deteriorate as the amount of time spent in each
operation in the matrix factorization decreases. The goal of the hybrid scheme is to extract additional
parallelism from a given domain decomposition, thereby enabling the use of fewer, larger domains leading
to a reduction in memory requirements and a potential increase in the performance of time-critical tasks
within the code.

For this study, we have implemented a funneled or master-only approach in which the parallel com-
munication amongst MPI tasks is funneled through a master MPI thread which spawns all the threaded
operations using the Pthreads API. We describe below in greater detail the implementation of the hybrid
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Figure 1: The domain decomposition and corresponding matrix for a domain decomposition of a third
order finite-element mesh with four domains.

parallel algorithms. There are many tasks that are required for parallel finite-element analysis and design
optimization. Within this paper, we focus on the tasks that consume the most computational time dur-
ing analysis and design optimization: the direct factorization of the stiffness matrix, matrix and residual
assembly, and the evaluation and assembly of partial derivative terms required for gradient evaluation. In
the following sections, we outline the implementation of the domain decomposition-based finite-element
code and describe how the threaded scheme is added to attain additional parallelism.

4.1 Direct matrix factorization
In this section, we describe the implementation of the direct matrix factorization scheme in TACS

and outline how we have enhanced the scheme with a threaded implementation. In TACS, the direct
matrix factorization uses a substructuring approach based on the Schur complement. In this approach,
the unknowns in the finite-element problem are divided in to two separate groups: interface unknowns
which lie directly on the domain boundaries, and internal unknowns which are in the domain interior.
Figure 1a shows the domain decomposition where the coloured regions denote four separate domains, and
the interface unknowns are illustrated in white. The internal unknowns for each processor are denoted
as xi, for i = 1, . . . , nd, and the global vector of interface unknowns is denoted as y. The contributions
to the global system of equations from each domain are stored a local matrix partitioned as follows:

Ai =

[
Bi Ei

Fi Ci

]
, i = 1, . . . , nd, (2)

where the Bi and Ci blocks represent the diagonal contributions to the internal and interface unknowns,
respectively. The global system of equations Ax = b, can be then be written as follows:

nd∑
i=1

(Bixi + Eiy) = bi,

nd∑
i=1

(Fixi + Ciy) = d,

(3)

where bi and d represent the right hand sides for each local processor and the interface unknowns,
respectively. The structure of the global system of equations is illustrated in Figure 1b.

The direct matrix factorization proceeds in two stages: first, the computation of the local contribu-
tions to the global Schur complement, followed by the assembly and factorization of the global Schur
complement. The first stage consists of a series of computations that are independent and can be per-
formed concurrently on all processors without communication, while the second stage consists of a matrix
assembly and factorization that requires coordination amongst all processors.
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Figure 2: An illustration of the sparse 2D block cyclic matrix format on four processors.

In the first stage of the matrix factorization, the diagonal block corresponding to the internal unknowns
is factored such that Bi = LiUi. After this factorization is completed, the contribution to the global
Schur complement are formed on for each domain within the mesh as follows:

Si = Ci − FiU
−1
i L−1

i Ei, (4)

where Si is Schur complement contribution from the ith domain. Once all processors have computed Si,
the global Schur complement is assembled such that:

S =

nd∑
i=1

Si, (5)

where S is the global Schur complement. Finally, the global Schur complement is factored on all processors
such that S = LSUS .

The local matrices for each domain in Eq. (2) are stored using a Block Compressed Sparse Row
(BCSR) format in which the block matrices for the unknowns for each node are stored contiguously in
memory [9]. In TACS we have implemented optimized block-specific code that is designed to increase
the number of arithmetic operations per memory access. The global Schur complement (5) is stored in a
sparse 2D block-cyclic matrix format in order to facilitate parallel factorization. In this format, the matrix
is divided into a regular block structure and the blocks are assigned to processors in a cyclic pattern that
is repeated until all blocks are assigned. The sparse 2D block cyclic format for a four processor case is
illustrated in Figure 2, where only non-zero blocks are labeled.

In order to develop an efficient threaded implementation of the direct matrix factorization technique
described above, we have focused on implementing threaded versions of two types of operations that
are required during the factorization: matrix-matrix products and sparse lower and upper triangular
back-solves. In both cases, the matrices involved in these operations are stored in the BCSR format as
described above. In order to achieve good parallel performance, we have employed a task-assignment
paradigm in which a queue of tasks is generated and assigned to each thread that completes its previous
task. In order to guarantee correct execution order, the tasks are only added to the queue once all
dependencies have been completed. In this manner, we ensure that the correct sequence of operations is
performed without prescribing in advance the threads that will complete a given operation.

Algorithm 1 shows the pseudo-code used to compute a sparse matrix-matrix product: C = AB. Here,
we use an event-driven task assignment routine, get mult sched job(), that returns the starting row for
the next part of the matrix-matrix multiplication. The variable row group size is selected to achieve
a better memory access pattern such that fewer threads attempt to access the same locations in main
memory at the same time.

Algorithm 2 shows the pseudo-code used to compute a sparse lower-triangular solve: C = L−1B.
Again, we use an even-driven, task assignment paradigm, but due to the dependencies within the cal-
culation, the job scheduler must resolve what task, if any, can be performed before other tasks finish.
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Algorithm 1: Sparse matrix-matrix multiplication using an event-driven approach.

Compute C = AB;
init mult sched(); // Initialize the job scheduler

while completed rows < nrows(C) do
row = get mult sched job(); // Retrieve the starting row for the next job

for i = row to row + row group size do
for k ∈ nz(Ai∗) do

for j ∈ nz(Bk∗) do
Cij ← Cij + AikBkj ;

completed rows← completed rows + row group size; // Update the task counter

Algorithm 2: Solution of a lower triangular system using an event-driven approach.

Compute C = L−1B;
Copy C← B;
init lower sched();// Initialize the job scheduler

while completed rows < nrows(C) do
row, kstart, kend = apply lower sched job(); // Retrieve the information for the job

for i = row to row + row group size do
for j ∈ nz(Ci∗) do

for k = kstart to kend do
Cij ← Cij − LikCkj ;

apply lower mark completed(row, kstart, kend);// Mark the task as completed

This dependency graph complicates the algorithm considerably, however, specifying the execution path
in advance typically results in slower execution times.

4.2 Matrix and derivative assembly operations
In this section, we briefly outline the methods we use to parallelize the computation and assembly of the

finite-element stiffness matrix and terms required for gradient evaluation. In both cases, the contributions
from individual elements are nearly independent and only a single mutual exclusion variable is required
to ensure that the same memory location is not written to at the same time by two threads. In these
operations, we assign element-based computations to a thread in a dynamic fashion to try to minimize
idle time.

For the gradient computation, we use the adjoint method in which the total derivative of a function
of interest, ∇xf , is obtained by first solving the following adjoint system of equations:

∂R

∂q

T

ψ =
∂f

∂q

T

,

and then evaluating the total derivative:

∇xf =
∂f

∂x
−ψT ∂R

∂x
. (6)

In the following discussion, we focus on the computational cost of the inner product of the adjoint vector
with the derivative of the residuals with respect to the design variables: ψT∂R/∂x. For this computation,
we evaluate the contributions, element-by-element and add them to a local array stored by each thread.
Again, we assign element-based evaluation tasks in a dynamic fashion. Once completed, the threads add
the total contribution to the result on the master MPI thread. Finally, the master thread performs a
global reduction across all MPI threads to compute the final result.

5. Results
In this section we present results from two finite-element models: a fully clamped square plate subject

to pressure loading, and a transport aircraft wing-box model subject to maneuver loads. We first examine
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Figure 3: The parallel speed up and efficiency for the Pthreads-only results for the fully clamped plate
subject to a pressure load.

the performance of TACS on the clamped plate to illustrate the scalability of the threaded implementa-
tion. Next, we demonstrate the hybrid MPI/Pthreads scheme for various numbers of MPI and threaded
processes. Finally, we demonstrate the performance of the hybrid MPI/Pthread scheme on a large-scale
design optimization problem with millions of degrees of freedom.

All cases presented here were run on the General Purpose Cluster (GPC) at SciNet [4]. Each node
of the GPC is an Intel Xeon E5540 with a clock speed of 2.53GHz, with 16GB of dedicated RAM
and 8 processor cores. In these comparisons, we only use nodes connected with non-blocking 4x-DDR
InfiniBand.

5.1 Fully clamped plate
In this section, we examine the parallel performance of the hybrid implementation for a relatively

small structural problem on a single 8 core node. In this case we analyze a fully clamped, square plate
subjected to a uniform surface pressure load. We discretize the problem using 64×64 third order MITC9
shell elements [2]. This results in a finite-element mesh with 16 641 nodes, 4 096 elements and just less
than 100 000 degrees of freedom.

In order to isolate the performance of the threaded implementation, we first examine the performance
of several finite-element assembly and factorization tasks with only the use of POSIX threads. Figure 3
shows the parallel speedup and efficiency of the factorization, matrix-matrix product, matrix assembly
and adjoint-∂R/∂x product. In order to account for the use of shared resources on the system, we average
the computational times over several runs.

Overall the Pthreads-only implementation exhibits good parallel efficiency for cases with between 1
and 8 threads. All tasks exhibit excellent parallel efficiency for the cases with between 1 and 4 threads.
However, the matrix-matrix products and matrix factorization do not maintain the same level of efficiency
for the cases with between 5 and 8 threads. Nevertheless, the matrix assembly and adjoint-∂R/∂x product
tasks maintain good scalability all the way to the 8 thread case.

Next, we compare the performance for the hybrid MPI/Pthreads implementation. For these examples,
we omit results from the matrix-matrix products which are only required for single-domain operations
with the parallel matrix factorization. Here, we examine the computational performance of the matrix
factorization, matrix assembly and adjoint-∂R/∂x product. Figure 4 shows the parallel efficiency of
the hybrid code for between 1 and 8 cores. Note that the red, blue, green, and black denote the 1, 2,
4, and 8 MPI-process cases, respectively. The hybrid MPI/Pthread implementation achieves excellent
performance when using between 1 and 4 threads. For this problem the MPI-only cases achieve marginally
better performance than the hybrid MPI/Pthread cases. Note that the higher-than-ideal performance of
the four processor MPI case is due to a fortuitous ordering for the simple square clamped plate problem.
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Figure 4: The parallel speed up and efficiency for the fully clamped plate subject to a pressure load,
with hybrid MPI/Pthreads. The red, blue, green and black denote the 1, 2, 4, and 8 MPI-process cases,
respectively.

Figure 5: The composite wing box model used for the large-scale optimization study with 1.58 million
degrees of freedom.

5.2 Wing box
In this section we examine the computational performance of the hybrid MPI/Pthreads implemen-

tation for a large-scale finite-element model with just over 1.58 million degrees of freedom. The finite-
element model consists of 263 605 nodes and a total of 66 948 third order MITC9 shell elements. Figure 5
shows the strain distribution within the model when subjected to aerodynamic forces from a 2.5g ma-
neuver condition. The wing box is 70 m long and consists of a two-spar configuration with 46 ribs.

In the following cases we ensure that the number of cores is equal to the number of threads per MPI
process times the number of MPI processes. As a result, the SMPs are not oversubscribed and we do
not rely on hyper-threading explicitly. For the cases presented here, we have found that oversubscription
neither improves or harms the computational performance of the present implementation. Therefore for
this study we limit the total number of threads to the available number of SMP cores.

Figure 6 shows the parallel speedup and efficiency for the wing case on 32, 48, and 64 cores for cases
with 1, 2, 4, and 8 threads per MPI process. Note that the parallel efficiency is measured against the 32
core MPI-only case. The matrix computation and assembly scales well for all MPI/Pthread combinations.
The 1, 2, and 4 thread cases attain better than 90% efficiency for all cases, while the 8 thread case drops
below 80% efficiency for the 64 core case. The matrix factorization, however, does not scale as well.
In particular, the cases with 4 and 8 threads only achieve between 50% and 70% efficiency. The matrix
factorization for the MPI-only cases drops to 70% efficiency for the 64 core case, while the 2 thread hybrid
code improves to 75% efficiency for the 64 core case.
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Figure 6: The parallel speed up and efficiency for the wing-box model with 1.58 million degrees of freedom.
Results are shown for the 32, 48 and 64 core cases with 1, 2, 4, or 8 POSIX threads.

6. Conclusions
In this paper, we have presented a hybrid parallel MPI/Pthreads finite-element code implemented

with large-scale gradient-based design optimization in mind. We have demonstrated that the hybrid
MPI/Pthreads implementation achieves excellent parallel efficiency for assembly operations required for
matrix, residual, and gradient evaluation. These are performance-critical tasks that must be repeated
thousands of times within an optimization. While the implementation does not achieve ideal efficiency
for some matrix factorization tasks, this is offset by improved algorithmic efficiency due to a reduction in
the number of domains within the domain decomposition. Overall the implementation achieves excellent
parallel efficiency and is well suited to large-scale structural and multidisciplinary design optimization
applications.
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