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1. Abstract  

The approach of Probability Collectives (PC) in the Collective Intelligence (COIN) framework is one of the 

emerging Artificial Intelligence approaches dealing with the complex problems in a distributed way. It decomposes 

the entire system into subsystems and treats them as a group of learning, rational and self interested agents or a 

Multi-Agent System (MAS). These agents iteratively select their strategies to optimize their individual local goal 

which also makes the system to achieve the global optimum. The approach of PC has been tested and validated by 

solving a variety of practical problems in continuous domain. This paper demonstrates the ability of PC solving 2-D 

space truss structure and 3-D truss structure design problems with discrete as well as continuous variables. The 

approach is shown to be producing competent and sufficiently robust results. The associated strengths, weaknesses 

are also discussed. The solution to these problems indicates that the approach of PC can be further efficiently 

applied to solve a variety of practical/real world problems. 

2. Keywords: Probability Collectives, Collective Intelligence, Multi-Agent System, Discrete Variable Problems 

  

3. Introduction 

In the framework of Collective Intelligence (COIN), the Artificial Intelligence (AI) tool referred to as Probability 

Collectives (PC) is becoming popular for modeling and controlling distributed Multi-Agent System (MAS) [1-15]. 

It was inspired from a sociophysics viewpoint, with deep connections to Game Theory, Statistical Physics, and 

Optimization [1, 2]. According to [1, 2, 9-11], the key characteristics of the PC methodology such as its ability to 

accommodate discrete and continuous variables as well as irregular and noisy functions, tolerance to 

subsystem/agent failure, ability to provide sensitivity information and ability to handle uncertainty in terms of 

probability, use of homotopy function to make the solution jump out of possible local minima, ability to avoid the 

tragedy of commons, high scalability, ability to achieve unique Nash Equilibrium, etc. makes it a very competitive 

choice over other contemporary algorithms. The approach of PC has been applied in variegated areas such as 

airplane fleet assignment problem [12] and various cases of the Multiple Traveling Salesmen Problems (MTSPs) 

[4, 7], continuous constrained problems such as benchmark test problems [7, 9, 13-15], two variations of the Circle 

Packing Problem (CPP) [5], Sensor Network Coverage Problem [10] as well as fault-tolerant system in association 

with the CPP [11]. Furthermore, the segmented beam problem [8], multimodal, nonlinear and non-separable test 

problems comparing the performance with Genetic Algorithm (GA) [24] as well as joint optimization of the 

routing and resource allocation in wireless networks [16-23] have been solved as continuous unconstrained 

problems. In addition, performance of the centralized and decentralized architectures of PC was evaluated solving 

continuous unconstrained 8-Queens problem [24] which underscored superiority of the decentralized approach of 

PC methodology. 

The approach of PC has been applied solving discrete constrained problem such as university course scheduling 

[16] in which the PC approach was failed to generate any feasible solution. Importantly, in order to explore the 

ability of PC solving real world mechanical engineering problems, its potential needs to be tested solving 

continuous and discrete variable problems. This paper intends to validate and explore the ability of PC solving 

three truss structure design problems with continuous and discrete variables. The truss structure problems such as 

17-Bar, two cases of 25-Bar and 72-Bar each were successfully solved and results were validated by comparing 

with the other contemporary algorithms. The robust and competent results validated the strong potential of PC 

methodology solving further real world practical problems with discrete variables. 

The paper is organized as follows. Section 4 discusses the framework and detailed formulation of the constrained 

PC approach. The validation of the PC approach solving continuous and discrete truss structure problem is 

presented in Section 5 along with the solution comparison with other contemporary algorithms. The evident 

features, advantages and limitations of the constrained PC approach are discussed in Section 6 along with the 
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concluding remarks and future work. 

 

4.  Conceptual Framework of Constrained PC 

PC treats the variables in an optimization problem as individual self interested learning agents/players of a game 

being played iteratively. While working in some definite direction, these agents select actions over a particular 

interval and receive some local rewards on the basis of the system objective achieved because of those actions. In 

other words, these agents optimize their local rewards or payoffs, which also optimize the system level 

performance. The process iterates and reaches equilibrium (referred to as Nash equilibrium) when no further 

increase in the reward is possible for the individual agent through changing its actions further. Moreover, the 

method of PC theory is an efficient way of sampling the joint probability space, converting the problem into the 

convex space of probability distribution. PC allocates probability values to each agent’s moves, and hence directly 

incorporates uncertainty. This is based on prior knowledge of the recent action or behavior selected by all other 

agents. In short, the agents in the PC framework need to have knowledge of the environment along with every 

other agent’s recent action or behavior. 

In every iteration, each agent randomly samples the actions/moves/strategies from within its own strategy set (i.e. 

its own sampling interval) as well as from within other agents’ strategy sets and computes the corresponding 

system objectives. The other agents’ strategy sets are modeled by each agent based on their recent actions or 

behavior only, i.e. based on partial knowledge. By minimizing the collection of system objectives, every agent 

identifies the possible strategy which contributes the most towards the minimization of the collection of system 

objectives. Such a collection of functions is computationally expensive to minimize and also may lead to local 

minima. In order to avoid this difficulty, the collection of system objectives is deformed into another topological 

space forming the homotopy function parameterized by computational temperature T . Due to its analogy to 

Helmholtz free energy [9], the approach of Deterministic Annealing (DA) converting the discrete variable space 

into continuous variable space of probability distribution is applied in minimizing the homotopy function. At every 

successive temperature drop, the minimization of the homotopy function is carried out using a second order 

optimization scheme such as the Nearest Newton Descent Scheme [3] or Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) Scheme [5], etc. 

At the end of every iteration, each agent i  converges to a probability distribution clearly distinguishing the 

contribution of its every corresponding strategy. For every agent, the strategy with the maximum probability value 

is referred to as the favourable strategy and is used to compute the system objective and corresponding constraint 

functions. This system objective and corresponding strategies are accepted based on the feasibility-based rule [5, 

11]. This rule allows the objective function and the constraint information to be considered separately. The rule can 

be described as follows: 

1. Any feasible solution is preferred over any infeasible solution 

2. Between two feasible solutions, the one with better objective is preferred 

3. Between two infeasible solutions, the one with more number of improved constraint violations is preferred. 

In addition, once the solution becomes feasible, the sampling space of every agent is shrunk to the local 

neighborhood of its favorable strategy. In this way, the algorithm continues until convergence by selecting the 

samples from the neighbourhood of the recent favourable strategies. The following section discusses the 

constrained PC procedure in detail. 

  

4.1. Constrained PC Algorithm 

Consider the general constrained problem (in minimization case) as follows: 

                                                                Minimize G                                                                                                  (1) 

                                                                 Subject to 0,    1, 2, ...,jg j s≤ =  

               0,    1, 2, ...,jh j w= =  

and associated constraint vector represented as [ ]1 2 1 2C , ,..., , , , ...,s wg g g h h h=  

In PC algorithm, the variable of the problem is considered as computational agent/player of a social game being 

played iteratively [2, 3]. Each agent i  given a strategy [ ] ,   1, 2, 3, ...,r

i iX r m=  from predefined sampling interval 

,
l u

i i i
 Ψ = Ψ Ψ   is referred as interval where l

iΨ  is lower limit and u

iΨ  is upper limit, from which each agent 

selects its strategy and form a strategy set Xi  represented as, 

                                         { }[ ][1] [2] [3]X , , , ..., ,    1, 2, 3, ...,im

i i i i iX X X X i N= =                                                            (2) 

Every agent selects equal number of strategies i.e. 
1 2 1... ...i N Nm m m m m−= = = = = = . The procedure of modified 

PC theory is explained below in detail with the algorithm flowchart in Figure 1.  



 

 

3 

The procedure begins with the initialization of the sampling interval iΨ  for each agent i , computational 

temperature 0T >>  or T → ∞ , temperature step size ( )0 1T Tα α< ≤ , algorithm iteration counter 1n =  and 

number of iteration
testn . The value of  and T testnα  are selected depending on preliminary trials of algorithm. 

Furthermore, the constraint violation tolerance µ  is initialized to number of constraints C , i.e. Cµ = , where 

C  refers to the cardinality of the constraint vector C . 

Step 1. Agent i  selects its first strategy [1]

iX  and samples randomly from other agents strategies. These are the 

random guess by agent i . Thus every agent i  form the combined strategy set [1]
Yi

 for agent i  represented as, 

                                                { }[ ] [?] [?] [ ] [?] [?]

1 2 1Y , , ..., , ..., ,  r r

i i N NX X X X X−=                                                             (3) 

The superscript [?] indicates the random guess of strategies for other agents. 

Step 2. For each of its combined strategy set [ ]
Y

r

i
 such agent i  computes im  objective function values as follows, 

                                             ( ) ( ) ( ) ( )[ ][1] [2] [ ]Y , Y , ..., Y , ..., Y imr

i i i i
G G G G 

                                                        (4) 

The major goal of every agent i  is to identify the strategy which contributes most towards the minimization of the 

sum of these objective systems i.e. the collection of system objective ( )[ ]

1

Y
im

r

i

r

G
=
∑ . 

Step 3. Minimization of function ( )[ ]

1

Y
im

r

i

r

G
=
∑  is more cumbersome to achieve, as it may have many possible local 

minima as it may need excessive computational effort [3]. One way to deal with this difficulty is to deform the 

function into another topological space by constructing the easier function ( )X
i

f , such method is referred as 

homotopy method [27-30]. Such function is easy to compute the global optimum value [27-29]. The deformed 

function can also be referred as homotopy function J , parameterized by computational temperature T  as defined 

earlier, represented as, 

                                               ( ) ( ) ( ) [ )[ ]

1

X , Y  X   ,  0,
im

r

i i i i

r

J T G T f T
=

= + ∈ ∞∑                                                       (5) 

Further, the suitable function for ( )if X  is chosen. The general choice is 
iS  referred as entropy function [26-28]    

                                                         ( ) ( )[ ] [ ]

2

1

log
im

r r

i i i

r

S q X q X
=

= −∑                                                                        (6)       

a) At the beginning of the game, least information is available so it seems too difficult to select the best strategy. 

Therefore agent i selects uniform probability for its strategies. Each agent’s every strategy has probability 1 im  

or being most favorable. Thus probability of r  strategies will be,                                                           

                                                          ( )[ ]X 1   ,  1, 2, ...,r

i i iq m r m= =                                                                        (7) 

and further computes 
im  corresponding system objective values ( )( )[ ]Y r

iE G  as follows,  

                                            ( )( ) ( ) ( ) ( )
( )

[ ] [ ] [ ] [?]

( )Y r r r

i i i i

i

E G G Y q X q X= ∏                                                              (8) 

where ( )i  represents, every agent other than i . Thus every agent compute collection of expected system         

objective values denoted as ( )( )[ ]

1

Y
im

r

i

r

E G
=
∑ .  

b) It seems that PC approach can convert any discrete variable into continuous variable values in the form of 

probabilities corresponding to discrete variable. The problem now becomes continuous but still not easier to 

compute. 

Thus the homotopy function to be minimized by each agent i  is modified as follows: 

                                                    ( )( ) ( )( )[ ]

1

X , Y  
im

r

i i i i

r

J q T E G T S
=

= −∑                                                           (9) 

To minimize the homotopy function, Nearest Newton Descent Scheme was implemented [3].                                                                                                                    
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Figure 1: PC Algorithm Flowchart 

 

Step 4. The minimization of homotopy function is carried out second order optimization technique such as Nearest 

Newton Descent Scheme [3], as explained below. 

In this scheme, the quadratic approximation of Hessian of homotopy function ( )( )X ,i iJ q T  is carried out by every 

agent i  using the probability formed from the coupling of the individual agent’s probability distribution ( )iq X . 

current feasible system 
objective ≤ previous 

feasible system 

objective? 

Y 

test
n n≥

START 

For every agent set up a strategy set with m  strategies, assign uniform probabilities to 

every agent’s strategies, initialize n , T , testn  

Form m  combined strategy sets associated with every agent  

Form the Homotopy function for each agent 

For each agent minimize the Homotopy function using BFGS method and obtain the 

probability distribution for every agent identifying its favorable strategy 
 

Accept current 

objective function 

and related strategies 

Y 

Discard current and 
retain previous 

objective function with 

related strategies 

STOP 

Accept the system 
objective as final solution 

along with agents’ 

associated strategies 

N 

Compute the system objective function and associated constraints 

 

Is the solution 

feasible? 

Compute m  objective functions and associated expected local objectives for each agent 

Y N number of constraints 

satisfied ≥ previous 

solution constraints? 

Accept current 

objective function 

and related strategies 

Discard current and 
retain previous 

objective function with 

related strategies 

Y N 

N 

Solution remains 
unchanged for successive 

testn  iterations? 

Expand the sampling 

interval 

Shrink the sampling 

interval 

Y 

N 

Solution is feasible and 
remains unchanged for 

successive testn  iterations? 

Apply self-adaptive 

perturbation 

Convergence? 

N 

1n n= + , 

T
T T Tα= −

 

N 

Y 
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The simplified resulting probability update rule for each strategy r  of agent i , referred to as ‘k-update rule’ [1-4] 

which minimize the homotopy function in Eq. (9), is represented as; 

                                                     ( ) ( ) ( )1
[ ] [ ] [ ]

.

k k k
r r r

i i step i r updateq X q X q X kα
+

← −                                                    (10)     

( )
( )( )

( ) ( )( )( ) ( )( )

[ ]

[ ]

. 2

[ ] [ ] [ ]

1

  
where log

and    Y Y
i

k
r

ki k r

r update i i

k
mkk

r r r

i i i

r

Contribution of X
k S q X

T

Contribution of X E G E G
=

= + +

 
= −  

 
∑

 

where k  is the corresponding update is number (iteration) and ( )kiS  is the corresponding entropy. The updating 

procedure is as follows: 

a) Set number of iteration 1k = , maximum number of  update 
finalk , and step size ( )0 1step stepα α< ≤ . The value 

of  
finalk  and 

stepα  are held constant throughout the operation. 

b) Update every agent’s probability distribution ( )kiq X  using update rule. 

c) If 
finalk k≥ , stop and go to step 5, else update 1k k= +  and return to (b).  

Step 5. For each agent i  the above minimization process converges the probability distribution of every strategy. 

Which can be seen as a individual agent probability distribution clearly distinguish every strategies contribution 

towards the minimization for the expected collection of system objectives ( )( )[ ]

1

Y
im

r

i

r

E G
=
∑ . 

In other words, for every agent i  if the strategy contributes more towards the minimization of the objective 

compared to other strategies, its corresponding probability certainly increases by some amount more than those for 

the other strategies probability values, so that strategy r  distinguished from the other strategies. Such a strategy 

referred as favorable strategy [ ]fav

iX . Thus it forms corresponding favorable combined strategy set [ ]
Y

fav

i
 and 

favorable system objective ( )[ ]Y fav

iG . 

Step 6. This fourable solution is selected on following selection criterion: 

a) If the constraint violated 
violatedC µ≤ , accept the current solution and set 

violatedC µ= ,and  continue to Step 7.  

b) If violatedC µ> , discard the current solution and retain the previous iteration solution, continue to Step 7. 

c) If current solution is feasible i.e. 0violatedC µ= =  and is not worse than previous feasible solution then accept the 

current solution and continue to Step 7, else discard the current solution and retain the previous solution and 

continue to Step 7. 

Step 7. On the completion of per-specified 
testn  iterations, the following condition is checked for every further 

iteration, i.e. ( ) ( )[ ],[ ],Y Y testfav n nfav nG G
−≤ , then every agent i  shrinks its sampling interval to the local 

neighborhood of its current favorable strategy [ ]fav

iX  using the interval factor λ . In otherwords, for agent i , λ  

strategies on either side of the current favorable strategy [ ]fav

iX  inclusive, will be available for the following 

iteration of the algorithm. 

Step8: Each agent i  then samples im  strategies from within the updated sampling interval and form the 

corresponding updated strategy set Xi
 represented as follows: 

                                                       { }[ ][1] [2] [3]X , , ..., ,    1, 2, 3, ...,im

i i i i iX X X X i N= =                                             (11) 

Reduce the temperature 
TT T Tα= − , iteration 1n n= +  and go to Step 1. 

  

5. Solved Problems 

To test the constrained PC approach, three structural optimization problems were considered such as 17 bar, two 

cases 25 bar and 72 bar, respectively. The 17 bar problem was considered as a continuous whereas; 25 bar and 72 

bar problems were considered as a discrete optimization problems. These problems were previously solved using 

variegated nature inspired approaches such as Genetic Algorithm (GA) [31, 32], , Harmony Search (HS) [33, 34],  

Particle Swarm Optimization (PSO), PSO with Passive Congregation (PSOPC), Hybrid PSO [35, 36], Discrete 

Heuristic Particle Swarm Ant Colony Optimization (DHPSACO) [37], etc. 

Various approaches were proposed with their merits and demerits to handle the discrete constrained optimization 

problems. The Steady State Genetic Algorithms (SSGAs) approach was proposed to solve the discrete truss 
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structure problems using binary digit string to design variables so that to achieve the minimum function 

evaluations and to make the approach more efficient. The penalty-function method and augmented Lagrangian 

approach [32] were used with Preconditioned Conjugate Gradient search because of its low memory requirement 

and ultimately it increase the computational speed and reduce the time for the same. The Harmony Search 

algorithm [33, 34] shows the comparison between aesthetic musical composition and optimization processes to 

determine the global system objective with using both continuous and discrete sizing variables. The discrete 

optimization problems were also solved using Hybrid Particle Swarm Optimization (HPSO) [35, 36], fly-back 

mechanism [35] were used for Pin Connected Structures as a constraint handling technique to improve the 

convergence rate and accuracy of problem solving and in [36] the combination of PSO and HS was proposed to 

solve the discrete optimization problems to get the faster convergence of system objective than PSO and PSOPC. 

The Hybridization of PSOPC, ACO and HS was proposed to get discrete version of HPSACO (i.e. DHPSACO) 

[37] which reduces the search space of the design variables to get faster optimum solution incorporating 

terminating criteria to eliminate the unnecessary iterations.  

In this current work, the constrained PC algorithm was coded in MATLAB 7.7.0 (R2008b) and the simulations 

were run on Windows platform using an Intel Core i5, 2.8GHz processor speed and 4GB RAM. The mathematical 

formulation, results and comparison of solved problems with other contemporary algorithm are discussed below. 

 

Problem 1: 17-Bar Truss Structure 

This problem was solved in [32-33, 35] having 17-bar shown in Figure 2. The aim is to minimize the weight f  

subject to stress and deflection constraints.  

Minimize  
1

N

i i

i

f W Alρ
=

= =∑                                                                                                               (12)   

Subject to max
  1,2,3,...,

i
i Nσ σ≤ =                                                                                    (13) 

            max   1, 2,3,...,ju u j M≤ =  

The weight density of material ρ  is 30.268 lb in and modulus of elasticity E  is 30,000 ksi . The members are 

subjected to stress limitations 
maxσ  of 50 ksi±  and displacement limitations 

maxu  of 2.0 in±  are imposed on all 

nodes in maximum allowable stress in both directions ( ) and x y . The single vertical downward load of 100 kips  

at node 9 was considered. There are seventeen independent design variables. The minimum cross-sectional area of 

the members is 
20.1 in . 

 

 
 

Figure 2: 17-Bar Truss Structure 

 

This problem was suggested in [32-33, 35] as a continuous variables problem. The results obtained from these 

approaches along with PC approach were listed in Table 1. The PC solution to the problem produced competent 

results with reasonable computational cost. The best, mean and worst function values found from twenty trials 

performed were 2828.5863, 2854.91 and 2855.62 respectively with standard deviation 1.375508. The average 

CPU time, average number of function evaluations and associated parameters are listed in Table 9. The 

convergence plot for best PC solution is presented in Figure 3. 
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Table 1:  Performance Comparison of Various Algorithms Solving 17-Bar Truss Structure Problem 

 

Design 

Variables 

GA 

[32] 

HS 

[33] 

PSO 

[35] 

PSOPC 

[35] 

HPSO 

[35] 
Proposed 

PC 

1x  16.029 15.821 15.766 15.981 15.896 15.6498 

2x  0.107 0.107 2.263 0.100 0.103 0.1788 

3x  12.183 11.996 13.854 12.142 12.092 12.3751 

4x  0.110 0.100 0.106 0.100 0.100 0.109 

5x  8.417 8.150 11.356 8.098 8.063 8.3895 

6x  5.715 5.507 3.915 5.566 5.591 5.3713 

7x  11.331 11.829 8.071 11.732 11.915 12.1696 

8x  0.105 0.100 0.100 0.100 0.100 0.1138 

9x  7.301 7.934 5.850 7.982 7.965 7.8897 

10x  0.115 0.100 2.294 0.113 0.100 0.1074 

11x  4.046 4.093 6.313 4.074 4.076 3.9733 

12x  0.101 0.100 3.375 0.132 0.100 0.1247 

13x  5.611 5.660 5.434 5.667 5.670 5.4795 

14x  4.046 4.061 3.918 3.991 3.998 4.1713 

15x  5.152 5.656 3.534 5.555 5.548 5.5829 

16x  0.107 0.100 2.314 0.101 0.103 0.1548 

17x  5.286 5.582 3.542 5.555 5.537 5.3948 

( )f lb  2594.42 2580.81 2724.37 2582.85 2582.85 2584.025556 

 

 
 

Figure 3: Convergence plot for minimum weight of 17-bar truss structure problem 

 

Problem 2: 25-Bar Truss Structure 

The 25 bar 3-D truss structure problem [31, 34, 36, 37] shown in Figure 4 has an aim to minimize the weight f  (or 

W ) subject to minimum stress and minimum deflection as follows: 

Minimize  
1

N

i i

i

f W A lρ
=

= = ∑                                                                                                               (14)   

Subject to max   1,2,3,...,i i Nσ σ≤ =                                                                                         (15) 

            max
  1,2,3,...,

j
u u j M≤ =  

All truss members were assumed to be constructed from a material with an elastic module of 10000E ksi=  and the 

weight density of 3
0.1 /lb inρ = . The structure is subjected to load listed in Table 2. The maximum stress limit 

maxσ is 40 ksi  in both tension and compression for all the members. The maximum displacement 
maxu  of all nodes 

in both horizontal and vertical directions is limited to 0.35 in± . Since the structure was doubly symmetric about the 

x-axis and y-axes, the problem involved eight independent design variables after linking in order to impose 
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symmetry. The number of independent size variables was reduced to eight groups as follows: (1) 1x , (2) 2 5x x� , 

(3) 
6 9x x� , (4) 

10 11x x� , (5) 
12 13x x� , (6) 

14 17x x� , (7) 
18 21x x�  and (8) 

22 25x x� .  

Case 1: The discrete variables are selected from the set iX = {0.01, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 

4.8, 5.2, 5.6, 6.0} 
2in . 

Case 2: The discrete variables are selected from the American Institute of Steel Construction (AISC) Code, listed in 

Table 2. 

This problem was previously solved in [31, 34, 36, 37]. The best results obtained using these approaches along 

with PC methodology for Case 1 and Case 2 are listed in Table 4 and Table 5, respectively.  The PC solution to the 

problem produced competent results at reasonable computational cost. The best, mean and worst function values, 

i.e. the weight W  of the truss structure for Case 1 obtained from twenty trials were 477.16684 lb with zero 

standard deviation and for Case 2 were 464.14708 lb, 475.8719057 lb and 477.15846 lb, respectively with standard 

deviation 2.933655244. The average CPU time, average number of function evaluations and associated parameters 

are listed in Table 9. The convergence plots for Case 1 and Case 2 are shown in Figure 5 and Figure 6, respectively.  

 

Table 3: Available Cross Section Area of the AISC Code 

 

Sr. no.               2in   Sr. no. 2in   Sr. no. 2in   

1 0.111 23 2.62 45 7.97 

2 0.141 24 2.63 46 8.53 

3 0.196 25 2.88 47 9.3 

4 0.25 26 2.93 48 10.85 

5 0.307 27 3.09 49 11.5 

6 0.391 28 3.13 50 13.5 

7 0.443 29 3.38 51 13.9 

8 0.563 30 3.47 52 14.2 

9 0.602 31 3.55 53 15.5 

10 0.766 32 3.63 54 16 

11 0.785 33 3.84 55 16.9 

12 0.994 34 3.87 56 18.8 

13 1 35 3.88 57 19.9 

14 1.228 36 4.18 58 22 

15 1.266 37 4.22 59 22.9 

16 1.457 38 4.49 60 24.5 

17 1.563 39 4.59 61 26.5 

18 1.62 40 4.8 62 28 

19 1.8 41 4.97 63 30 

20 1.99 42 5.12 64 33.5 

21 2.13 43 5.74   

22 2.38 44 7.22   

 

Table 2: Loading Condition for 25 Bar 

 

Nodes               
xP   yP kips   

zP kips   xP kips   yP kips   
zP kips   

1 0.0 20.0 -5.0 1.0 10.0 -5.0 

2 0.0 -20.0 -5.0 0.0 10.0 -5.0 

3 0.0 0.0 0.0 0.5 0.0 0.0 

6 0.0 0.0 0.0 0.5 0.0 0.0 
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Figure 4: 25-Bar Truss Structure 

 

Table 4: Performance Comparison of Various Algorithms Solving 25-Bar Case 1 Truss Structure Problem 

 

Variables              GA  

[31] 

HS 

 [34] 

PSO  

[36] 

PSOPC  

[36] 

HPSO 

 [36] 

DHPSACO 

[37] 
Proposed 

PC 

1x  0.4 0.01 0.01 0.01 0.01 0.01 0.01 

2 5x x�  2.0 2.0 2.6 2.0 2.0 1.6 0.4 

6 9x x�  3.6 3.6 3.6 3.6 3.6 3.2 3.6 

10 11x x�  0.01 0.01 00.01 0.01 0.01 0.01 0.01 

12 13x x�  0.01 0.01 0.4 0.01 0.01 0.01 2 

14 17x x�  0.8 0.8 0.8 0.8 0.8 0.8 0.8 

18 21x x�  2.0 1.6 1.6 1.6 1.6 2.0 0.01 

22 25x x�  2.4 2.4 2.4 2.4 2.4 2.4 4 

( )f lb   563.52 560.59 566.44 560.59 560.59 551.61 477.16684 

 

Table 5: Performance Comparison of Various Algorithms Solving 25-Bar Case 2 Truss Structure Problem 

 

Variables              GA  

[31] 

PSO 

 [36] 

PSOPC  

[36] 

HPSO  

[36] 

DHPSACO 

[37] 
Proposed 

PC 

1x  0.307 1.000 0.111 0.111 0.111 0.111 

2 5 x x�  1.990 2.620 1.563 2.130 2.130 0.563 

6 9 x x�  3.130 2.620 3.380 3.380 3.380 3.13 

10 11 x x�  0.111 0.250 0.111 0.111 0.111 0.141 

12 13 x x�  0.141 0.307 0.111 0.111 0.111 1.8 

14 17 x x�  0.766 0.602 0.766 0.766 0.766 0.766 

18 21x x�  1.620 1.457 1.990 1.620 1.620 0.111 

22 25 x x�  2.620 2.880 2.380 2.620 2.620 3.88 

( )f lb  556.49 567.49 567.49 551.14 551.14 464.14708 

 

 



 

 

10 

 

 
 

Figure 5: Convergence plot for minimum weight of 

25-bar Case 1 truss structure problem 

 
 

Figure 6: Convergence plot for minimum weight of 

25-bar Case 2 truss structure problem 

 

Problem 3: 72-Bar Truss Structure 

For the 72-bar spatial truss structure shown in Figure 6 was previously solve in [31, 34, 36, 37] has an aim to 

minimize the weight (or )f W .  

Minimize  
1

N

i i

i

f W A lρ
=

= = ∑                                                                                                               (16)   

Subject to max   1,2,3,...,i i Nσ σ≤ =                                                                                    (17) 

            max
  1,2,3,...,

j
u u j M≤ =  

The material density ρ  is 3
0.1 lb in  and the modulus of elasticity E  is 10000 ksi . The members are subjected to 

the stress limits maxσ  of 25ksi± . The structure is subjected to load listed in Table 6. The nodes are subjected to the 

displacement limits 
maxu  of 0.25in . The 72 structural members of this spatial truss are sorted into 16 groups using 

symmetry: (1) 1 4x x� , (2) 5 12x x�  (3) 13 16x x� , (4) 17 18x x� , (5) 19 22x x� , (6) 23 30x x� , (7) 31 34x x� , (8) 35 36x x� , 

(9)
37 40x x� , (10)

41 48x x� , (11)
49 52x x� , (12)

53 54x x� , (13)
55 58x x� , (14)

59 66x x� , (15)
67 70x x�  and (16)

71 72x x�  . 

Two optimization cases are implemented.  

For Case 1: The cross-section area of design variable for respective case should be selected from the set 
iX  ={0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 

2.9, 3.0, 3.1, 3.2}
2in .  

For Case 2: The cross-section area of design variable for respective case should be selected from the Table 3. 
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Figure 7: 72-Bar Truss Structure 

 

This problem was previously solved in [31, 34, 36, 37]. The best results obtained using these approaches along 

with PC methodology for Case 1 and Case 2 are listed in Table 7 and Table 8, respectively.  The PC solution to the 

problem produced competent results at reasonable computational cost. The best, mean and worst function values, 

i.e. the weight W  of the truss structure for Case 1 obtained from twenty trials were 372.40954 lb, 380.10692 lb 

and 395.99776 lb with standard deviation of 6.757504 and for Case 2 were 379.907983 lb, 382.329656 lb and 

383.857921 lb, respectively with standard deviation 1.369460465. The average CPU time, average number of 

function evaluations and associated parameters are listed in Table 9. The convergence plots for Case 1 and Case 2 

are shown in Figure 8 and Figure 9, respectively. 

 

Table 6: Loading Condition for 72 Bar 

 

Nodes               
xP   yP kips   

zP   xP   yP   
zP kips   

17 5.0 5.0 0.0 0.0 0.0 -5.0 

18 0.0 0.0 0.0 0.0 0.0 -5.0 

19 0.0 0.0 0.0 0.0 0.0 -5.0 

20 0.0 0.0 0.0 0.0 0.0 -5.0 

 

Table 7: Performance Comparison of Various Algorithms Solving 72-Bar Case 1 Truss Structure Problem 
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Variables              GA 

[31] 

HS 

[34] 

PSO 

[36] 

PSOPC 

[36] 

HPSO 

[36] 

DHPSACO 

[37] 
Proposed    

PC 

1 4x x�  1.5 1.9 2.6 3.0 2.1 1.9 2.1 

5 12 x x�  0.7 0.5 1.5 1.4 0.6 0.5 0.5 

13 16 x x�  0.1 0.1 0.3 0.2 0.1 0.1 0.1 

17 18 x x�  0.1 0.1 0.1 0.1 0.1 0.1 0.1 

19 22 x x�  1.3 1.4 2.1 2.7 1.4 1.3 1.2 

23 30 x x�  0.5 0.6 1.5 1.9 0.5 0.5 0.5 

31 34x x�  0.2 0.1 0.6 0.7 0.1 0.1 0.1 

35 36 x x�  0.1 0.1 0.3 0.8 0.1 0.1 0.5 

37 40 x x�  0.5 0.6 2.2 1.4 0.5 0.6 0.5 

41 48 x x�  0.5 0.5 1.9 1.2 0.5 0.5 0.1 

49 52 x x�  0.1 0.1 0.2 0.8 0.1 0.1 0.1 

53 54 x x�  0.2 0.1 0.9 0.1 0.1 0.1 0.1 

55 58 x x�  0.2 0.2 0.4 0.4 0.2 0.2 0.5 

59 66 x x�  0.5 0.5 1.9 1.9 0.5 0.6 0.5 

67 70 x x�  0.5 0.4 0.7 0.9 0.3 0.4 0.4 

71 72 x x�  0.7 0.6 1.6 1.3 0.7 0.6 0.6 

( )f lb  400.66 387.94 1089.88 1069.79 388.94 385.54 372.40954 

 

Table 8: Performance Comparison of Various Algorithms Solving 72-Bar Case 2 Truss Structure Problem 

 

Variables              GA 

[31] 

PSO 

[36] 

PSOPC 

[36] 

HPSO 

[36] 

DHPSACO 

[37] 
Proposed 

PC 

1 4x x�  0.196 7.22 4.490 4.970 1.800 1.8 

5 12 x x�  0.602 1.80 1.457 1.228 0.442 0.563 

13 16 x x�  0.307 1.13 0.111 0.111 0.141 0.111 

17 18 x x�  0.766 0.196 0.111 0.111 0.111 0.141 

19 22 x x�  0.391 3.09 2.620 2.880 1.228 1.457 

23 30 x x�  0.391 0.785 1.130 1.457 0.563 0.443 

31 34x x�  0.141 0.563 0.196 0.141 0.111 0.111 

35 36 x x�  0.111 0.785 0.111 0.111 0.111 0.111 

37 40 x x�  1.800 3.090 1.266 1.563 0.563 0.602 

41 48 x x�  0.602 1.228 1.457 1.228 0.111 0.443 

49 52 x x�  0.141 0.111 0.111 0.111 0.250 0.111 

53 54 x x�  0.307 0.563 0.111 0.196 0.196 0.111 

55 58 x x�  1.563 0.990 0.442 0.391 0.563 0.111 

59 66 x x�  0.766 1.620 1.457 1.457 0.442 0.563 

67 70 x x�  0.141 1.563 1.228 0.766 0.766 0.443 

71 72 x x�  0.111 1.266 1.457 1.563 1.563 0.563 

( )f lb  427.203 1209.48 941.82 933.09 393.380 379.907983 
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Figure 8: Convergence plot for minimum weight of 

72-bar Case 1 truss structure problem 

 
 

Figure 9: Convergence plot for minimum weight of 

72-bar Case 2 truss structure problem 

 

Table 9: The function values and set of parameters associated with the PC method  
 

Problems 

System Sol. 

Best 

Mean 

Worst 

Standard 

Deviation 

Average 

number of 

function 

evaluation 

Average 

Computational 

Time 

(min.) 

Closeness to 

the best 

Reputed 

Solution % 

Set of 

Parameters 

im  λ  T  
Tα  

 

17-bar truss 

structure                    

2584.02556 

2586.11318 

2589.25345 

 

 

1.375508 

 

6628943 

 

 

18.78 

 

-0.04551 

 

7, 0.001c, 40, 0.05 

25-bar  truss  

Structure 

Case 1 

Case 2      

 

477.16684 

477.16684 

477.16684 

 

476.43010 

476.56160 

477.15846 

 

0 

 

 

 

0.216449 

 

 

 

1844457 

 

 

 

1963415 

2.3657 

 

 

 

4.56 

 

 

13.495* 

 

 

 

13.555* 

 

7, 1d, 500, 0.005 

 

 

 

7, 1d, 500, 0.005 

72-Bar Truss  

Structure     

Case 1 

Case 2 

372.40954 

380.10692 

395.99776 

 

379.90798 

382.32966 

383.85792 

 

6.757504 

 

 

 

1.369460 

 

 

8843207 

 

 

 

8730598 

 

 

34.458 

 

 

 

30.9947 

 

 

3.424
*
 

 

 

 

3.405
* 

 

7, 1
d
, 500, 0.005 

 

 

 

7, 1
d
, 500, 0.005 

The sampling interval factor associated with the c and d are listed in Table 9 represented as: 
c  Continuous Variable 
d  Discrete Variable 

*Shows the optimal design obtained using PC was better than the associated algorithms. 

 

6. Discussion and Conclusion  
This paper proposed the applicability of the PC methodology solving a variety of continuous as well as discrete 2-D 

and 3-D truss structure problems. The approach of PC produced much better results as compared with the other 

contemporary approaches. The results were sufficiently robust and computational cost was found to be acceptable. 

It implies that the rational behavior of the agents could be successfully formulated and demonstrated. It is important 

to highlight that the distributed nature of the PC approach allowed the total number of function evaluations to be 

equally divided among the agents of the system. This can be made practically evident by implementing the PC 

approach on a real distributed platform assigning separate workstations carrying out the computations 

independently. These advantages along with the directly incorporated uncertainty using the real valued probabilities 

treated as variables, and importantly, the solution to the discrete problems indicate that the approach of PC can be 

further efficiently applied to solve a variety of practical/real world problems. 

It is worth to mention some of the key differences of the PC methodology presented here and the original PC 

approach [1-3, 12, 14]. In the present approach, fewer numbers of samples were drawn from the uniform 
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distribution of the individual agent’s sampling interval. On the contrary, the original PC approach used a Monte 

Carlo sampling method which was computationally expensive and slow as the number of samples needed was in the 

thousands or even millions. Most significantly, the sampling in further stages of the PC algorithm presented here 

was narrowed down in every iteration by selecting the sampling interval in the neighborhood of the most favorable 

value in the particular iteration. This ensures faster convergence and an improvement in efficiency over the original 

PC approach in which regression was necessary to sample the strategy values in the close neighborhood of the 

favorable value. Moreover, the coordination among the agents representing the variables in the system was achieved 

based on the partial small bit of information. In other words, in order to optimize the global/system objective every 

agent selects its best possible strategy by guessing the model of every other agent based merely on their recent 

favorable strategies communicated. This gives the advantage to the agents and the entire system to quickly search 

the better solution and reach the Nash equilibrium and avoid the tragedy of commons [5, 6]. The work on fine tuning 

the parameters such as the number of strategies 
im  in every agent’s strategy set 

iX  and the interval factor λ which 

essentially decide the rate of solution convergence is currently underway. 
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