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1. Abstract  

This paper presents the Genetic Algorithm (GA) with a Population-Based Sampling (PBS) technique that enables 

optimization under uncertainty with discrete variables at a lower computational expense than using Monte Carlo 

Sampling (MCS) for every fitness evaluation. The optimization of composite laminates using ply orientation 

angles as discrete variables provides an example to demonstrate further developments of the GA with 

Population-Based Sampling for discrete optimization under uncertainty. The focus problem aims to reduce the 

expected weight of the composite laminate while treating the laminate’s fiber volume fraction and externally 

applied loads as uncertain quantities following normal distributions. Results indicate a reduction in computational 

cost by three orders of magnitude through the implementation of GA-PBS in comparison to the GA-MCS. The 

study also investigates two different implementations of parallel computation in the GA-PBS and compares the 

results from these two schemes. 

 

2. Keywords: discrete optimization, uncertainty, composite laminate design, population-based sampling 

 

3. Introduction 

Researchers from several engineering and non-engineering disciplines have demonstrated the use of probabilistic 

design approaches to avoid excessively conservative designs. Design with a safety margin typically yields 

expensive products without an accurate risk assessment. The design approach using safety margins only gives a 

point estimate of the structural performance whereas probabilistic methods predict an interval estimate for the 

probability of successful structural performance. However, design optimization under uncertainty can result in 

high computational costs. 

Making use of traditional sampling techniques such as the Monte Carlo Sampling (MCS) in an optimization 

framework proves to be computationally expensive because a large number of samples are needed to predict the 

expected objective and / or constraint values of each design generated in the optimization run to provide high 

confidence levels for the predicted values. From the analysis of previous research efforts, the MCS technique is a 

popular sampling method accompanying zero-order methods such as the GA in reliability based optimization. 

Cantoni et al. [1]
 
demonstrated the use of GA with MCS for an optimal industrial plant design under conflicting 

safety and economic constraints. A profit function is employed as the fitness function to be maximized by altering 

the value of five design variables. The study also deemed the full run of MCS for each potential design impractical 

and suggested a modified selective sampling approach. The combination of GA with MCS was also used to assess 

the reliability of a water quality system by obtaining optimum waste load allocation solutions [2]. The total 

treatment cost is minimized while achieving a specified level of reliability of meeting the water quality standard at 

a critical location. The authors introduced a First Order Reliability Method (FORM) to replace the computationally 

expensive MCS scheme without significant loss of accuracy.  

Population-Based Sampling (PBS) aims to overcome the challenge of high computational costs associated with 

probabilistic optimization methods. Crossley [3] originally proposed this sampling concept for the GA using a 

three-bar truss as an example problem. Subsequently, Hassan [4] further refined the approach and used it for the 

discrete optimization problem presented by the conceptual design of spacecraft. This study adds some 

improvisations to the existing GA with PBS technique for optimization under uncertainty. The work proposes and 

demonstrates the use of two new sample accumulation techniques for PBS – design count-based increase in sample 

size and stepwise increase in sample size. The design count-based sample accumulation technique exploits the 

convergence characteristics of the GA to assign samples to designs in a generation. The stepwise sample 

accumulation technique uses the current generation number of the GA run to assign an appropriate sample size. In 

addition, parallel computation exploits the independence of individual fitness function evaluations and conducts 

these calculations in parallel. In general, the new sample accumulation schemes coupled with parallel computing 

efforts has shown significant reduction in computational time and cost of the GA.  
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Design of composite materials is complicated due to the number of variables involved both at the material and 

structural level. In laminated composite structures, each ply has its greatest stiffness and strength properties along 

the direction of the fibers. By orienting each layer at different angles relative to each other, the structure can be 

designed for a specific loading environment. In this study, the discrete optimization problem with PBS aims to 

reduce the expected weight of a composite laminate while treating the externally applied loads and the variation in 

fiber volume fraction as uncertain quantities following a normal distribution. A sample consists of a single instance 

from each of the uncertain parameter distributions. The constraints enforced include the probability of satisfying 

the Tsai-Hill failure criterion and the maximum strain limit. The calculations to establish the expected values of 

constraints and fitness values use the Classical Laminate Theory (CLT).  

 

4. Relevant Methods and Analysis Tools 

 

4.1. Analysis of Composite Laminates 

The Classical Laminate Theory is the analysis tool employed in the study for discrete optimization under 

uncertainty to determine the performance characteristics of the laminate. CLT combines material properties and 

fiber orientation to account for extensional, flexural and torsional deformations and the coupling effects between 

these deformations. The reduced stiffness matrix for each lamina is constituted based on its mechanical properties 

[5].  

The matrix A is called the extensional stiffness matrix, B, the coupling stiffness matrix and D, the bending stiffness 

matrix. The in-plane deformations in the laminate are related to the external loads by Eq. (1). 
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Symmetric laminates have no extension-bending coupling – a pure in-plane loading on these laminates will not 

cause an out-of-plane deformation. Hence, the coupling matrix, B, for such laminates is a zero matrix. Symmetric 

laminates are highly preferred in manufacturing for this same reason and this study restricts all laminate designs to 

be symmetric. 

Fiber composites are a heterogeneous media, but a macro homogeneous solid with certain effective moduli that 

describe the average material properties of the composite may effectively represent them. The square fiber model 

is used as the micromechanics model to evaluate the average material properties. This model assumes the fiber to 

be a square with fiber volume fraction vf. Based on this assumption, the effective moduli along the x, y, and z 

directions are obtained from the reduced stiffness coefficients using Eqs. (2), (3), and (4).  
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For isotropic materials, the von Mises yield criterion states that the yielding of a material occurs when the 

distortion energy density equals the distortion energy density at yield in pure tension. The Tsai-Hill theory is an 

extension of the von Mises failure criterion for orthotropic materials [6]. The Tsai-Hill criterion assumes known 

values of the failure strengths in the principal directions. The yield criterion obtained from this appears in Eq. (5), 

where values above 1.0 suggest failure; this criterion becomes a constraint in the discrete optimization problem. 
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4.2. Genetic Algorithm  

The Genetic Algorithm (GA) is a heuristic search process that mimics the process of natural selection. The 

probabilistic elements of the search technique make the GA likely to search across the entire design space and not 

be trapped in local minima. This adaptive search process, which includes some randomized features, has been 

widely used in the design optimization of complex systems; but the GA requires a fairly high computational cost 

compared to calculus-based methods. The GA, however, can also address problems that calculus-based methods 

cannot, including designs with discrete variables. Before implementing the GA, the potential range of the design 

variables are coded into strings that the computer can process. It is common to encode the design variables as 

binary strings of 1’s and 0’s.  



 

 

3 

 

This study uses the MATLAB GA and employs Gray Coding, tournament selection, scattered crossover and 

uniform mutation. The tournament selection process picks two individuals at random without replacement, from 

the population of each generation. The fitness values of these two individuals are compared and the individual with 

a better (lower for a minimization problem) fitness value is copied over to the mating pool while the other 

individual is discarded. The scattered crossover process uses a crossover fraction Pc of 0.8, indicating 80% of a 

given population undergo crossover to form children for the next generation (the other 20% pass to the next 

generation directly). Scattered crossover generates a random binary vector to describe the crossover; when the 

vector element is 1, the gene from the first parent is selected and when the vector element is 0, the corresponding 

gene from the second parent is selected. The GA used here only generates one child from a set of two parents. 

Figure 1 illustrates the crossover procedure with an example. 
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Figure 1: Illustration of scattered crossover procedure 

 

The mutation process introduces diversity in the population by randomly switching a gene and encourages better 

exploration of the design space. Mutation is often a secondary operator performed with a low probability. The 

mutation operator used for this work is the uniform mutation operator with a probability Pm, of 1.98×10
-3

; the value 

of Pm is obtained based on Eq. (6) [7].  
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A good mutation rate encourages exploration but does not turn the GA into a random search. If a mutation rate is 

good, a design with the newly introduced trait will have a good fitness value and survive to pass that trait to its 

offspring. The poor designs generated as a result of mutation will have poor fitness and will not survive the 

tournament selection. 

The GA cannot handle constraints explicitly; the fitness function, therefore, reflects the ‘goodness’ of a design and 

it incorporates the objective function and information about any violated constraints. Commonly, penalty methods 

are used to handle violated constraints in the GA. Penalty methods convert a constrained optimization problem into 

an unconstrained one by adding a penalty term to the objective function when the constraints are violated. This 

work implements a quadratic exterior penalty method to handle violated constraints and the general construct of 

this penalty method appears in Eqs. (7) and (8).  

            
p
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max 0,P x g x     (8) 

Handling constraints using the exterior penalty method function approach discourages the propagation of 

infeasible designs but allows designs with very small constraint violations to survive. The appropriate choice of 

value for the penalty multiplier rp, is generally problem dependent, and the rp value used here is 50. 

 

5. Problem Description 

In probabilistic approaches, for a predetermined accuracy of prediction, the confidence level associated with the 

predicted values of the uncertain aggregate function is proportional to the number of samples (Nsamples) used to 

predict the expected values of those uncertain functions. This study treats the objective function and constraints as 

functions of input from uncertain parameters. The mathematical formulation of the expected value of the objective 

function and constraints appear in Eqs. (9) through (13). 

Minimize:    ( , )     E f x E mass of laminate   (9) 
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The constraints gj are as follows. 
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2

   ( )
( )  1 -    0

 

Laminate Effective Modulus x
g x

Minimum Modulus
   (12) 

 
3

-   ( ) 
( )  1  0 

limit

Mid plane Strain x
g x


    (13) 

Each sample (ξ) in this study contains a random instance from the normal PDF of external loads and the variation 

in fiber volume fraction. 
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Fitness function:  
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Sixteen design variables describe the composite laminate. These variables correspond to one half of the stack of 

ply orientation angles for the plate. This formulation limits the maximum number of plies in the plate to 32. Eight 

discrete options are available for the ply orientation angles, 0º, 90º, 45º, 30º, 60º, -45º, -30º, -60º. A ‘no-ply’ option 

is coded into the algorithm as a discrete option for a design variable, making it possible to have any even-numbered 

value between 0 and 32 for the total number of plies. The chromosome length for this case study is 64 bits (16 

variables, each represented by four bits). Based on the chromosome length, a constant population size of 256 (4 × 

chromosome length) is employed for the GA run. 

The stopping criterion for the GA with Monte Carlo Sampling (MCS) runs two checks; the stall generation limit is 

set to be 40 and the average change in the best fitness value beyond the stall generation limit must be less than 

1×10
-3

. Furthermore, the best design should have satisfied all constraints for at least 99% of the samples evaluated. 

At a confidence level of 99%, each individual in a generation uses 10,000 samples to evaluate the expected values 

of the objective function and constraints. Thus, the number of fitness evaluations for a single generation is 

2,560,000. The study, therefore, implements the Population-Based Sampling (PBS) scheme to perform design 

optimization under uncertainty using a GA with significantly lower computational cost than the traditional 

Monte-Carlo Sampling method. 

 

6. Sample Size Assignment in Population-Based Sampling 

The PBS approach makes use of the large number of individual designs evaluated by the GA in each generation. 

Good designs tend to appear in multiple generations and eventually, the population has multiple copies of such 

good designs in the same generation. If each fitness evaluation for the good designs uses a few samples, the 

opportunity exists to accumulate a large number of samples for the same design. This large number of samples 

gives good estimates for the expected objective function values and constraints for design solutions with desirable 

design characteristics. Hassan and Crossley [8, 9] investigated various reliability-based methods to optimize the 

configuration of a spacecraft system. The PBS method was mathematically formulated and successfully applied to 

the optimization of spacecraft configuration with less than 0.2% variation in accuracy in comparison to MCS. The 

use of PBS method showed a reduction in the number of function evaluations by two orders of magnitude.  

This work aims to further improve the computational efficiency of the PBS technique with two different sample 

accumulation methods – design count-based increase in sample size and stepwise increase in sample size. The 

mean of the objective function and constraints are calculated with the available sample size in both methods. Every 

individual evaluated by the GA is stored and fitness function values are updated as the individual accumulates 

more samples over the course of the GA run. The mathematical formulation of these two sample accumulation 

methods appears in Table 1. The wall clock time of the GA-PBS is reduced by incorporating parallel computation. 
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Table 1: Sample accumulation methods 

 

Design Count-Based Increase in 

Sample Size  Stepwise Increase in Sample Size 

 

best best
gen-1 gen-1

best
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The first sample accumulation method counts the number of occurrences of the best design in the previous 

generation and assigns a proportional sample size to each individual in the current generation. The constant of 

proportionality (k1) used for the GA-PBS runs is 18.  This constant value was chosen based on trial runs to strike a 

balance between the risk of early convergence of the GA (resulting in a far from optimal solution) and the risk of 

prolonged run time (resulting in high computational expense). Based on this sample size assignment technique, if 

the best design appeared three times in the previous generation, each individual in the current generation would 

receive 54 (18×3) different samples of ξ. 

The design count-based sample assignment process makes no distinction in sample sizes assigned to good designs 

and poor designs in the same generation. Because the sample size for every design in a generation depends only on 

the frequency of occurrence of the best design, the individuals with good fitness values and those with poor fitness 

values in the same generation get the same number of samples. The PBS scheme with stepwise increase in samples 

first determines an individual’s fitness function value with one sample. This sample is just a collection of the 

deterministic design variables and the mean values of the uncertain parameters. The magnitude of difference 

between the individual’s fitness function value and the fitness value of the best design (up to that point in the GA 

run) is determined, and a sample size that is inversely proportional to this difference is assigned to the individual. 

Thus, the designs with poor fitness function values receive fewer samples.  

The sample size also depends on how far the GA run has progressed. The first 20 generations have been largely 

exploratory for this specific focus problem (this needs prior assessment of convergence trends) and fewer samples 

are expended at this stage of the GA run. A large value of c1, c2 and c3 would cause the GA to converge faster but 

introduces more samples per design evaluation. Since the stopping criterion requires the best design to have 

accumulated a total of 10,000 samples, large values for these constants will cause the GA to converge in fewer 

generations. However, the caveat here is the possibility of premature convergence. In this case study, c1, c2 and c3 

are assigned values 5, 1 and 2, respectively. The constant value ε is positive and prevents division by zero if the 

fitness value of the current design equals that of the best design. The constant ε is assigned a value of 0.1 in this 

study. The ceiling function ensures that every design gets at least one sample during the PBS process. 

The stopping criterion to halt the GA run with the PBS approach has three parts. The first part checks the total 

number of samples accumulated by the best design. The run is not stopped until the design with the best fitness 

value has accumulated at least a specified number of samples, depending on the confidence level required. The 

value of the total sample limit based on the required confidence interval appears in Table 2. The second part checks 

for the average change in the best fitness value in the last ten generations to be less than 1×10
-3

. The last part of the 

stopping criterion ensures that the best design has not changed in the last five generations. 

 

Table 2: Total sample limit based on required confidence level 

 

Confidence Level (%) Total number of samples 

90 100 

95 400 

97.5 1600 

99 10,000 
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7. Results 

 

7.1. Sample Accumulation Results  

Figures 2 and 3 depict the accumulation of samples by the best design from the beginning to the end of a GA run 

from the design count-based and stepwise increase sample assignment techniques, respectively. The stopping 

criterion is checked only at the end of each generation. Therefore, the total number of samples accumulated by the 

best design may cross 10,000 at the end of the last generation. 
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Figure 2: Sample accumulation from design count-based increase in samples 

 

For this particular GA run that lasted 44 generations, the optimal design is identified in the 32
nd

 generation and it 

accumulated 10,512 samples at the end of the 44
th

 generation. This activates the stopping criterion of the GA –PBS 

at 99% confidence level.   
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Figure 3: Sample accumulation from stepwise increase in samples 

 

In this GA run with stepwise increase in samples, the best design first appeared in the 30
th

 generation. This design 

received 20 samples in this generation based on the comparison of its fitness value to the best value previously 

encountered by the GA. Eventually, there were 93 copies of the best design in the 55
th

 generation; the individual 

received a total of 11,000 samples at the end of the GA run. 

 

7.2. Comparison of Results from GA-MCS and GA-PBS 

Figures 4 through 6 summarize the results of the two non-deterministic approaches – MCS and PBS. Three GA 

runs were conducted at four confidence levels – 90%, 95%, 97.5%, and 99%. The mean value of the laminate mass 

from the three GA runs is plotted at four confidence levels in Fig 4. Figures 5 and 6 illustrate the mean 

computational time and cost associated with the GA runs with the two non-deterministic techniques at the four 

confidence levels. Note that Figs. 5 and 6 use a log10 scale for clarity of variation across large orders of magnitude. 
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Figure 4: Mean laminate mass found using MCS and PBS at various confidence levels 

 

The total mass of the optimal laminate design at 90% confidence from both approaches is same up to three decimal 

places. However, at higher confidence levels, the PBS approach results in a heavier composite laminate. Every 

estimation in the GA-MCS technique has the same level of accuracy because they have the same number of 

samples. However, in GA-PBS, the designs eliminated in the initial phase are associated with poor estimations 

based upon small sample sizes. ‘Useful’ designs may get eliminated in the initial phase of the GA-PBS owing to 

poor fitness estimation and not re-emerge in the GA run, thus resulting in a heavier optimal laminate configuration.  

The average variation in laminate mass using the two approaches is calculated to be 0.0157 kg, which corresponds 

to a difference of one ply in the laminate. 
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Figure 5: Average time taken by GA-PBS and GA-MCS at various confidence levels 

 

The fitness analyses for both approaches were run in parallel on an eight core server for meaningful comparison. 

At a confidence level of 90%, the average GA-PBS run time is observed to be 596.48 seconds.  However, the 

average run time for the same algorithm at 95% confidence level is 7.4% less despite the four-fold increase in total 

sample size. The MCS fitness analyses and sampling processes, on the other hand, are independent of each other – 

no data transfer is required among the processors. Hence, the average computational time is linearly related to the 

total number of samples expended in the MCS technique. At the highest confidence level of 99%, the GA-PBS run 

is found to be 98.44% faster than its MCS counterpart. 

Figure 6 compares the total number of samples expended in a single run of both algorithms at different confidence 

levels. Note that this could also be interpreted as the total number of function evaluations by the GA in a single run. 



 

 

8 

90 91 92 93 94 95 96 97 98 99
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Confidence Level (%)

lo
g

1
0
(t

o
ta

l 
n

u
m

b
e
r 

o
f 

sa
m

p
le

s 
u

se
d

)

 

 

MCS

PBS

 
 

Figure 6: Total number of samples used in GA-MCS and GA-PBS at various confidence levels 

 

At 90% confidence level, the MCS used 1,075,200 samples whereas the PBS used 17,819. At the largest 

confidence level, the GA-MCS evaluated 99.59% more samples relative to the PBS approach. The MCS approach 

has a large computational cost because each fitness evaluation, whether for poor or good designs, requires a fixed 

number of samples to be used. The improved sample accumulation techniques reduced the number of function 

evaluations in GA-PBS by three orders of magnitude relative to the MCS approach. This reduction in 

computational cost due to the improved sample accumulation methods is an order of magnitude better than 

previously achieved results [4].  

Tables 3 and 4 show the laminate configurations resulting from the GA-MCS and GA-PBS runs. While this study 

conducted six GA-PBS runs to help demonstrate repeatability, the high computational expense restricted the 

number of GA-MCS runs to three.  

 

Table 3: Summary of results from study with GA-MCS 

 

Run 
Number of 

iterations 

Ply orientation sequence 

(deg) 

Fitness 

Value 

Deterministic 

mass (kg) 

1 42 [60 0 -60 0 90 0]s 0.37249 0.3725 

2 42 [60 0 -60 0 90 0]s 0.37255 0.3725 

3 42 [45 90 0 90 0 0]s 0.37252 0.3725 

  

All runs result in a 12-ply laminate with a deterministic mass of 0.3725 kg; there are two different ply orientations 

identified. The deterministic mass is calculated using the mean value of the uncertain parameters and other fixed 

values. Note that the expected fitness value differs from the deterministic fitness value listed because the expected 

fitness value depends on the sample of uncertain parameters used in the calculation.  

 

Table 4: Summary of results from study with GA-PBS 

 

Run 
Number of 

iterations 

Ply orientation sequence 

(deg) 

Fitness 

Value 

Deterministic 

mass (kg) 
Reliability 

1 53 [90 0 30 0 0 90 90]s 0.43462 0.43463 1 

2 49 [90 0 30 0 0 90 90]s 0.4345 0.43463 1 

3 54 [90 0 30 0 0 90 90]s 0.43458 0.43463 0.9994 

4 64 [45 90 0 90 0 0]s 0.37251 0.3725 0.9901 

5 62 [-60 0 90 30 0 0 90]s 0.43456 0.43463 0.9998 

6 44 [90 0 30 0 0 90 90]s 0.43447 0.43463 0.9972 
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Four out of six runs indicate that the best laminate configuration with 10,000 accumulated samples is [90 0 30 0 0 

90 0]s. The average fitness value for this design from the six GA runs is 0.43454 kg. The deterministic mass is 

calculated by using the mean value of the uncertain parameters and the value for this configuration is 0.43463 kg. 

This laminate design has high values of reliability indicating that all probabilistic constraints are satisfied for more 

than 9,900 samples. The laminate design with the lowest mass appeared as the optimal solution only once in the six 

runs and the reliability of this design just satisfied the constraint. This laminate configuration with a stacking 

sequence of [45 90 0 90 0 0]s was also one of the results obtained via GA with MCS approach. Perhaps, this 

laminate could be the global minimum here; however, its lack of repeatability indicates that the reliability of the 

laminate design could be in fact less than the cut-off value (0.99) with a different set of samples. 

The optimal laminate designs produced by both approaches include a combination of 0º and 90º plies to improve 

the effective stiffness in the x and y directions. The addition of 30º and 60º plies reduces mid-plain strains and 

curvature in the laminate. 

 

7.3. Parallel Computing Implementations in GA-PBS 

A reduction in the computational cost associated with the GA-PBS was successfully achieved with the improved 

sample accumulation methods. However, the computational time is dependent not only on the complexity of the 

algorithm, but also on how advantageous the implementation is, and the capacity of the processor. Two relatively 

obvious different modes exist to introduce parallel processing to this algorithm: performing the fitness analyses of 

multiple designs in parallel or performing the sampling and constraint evaluations for a given design in parallel. 

In the parallel fitness analysis implementation, the population of new individuals is passed to multiple processors. 

Each processor decodes a single individual and generates samples of uncertain parameters depending on the 

‘goodness’ of the deterministic fitness value of that individual. Furthermore, the expected values of the constraints 

and fitness function are calculated, and this data is transferred back to the controller. In the parallel sampling 

implementation, the GA generates a population of individuals and decodes each of them in series.  Once the 

sample size for an individual is determined, the samples are generated in parallel by multiple processors. The 

probabilistic constraints are also evaluated in parallel mode and this data is transferred back to the controller to 

calculate the penalty function and the expected fitness value of the design. 

An additional confidence level of 99.5% was investigated to compare the two parallel processing implementations. 

Figure 7 illustrates the computational time of the GA-PBS at five different confidence levels when parallel 

computation techniques are implemented. Note that the implementation of parallel processing does not have an 

effect on the quality of solutions or the total number of fitness evaluations. The maximum and minimum run times 

at each confidence interval for both parallel implementations also appear in Fig. 7. 
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Figure 7: Comparison of average run time using parallel computation techniques 

 

The average run time for the GA-PBS with fitness analyses in parallel follows an increasing trend when increasing 

the total number of samples. This trend makes sense, because the evaluation of a larger number of samples takes 

more time. However, this same trend is not valid for the GA-PBS with parallel sampling and constraint evaluation. 

At a confidence level of 90%, the stopping criterion requires only a total of 100 samples for the best design. In the 

first few generations, each individual requires only one or two samples. The constraint function evaluations with 

such a low number of samples do not warrant the use of parallel computation. However, as the number of samples 

gets larger, the parallel evaluations are more effective in reducing run time. The average run time beyond the 

confidence level of 95% decreases with increase in sample size. An additional confidence level of 99.5% was 

investigated to better interpret the trend. There is a slight increase in the average run time at 99.5% confidence 

level using the parallel sampling implementation; however, the variation in the average run time is seen to be more 
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drastic for the parallel fitness analyses GA-PBS at 99.5% confidence level. Comparing the two slopes, it can be 

argued that, beyond a certain confidence level requiring a very large number of samples, the GA-PBS with parallel 

sampling might be more effective than its parallel fitness analyses counterpart i.e., the upward trend for parallel 

fitness evaluation might eventually cross the curve for parallel sampling. 

 

8. Conclusions 

The objectives of this work can be categorized into three parts. The first objective established a probabilistic 

approach to characterize uncertainty in design factors. Employing an effective and computationally inexpensive 

sampling process without compromising the solution quality served as the second objective. The third objective 

attained a significant reduction in run time by implementing parallel computing processes in the optimization 

scheme. 

Results from the GA-MCS runs indicate a high probability of the optimal solution satisfying all constraints for a 

fixed sample size. However, at a confidence level of 99%, a single GA-MCS run performed 107,520,000 function 

evaluations, lasting more than 16 hours on average. As an alternative to high computational costs, PBS with 

improved sample accumulation methods was used to address uncertainties associated with the material properties 

and the applied loads on the laminate. The results from GA-PBS yielded a laminate constituting 14 plies. The total 

number of function evaluations performed to generate an optimum solution was reduced by three orders of 

magnitude through the implementation of GA-PBS, without deterioration of solution quality relative to the designs 

generated by GA-MCS. 

The variation in computational time via the parallel fitness analyses algorithm and the parallel sample evaluation 

algorithm was compared. Performing the fitness analyses in parallel was more effective for the confidence levels 

investigated in this study; however, the data could be extrapolated to suggest that, at a much higher confidence 

level (closer to 100%) requiring a very large sample size, the parallel sample evaluation scheme could be equally 

effective. 

However, the lack of published data in this field prompted a Gaussian distribution assumption for the uncertain 

parameters.  Experimental studies and manufacturers may provide a more reasonable estimate of the distributions. 

Future research could also include the modeling of interactions and correlations between uncertain parameters to 

generate the probability distributions. Nonetheless, the results indicate that the GA-PBS with improved sample 

accumulation methods can be a computationally efficient and reliable baseline approach to discrete optimization 

under uncertainty. 

 

9. References 

 

 [1] M. Cantoni, M. Marseguerra, and E. Zio, Genetic algorithms and Monte Carlo simulation for optimal plant 

design, Reliability Engineering & System Safety, 68.1, 29-38, 2000.  

[2] J.A. Vasquez et al, Achieving water quality system reliability using genetic algorithms, Journal of 

environmental engineering, 126.10 ,  954-962, 2000. 

[3] W.A. Crossley, A Genetic Algorithm with Population-Based Sampling for Optimization under Uncertainty, 

AIAA 1999 – 1427, 40
th

 Structures, Structural Dynamics and Materials Conference and Exhibit, April 1999. 

[4] R. Hassan, Genetic Algorithm approaches for conceptual design of spacecraft systems including 

multi-objective optimization and design under uncertainty, School of Aeronautics & Astronautics, West 

Lafayette, Purdue University, Doctor of Philosophy, 2004. 

[5] R.M. Jones, Mechanics of composite materials, Vol. 2. London: Taylor & Francis, 1975. 

[6] R. Hill, Mathematical Theory of Plasticity, Oxford University Press, New York, l950. 

[7] E.A. Williams and W.A. Crossley, Empirically-derived population size and mutation rate guidelines for a 

genetic algorithm with uniform crossover,  In Soft computing in engineering design and manufacturing , 

Springer London, 163-172, 1998. 

[8] R. Hassan, et al, Spacecraft reliability-based design optimization under uncertainty including discrete 

variables, Journal of Spacecraft and Rockets, 45.2, 394-405, 2008. 

[9] R. Hassan and W. Crossley, Approach to discrete optimization under uncertainty: The population-based 

sampling genetic algorithm, AIAA journal, 45.11, 2799-2809, 2007. 


