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1. Abstract  

The large number of design variables in nonparametric shape optimization brings a challenging demand for 

efficient and accurate sensitivity evaluation methods. It is even more critical when nonlinearities are taken into 

account. The ultimate future goal is to use these methods in large scale industrial shape optimization problems that 

present nonlinear properties. 

This paper investigates geometric nonlinear sensitivity analysis with non-zero prescribed displacements, which is 

a common setup for many industrial structural nonlinear problems. Firstly, the analytical sensitivity formula is 

derived in discrete form, with which no further discretization steps are needed for implementation. Since the 

number of design variables is much larger than the number of responses, the adjoint approach is utilized.  

Secondly, a straightforward semi-analytical procedure is presented to calculate the sensitivities with finite element 

codes. In general commercial FEA codes, the stiffness matrix information may not be accessible, reaction force 

results is thus utilized to replace the direct evaluation and retrieve of stiffness matrix. The reaction forces could be 

obtained efficiently through nonlinear analysis on element level models under prescribed displacements of the 

equilibrium point. 

Lastly, the procedure is demonstrated with a benchmark cantilever beam example. And the accuracy problem of 

the results is presented. The results show that the truncation error due to the rigid rotation of elements also appears 

in nonlinear sensitivity analysis. The techniques to correct the error are briefly discussed. 

2. Keywords: geometric nonlinear sensitivity analysis, prescribed displacement, nonparametric shape 

optimization, adjoint method 

 

3. Introduction 

Nonparametric shape optimization takes nodal coordinates as design variables, which provides the largest possible 

design space. However, the large number of design variables requires a method for highly efficient sensitivity 

evaluation. 

Linear static sensitivity analysis in structural optimization has been well studied and summarized since decades of 

years ago [1-3]. The most common ways to obtain sensitivities are global finite difference method, continuum or 

variational method and discrete (semi-)analytical method. The implementation of global finite difference scheme 

is straightforward. However, it suffers from errors when perturbation size is too large or too small, and also from 

large computational costs for repeated time-consuming structural analysis. The continuum derivative method first 

differentiates on the variational equation of the system and thereafter discretizes the formula. It is of high accuracy 

but requires more mathematical understanding of continuum equations. The discrete method differentiates directly 

on discretized governing equations of finite element systems, where semi-analytical approximation is widely used 

to replace the analytical derivative of system quantities. 

The serious accuracy problem along with the semi-analytical approach has been observed [4, 5]. It is recognized to 

be associated with the rigid body rotation of elements [4, 6]. During the past twenty years, “exact” and “refined” 

semi-analytical methods have been developed [7-10], which successfully eliminates this type of error. 

Sensitivity analysis for different types of nonlinearities has also been widely investigated. Variational forms of 

sensitivity considering geometric nonlinearity, critical load factor, hyperelastic material, elastoplastic problems, 

contact problem and dynamic problems have been systematically presented [11]. Specially, variational form of 

geometric nonlinearity under prescribed displacements is presented [12]. Discrete form of geometric nonlinear 

sensitivity analysis under mechanical force loads has been derived [13], and an implementation with a general 

finite element code MARC is realized [14]. Examples of discrete method for limit load, material nonlinearity and 

the combination of geometric and material nonlinearity are also presented [15-19]. 

In this paper, the geometric nonlinear sensitivity analysis for shape optimization is investigated, where the 

structure is loaded with non-zero prescribed displacements. The discrete semi-analytical adjoint method is 

employed. In section 4, the analytical sensitivity formula with adjoint approach and a straightforward 

semi-analytical analysis procedure are presented. In section 5, the procedure is demonstrated with a benchmark 
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example. The accuracy problem is presented and corresponding correction methods are also discussed. 

 

4. Geometric nonlinear sensitivity analysis with non-zero prescribed displacements 

 

4.1. Secant and tangent stiffness matrix in nonlinear analysis 

Generally, the governing equation of a finite element system is: 

       (1) 

, where U is the nodal displacement vector, K is the stiffness matrix, and F
 
is the external force vector. When 

nonlinearity presents, the stiffness matrix K is of nonlinear relationships with U, and Eq.(1) becomes: 

           (2) 

, where KS is the so-called secant stiffness matrix, which depends on both U and the structure’s initial 

configuration. Another important quantity is the tangent stiffness matrix KT, which is also nonlinearly dependent 

on U and structure’s configuration. In a nonlinear analysis, the secant stiffness matrix serves to calculate the 

residual force vector, while the tangent stiffness matrix is mainly utilized to calculate the incremental quantities. A 

descriptive figure of KS and KT is depicted in Fig.(1).  

 
 

Figure 1: Secant and tangent stiffness matrix at the equilibrium point U 

 

Detailed discussions about the secant stiffness matrix are found in [20-26]. It is especially worth mentioning that, 

explicit analytical expressions of both secant and tangent stiffness matrices for linear triangular and tetrahedral 

elements are presented [25-27]. It provides the possibilities of analytical evaluation of stiffness matrices and their 

derivatives, and is thus a powerful tool for in-depth investigation on nonlinear sensitivity analysis.  

 

4.2. Geometric nonlinear analysis with non-zero prescribed displacement loads 

Geometric nonlinear problem with non-zero prescribed displacements analyze the large deformation behavior of a 

structure under both external mechanical force loads and non-zero prescribed displacement loads. The governing 

equation is:  

         
 

  
    

 

  
  (3) 

, where U
P
 is part of U that corresponds to the given prescribed displacements, F

f
 is the given external forces, U

f
 is 

the unknown displacements, and F
P
 is the unknown reaction force vector corresponds to U

P
. The nonlinear residual 

force vector R is defined as: 

   
 

  
          

 

  
    

 

  
  (4) 

Newton-Raphson method is often employed to solve this nonlinear problem iteratively [28]. In the initial step, the 

unknown displacement U
f,0

 and reaction force F
P,0

 are obtained by solving the linear system of equations: 

       
     

   

  
     

    
  (5) 

Then the residual force vector is calculated by Eq.(4), and the incremental reaction forces and displacements of the 

iteration are obtained by solving the following linear problem: 

     
           

     

 
       

       
  (6) 

Both displacements and reaction forces are then updated before the start of the next iteration: 
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                     (7) 

                     (8) 

The procedure terminates until the residual force vector is small enough.  

 

4.3. Discrete analytical sensitivity analysis with adjoint approach 

In this research, the sensitivity is derived with discrete method, which will provide the straightforward 

implementation with general finite element codes. Since the number of design variables is usually much larger 

than that of system responses in nonparametric shape optimization, the adjoint method is preferable for efficiency. 

For a system response g, it is a function of the design variable s, displacement vector U and force vector F. 

Therefore the sensitivity of                with respect to s is: 

 
  

  
 

  

  
      

  
  

  
      

  
  

  
 (9) 

Rewrite the governing equation as: 

                                        (10) 

Total derivative of R with respect to s is: 

   
  

  
 

  

  
        

  

  
        

  

  
 

   

  
      

  

  
 

  

  
 (11) 

Introducing the adjoint variable           by multiplying to Eq.(11) and subtracting from Eq.(9),  

 
  

  
 

  

  
      

  
  

  
      

  
  

  
     

   

  
      

  

  
 

  

  
  

                                               
  

  
    

   

  
             

  
  

  
          

  

  
 (12) 

It is always assume that the external forces and prescribed displacements are independent of design variables. 

Therefore,  

 
  

  
        

 
  (13) 

 
  

  
  

 
      

  (14) 

Therefore the third term in Eq.(12) is: 

           
  

  

  
     

    
      

 

  
       

 

 
   

  
 (15) 

Also, the fourth term in Eq.(12) is: 

          
  

  
           

   

  
 (16) 

Force both terms in the parenthesis of Eq.(15) and Eq.(16) to zero. It leads to: 

          (17) 

And    is obtained by solving the linear problem: 

     
  

     
   

  
    

  

  
  

  
  

   
  

     
   

    

 
  (18) 

, where Y is the force vector corresponds to prescribed displacement      . 

And finally, the sensitivity of response g is expressed as: 

 
  

  
 

  

  
  

  

     
  

   

  
   (19) 

 

4.4. Semi-analytical sensitivity analysis procedure 

The semi-analytical method is used to approximate the partial derivatives of the secant stiffness matrix: 

 
        

  
 

                  

  
 (20) 
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When secant stiffness matrix is not available, which is the case so far in common commercial finite element codes, 

the approximation could be replaced by finite differencing on reaction force results. According to Eq.(2), the 

multiplication of secant stiffness matrix and corresponding displacement vector equals to the reaction force vector, 

therefore the semi-analytical approximation could be modified as: 

 
        

  
   

                      

  
 

                

  
 (21) 

This approximation avoids the direct evaluation of the secant stiffness matrix, and the reaction force results could 

be obtained directly by nonlinear finite element analysis. Due to the design variables in nonparametric shape 

optimization are usually the coordinates of design variables, the semi-analytical approximation and thus the 

nonlinear analysis only needs to be carried out on element level, which ensures the computational efficiency. 

The following procedure for the sensitivity analysis is developed, which is a straightforward realization of Eq.(18), 

Eq.(19) and Eq.(21). 

Step 1: Full model geometric nonlinear analysis to find the equilibrium point U*. 

Step 2: Linear perturbation analysis at U* with external force loads     
 
and prescribed displacements      

  
as boundary conditions. Denote the displacement result of the analysis by λ. 

And then the following steps are carried out for each design variable separately: 

Step 3: Extract neighbor elements around the design node, and denote their nodal force results in Step 1 by  

F(U*,s). 

Step 4: Run a nonlinear analysis on the extracted small model with perturbed design node and with U* as its 

 boundary conditions. The nodal force results of this analysis is F(U*,s+∆s). 

Step 5: Evaluate explicit expression of ∂g/∂s. 

Step 6: Calculate the sensitivity of response g with respect to design variable according to Eq.(19). 

For a system with M responses and N design variables, the total computational effort of the procedure is 1 time full 

nonlinear analysis of the structure, M times linear perturbation analysis at the equilibrium point plus N times 

nonlinear analysis on element level models around each design node.  

Obviously, this procedure is consistent with sensitivities analysis for geometric nonlinear structure under only 

mechanical force loads, where the term       in Step 2 vanishes. And it degenerates to linear sensitivity analysis 

by replacing the nonlinear analysis in Step 1 and Step 4 with linear analysis. 

 

5. Example and numerical results 

The procedure is implemented in an in-house finite element code. In this solver, the analytical secant and tangent 

stiffness matrices for four-node linear tetrahedral element in [26, 27] is adopted. The numerical result of a 

benchmark cantilever beam example is presented. And the accuracy problem is discussed thereafter. 

 

5.1. Introduction to the cantilever beam example 

As shown in Fig.(2a), a 3D cantilever beam is taken as an example. The beam is of size 300mm×15mm×15mm and 

are loaded with two prescribed displacements on the end that is not fixed, u1y =  u2y = -100mm. It is meshed with 3D 

four-node linear tetrahedral solid element with a total number of 286. Linear isotropic material is assumed with 

Young’s modulus 209GPa, Poisson’s ratio 0.3. The sum of the downward reaction forces at the two points is 

chosen to be the system response, i.e. g=F1y+F2y. The design variables are y-coordinates of middle nodes of the 

bottom surface (red points shown in Fig.(2b)). 

 
 

(a) Model description 
 

(b) Design nodes along the beam 

 

Figure 2: Cantilever beam model 

 

5.2. Sensitivity results 

With the definition of the system response,  
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     =0 (22) 

       

  

    

  

    

   
 
 
  (23) 

 
  

  
   (24) 

The sensitivity results are depicted in Fig.(3), where the results of the semi-analytical approach is compared with 

the result of global finite difference method which is taken as the reference result here. The perturbation size in the 

semi-analytical method is 10
-5

mm and in global finite difference is 5×10
-4

mm, both of which are properly for their 

own method. The figure shows that the semi-analytical results match well with the reference results.  

 
Figure 3: Sensitivity results 

 

However, the scaled sensitivities in Fig.(4) shows that, the relative error increases as the position of design nodes 

getting close to the loading end (as x-coordinate increasing). This phenomenon is consistent with that in linear case 

[10], which is caused by the rigid “rotation” of elements. 

 
Figure 4: Scaled sensitivity results 

 

5.3. Influence of perturbation size and higher-order finite difference scheme 

It should be noted that, the accuracy of sensitivity results relies highly on the selection of perturbation size, and a 

higher-order finite difference scheme helps to reduce the error. A central finite difference scheme is implemented 

to take the place of forward scheme in Eq.(21): 

 
     

    

  
    

                     

    
 (25) 

The sensitivity result of the forward and central scheme with different perturbation size are compared in Fig.(4). 

Clearly, the central scheme well improves the stability of the sensitivity results.  

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

0 30 60 90 120 150 180 210 240 270 

Se
n

si
ti

vi
ty

 (
N

/m
m

) 

x-coordinate (mm) 

ref. result 

semi-analytical 

0.7 

0.75 

0.8 

0.85 

0.9 

0.95 

1 

1.05 

1.1 

0 30 60 90 120 150 180 210 240 270 

sc
al

ed
 s

en
si

ti
vi

ty
 

x-coordinate (mm) 

ref. result 

semi-analytical 



 

 

6 

  
(a) With forward finite difference scheme (b) With central finite difference scheme 

    

Figure 5: Sensitivity results with different perturbation size 

 

The value of sensitivity at a design node near the loading end is listed in Table.(1). The relative errors are 

calculated with respect to the reference result. 

 

Table 1: Sensitivity results at a point near loading end (x=290mm, ref. value=0.354N/mm) 

 

Perturbation size 

(mm) 

forward semi-analytical central semi-analytical 

Sensitivity(N/mm) Error Sensitivity (N/mm) Error 

10
-2

 -103 -29200% 0.252 -29% 

10
-3

 -9.98 -2917% 0.351 -0.8% 

10
-4

 -0.681 -292% 0.352 -0.6% 

10
-5

 0.260 -27% 0.352 -0.6% 

10
-6

 0.338 -4.6% 0.37 4.0% 

10
-7

 -0.0929 -126% 0.482 36% 

10
-8

 -10.90 -3179% -7.24 -2145% 

 

It could be seen that by using the central finite difference scheme, the accuracy of the results is significantly 

improved. The results well match the reference in a much larger range of perturbation size. But it also shows that 

this type of error can’t be fully corrected solely with higher order finite difference schemes. 

 

5.4. Discussion on correction of the error 

In linear sensitivity analysis, this type of error could be corrected by “exact” semi-analytical approach or “refined” 

semi-analytical approach. The idea is to add a correction term, which is constructed with rigid body motion vectors 

of elements, to partial derivatives of their stiffness matrix or pseudo load vector so that the approximation still 

satisfies so-called rigid body conditions. 

Both of these methods could also be extended to the nonlinear case. The key point lies in finding the rigid body 

movement vectors correspond to the secant stiffness matrix at equilibrium point instead of initial tangent stiffness 

matrix. Given the analytical expression of secant stiffness matrix in [26], investigation on the rigid body motion 

vectors and the extension of exact and refined semi-analytical methods is possible. This topic is postponed for a 

future study. 

 

6. Conclusions 

In this paper, the formula for discrete analytical sensitivity analysis of geometric nonlinear problem with 

prescribed displacements is derived. A corresponding semi-analytical approach is presented for the calculation. 

The procedure is implemented in an in-house finite element code and demonstrated with a cantilever beam 

example. With higher-order finite difference scheme, the accuracy could be greatly improved. And the existence of 

the error caused by rigid rotation of elements going along with the semi-analytical approach is also discussed.  
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