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1. Abstract
The search for a good aircraft con�guration during the conceptual design phase has great in�uence on
the overall aircraft performance and requires consideration of many di�erent aspects with strong inter-
relations. This paper describes a multidisciplinary shape optimization framework for application as early
as this design phase. It allows fully coupled aeroelastic shape optimization of aircraft and consists of
three components, a parametric geometry kernel, a multidisciplinary design optimization program and
an aerodynamic solver. For parametric geometry description, the CPACS data format [7] developed
by DLR is utilized. Aerodynamic in�uence coe�cient matrices are employed to enable time e�cient
aeroelastic analysis. Especially induced drag evaluation is regarded during aeroelastic analysis, due to its
high sensitivity to elastic deformations. The capabilities of the framework are demonstrated using two
optimization examples and the in�uence of coupled problems on the overall optimum is shown.
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3. Multidisciplinary Shape Optimization in Conceptual Aircraft Design
During an aircraft's conceptual design phase, the main task is to �nd the best feasible aircraft concept for
a given design mission. Therefore, it is the engineer's responsibility to select the one aircraft con�guration
out of usually several di�erent concepts with the highest performance satisfying all requirements. Since all
subsequent design phases will use this design for further development, this decision has a strong in�uence
on the performance of the �nal aircraft. To provide a good foundation for the selection, numerical analysis
tools combined with statistical methods help the conceptual engineer to estimate the performance of a
design concept with respect to a speci�c requirement. However, due to the great number of the di�erent
aspects that must be considered, it is very di�cult to cover the whole design space manually with
numerical analyses in an e�cient manner.
For this application, a multidisciplinary shape optimization framework is being developed at Cassidian.
One major advantage of multidisciplinary design optimization (MDO) in this context is that it allows
�nding an optimized con�guration, which satis�es all considered design constraints. Thus, MDO helps
exploring a given design space e�ectively. Sequential treatment of these criteria usually holds di�culties
when trying to �nd a solution that satis�es all of them caused by their interdependencies. Aeroelasticity
is one example for this; structural elasti�cation a�ects the �ow around a body (e.g. a wing) which causes
lift and drag forces that in�uence the elastic deformation of the body itself. Therefore, this problem
has to be solved in a coupled manner. Multidisciplinary design optimization is very well suited for
�nding concepts with good properties regarding such coupled problems, however, one has to keep in
mind that any constraint not included during the optimization usually is found violated when evaluating
the resulting optimized design. Therefore, in order to �nd �globally feasible� designs that serve as valid
starting points for all disciplines in the following design phases, a comprehensive design criteria model
must be provided. Over the time line of the aircraft development process, design criteria may change
frequently with the development phases up to the �nal set of constraints required for certi�cation. By
using MDO design criteria that are as close as possible to those �nal certi�cation constraints already
early on in the development process, one can minimize the occurrence of design reiteration loops caused
by new or signi�cantly changed design criteria.
The usage of shape optimization o�ers far greater design freedom than for example the traditional sizing
optimization, which only alters the dimensions of structural components but keeps the shape of the design
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constant. As opposed to topology optimization, which distributes material in a �xed design volume in
order to improve the objective, shape optimization uses a given topology and modi�es its shape in order
to reach the optimum. Therefore, the parameters used to in�uence the design are almost conventional en-
gineering parameters, which facilitates manufacturing and also the de�nition of form constraints. Shape
changes are usually applied to existing analysis meshes (e.g. structural �nite element or aerodynamic
�nite volume mesh) by moving mesh nodes or deforming an overlying geometric representation to which
the analyses meshes are linked. Originating from these mesh deformations, numerical issues may arise
in the analysis methods leading to incorrect results that might compromise the optimization. Also, if
gradient based optimization algorithms are employed for shape optimization, the derivatives of objective
and constraint functions with respect to the deformation of analysis meshes have to be calculated. Espe-
cially for multidisciplinary optimization with several di�erent analysis models, shape optimization adds
substantial complexity compared to multidisciplinary sizing optimization.
The developed framework o�ers the features of multidisciplinary design optimization to aircraft de-
velopment phases as early as the conceptual stage with the added design freedom provided by shape
optimization. Yet, through a modular architecture the framework will o�er multi-�delity application
for the future. This means that the employed analysis methods can increase in complexity and accuracy
(e.g. exchanging potential theory aerodynamics with Navier-Stokes) throughout the di�erent development
phases as the aircraft design matures.

4. Shape MDO Framework
Three main components establish the shape optimization framework. These are the in-house MDO pro-
gram LAGRANGE [9], the parametric geometry program DescartesNDB (Descartes Numerical Design
Board), also developed in-house, as well as an aerodynamic solver (e.g. AVL (Athena Vortex Lattice [2])).
Linking these programs together via a common database and design variable model allows multidisci-
plinary shape optimization with aeroelastic analysis and updated loads.

Figure 1: Overview of the shape MDO framework

Figure 1 shows how the di�erent analysis models are linked to the central parametric geometry model in
DescartesNDB. Additionally, this �gure illustrates the tasks handled by each of the components in the
framework. These functions will be described more in detail in the following sections.

4.1 Shape Parametrization with DescartesNDB
DescartesNDB (see Figure 2) is an enhanced version of the open source program TIGLViewer developed
by the DLR (German Aerospace Center) [7]. Both programs are based on the parametric aircraft de-
scription format CPACS (Common Parametric Aircraft Con�guration Schema), which is also developed
by the DLR [7]. The CPACS data format allows de�nition of a complete aircraft via XML code including
geometric, structural, performance and meta data among others. The parameters used to describe the
aircraft in this format consist of everyday aerospace engineering terms (e.g. chord length, sweep angle,
etc.). With the wide set of shape parameters available in CPACS a great variety of geometry changes
can be realized ranging from large modi�cations, such as position of the main wing, up to very local
deformations like the position of a point in the aerodynamic pro�le of an airfoil. Another big advantage
of the CPACS format for shape optimization is the inherent consistency of parameters reducing the prob-
ability of creating impossible geometry con�gurations. Enhancements made to the TIGLViewer, which
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was intended as a viewing tool for CPACS datasets using the Open Cascade geometric kernel [8], added
the ability of generating and managing analysis meshes as well as de�ning shape design variables.

Figure 2: Screenshot of the DescartesNDB GUI

For shape parametrization, all necessary analysis models are generated from a given CPACS dataset. This
can happen externally or in DescartesNDB itself. The created models are then linked to the geometric
CPACS model. This linking generally involves mapping mesh nodes onto the geometric surfaces of
the CPACS model through relative coordinates. DescartesNDB applies this information to update the
analysis meshes once a shape parameter is changed. Due to the connection to the higher logic of the
geometry model, even large shape changes can be managed without deteriorating the quality of the
linked analysis meshes to the point, where re-meshing is required to prevent numerical problems in
the analysis solvers. Also, through this approach, the mesh topologies remain unchanged throughout a
shape optimization, which minimizes data managing e�ort when providing the meshes to their analysis
programs.
De�nition of shape design variables is also done in DescartesNDB based on the parametric geometry
model. Any CPACS parameter or some additionally included higher parameters (e.g. overall wing span)
may be set as shape design variables. Lower and upper gages have to be speci�ed for each shape design
variable before all variable data is written to �le and handed over to the optimization program.
With analysis model linking and shape design variables de�ned, DescartesNDB is then able to alter the
shape of the geometry and the linked models uniformly once a shape design variable value is changed.
This guarantees consistency between the involved disciplines. Where necessary, DescartesNDB can also
initiate re-analyses of certain analysis models.

4.2 Multidisciplinary Analysis/Optimization with LAGRANGE
The second component of the presented framework is the in-house multidisciplinary design optimization
program LAGRANGE [9]. It has been developed over the last 30 years at Cassidian and features its
own structural �nite element solver. An extensive design criteria model has been added during this
development, which includes for example strength, stability, manufacturing, aeroelastic e�ectiveness,
trimming, �utter, gust as well as modal constraints. Di�erent gradient based optimization algorithms
are included in LAGRANGE for selection according to the optimization problem at hand. Gradients
necessary for the optimizer are calculated fully analytically. Due to this, LAGRANGE can conduct
sizing or layer angle optimizations with large numbers of design variables (more than 104) combined with
a substantial design criteria model (over 107 constraints).
One of the most important analysis types for aircraft development is the coupled aeroelastic analysis. For
this, LAGRANGE can be combined with di�erent potential theory aerodynamic codes (e.g. AVL, DLM
[1] or HISSS [3]). These aerodynamic codes calculate so called aerodynamic in�uence coe�cient (AIC)
matrices (see [4], [1]) in preparation of aeroelastic analysis. AIC matrices provide a linear relationship
between the boundary condition vector and the singularity strength ultimately leading to the pressure
distribution. This yields a good linear approximation to the solution of the �ow conditions. Since the
aeroelastic problem is solved iteratively, the use of AIC matrices saves a signi�cant amount of computation
time compared to repeatedly calling an aerodynamic solver.
The basic equation for the structural �nite element problem is given in Eq.(1):
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K · u = FSt (1)

In Eq.(1) the product of sti�ness matrix K with the displacement vector u equals the static force vector
FSt. The aeroelastic analysis considers aerodynamic forces FAe originating from an aerodynamic pressure
distribution that is dependent on the structural displacements. Adding these forces to the static equation
leads to the aeroelastic relation of Eq.(2):

K · u = FSt + FAe

FAe = FAe0 + C · u
C = q · ST · P · ACP

· S
(2)

Thus, the static equation turns into an implicit equation due to this dependency on the displacement
vector u of both sides represented by K and C (Eq.(2)). In this case, C is de�ned for an AIC matrix
originating from an aerodynamic vortex lattice method (i.e. AVL). It is calculated using the coupling
matrix S, the aerodynamic panel area matrix P, the dynamic pressure q and the AIC matrix ACP

itself. Eq.(2) is solved iteratively in LAGRANGE for the displacement u starting with the initial rigid
aerodynamic load FAe0 . The structural displacements mainly a�ect the aerodynamic solution through
changes in the boundary condition much more than through deformation of the aerodynamic model.
Hence, the AIC matrix provides a good approximation for the aerodynamic solution. Therefore, u is used
to calculate the new aerodynamic boundary condition in order to determine the current aerodynamic load
vector FAe for each pass in the aeroelastic iteration loop. However, in case of shape optimization, where
the shape design variables cause much greater form changes, the AIC matrices have to be recalculated
with every shape update. This increases computational time, yet, the aerodynamic solver has to be called
only once per optimization iteration, while the function evaluations still pro�t from the usage of AIC
matrices.
The open source vortex lattice code AVL was extended for this work to create AIC matrices that enable
an induced drag Tre�tz Plane analysis [10] in LAGRANGE. For this feature, an induced drag AIC matrix,
additional to the one used in the equations above, is introduced. Via this matrix it is possible to determine
the aerodynamic lift distribution as well as the induced drag coe�cient for coupled aeroelastic �ight states.
The aeroelastic induced drag calculated with this method can be de�ned as an objective function during
an optimization. The generation of the induced drag AIC mentioned here will be discussed more in detail
in section 4.3.
LAGRANGE is included into the framework joining its features with the parametric geometry description
of CPACS and DescartesNDB for multidisciplinary shape optimization. This way, shape design variables
de�ned in DescartesNDB can be combined with the sizing or composite layer angle design variables from
LAGRANGE. Hence, for example, a coupled sizing and shape optimization can be conducted to �nd a
good aircraft concept. With this approach, LAGRANGE can use shape design variables that in�uence
multiple analysis disciplines with the full extent of its existing program logic, while DescartesNDB handles
the complexity of the relations between di�erent analysis models and their shape modi�cations.

4.3 Aerodynamic Analysis with AVL
The third component of the developed shape MDO framework is the aerodynamic solver. This is an
optional module in the framework required for aeroelastic optimization. In general, the framework is
designed in such way that this component can be exchanged easily to allow di�erent �delity levels of
aerodynamic solvers. For application of the shape MDO framework in the conceptual aircraft design
stage, the vortex lattice solver Athena Vortex Lattice (AVL), developed at the Massachusetts Institute of
Technology [2], is chosen. Yet, higher order methods such as panel, Euler or Navier-Stokes solvers may
also be included in the future.
AVL (Figure 3) is very well adapted to the needs of conceptual design. A model is constructed from the
plan form of an aircraft using measurements such as span, chord length, airfoil pro�les and sweep/dihedral
angles; parameters that are readily available at this stage. With this information, AVL describes aerody-
namic bodies through 2D plates that may feature camber or twist. This allows fast computation times
with a suitable accuracy of results. The previously mentioned ability to calculate induced drag represents
a useful feature in the search for good aircraft concepts, since a large fraction of the overall drag force
during �ight is constituted by induced drag. This drag component is of special interest during conceptual
design, because it can be in�uenced e�ectively by parameters that are determined during this phase
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Figure 3: Example for an Athena Vortex Lattice model

(e.g. wing span, aspect ratio etc.). It also shows a strong sensitivity to changes in lift distribution caused
by the aeroelastic e�ects mentioned earlier. One major limitation of this aerodynamic method is the
reliability of results when calculating �ow conditions in the transonic Mach region (0.8 < Ma < 1.2).
Here, compressibility e�ects and other non-linearities have great in�uence on the �ow, which cannot be
described accurately enough with potential theory methods (such as AVL). Therefore, higher �delity
methods should be used in transonic regions. Since this current application focuses on long endurance
unmanned aerial vehicles (UAV), which are designed rather for e�cient sail plane characteristics, these
problems will not impede the usage of AVL.
In order to couple AVL with LAGRANGE, certain features have been added to the program so that it
enables output of the, before mentioned, aerodynamic in�uence coe�cient matrices (see e.g. [1]).

A · Γ = bN (3)

Eq.(3) describes the basic equation system of a vortex lattice method such as AVL. The product of the
aerodynamic in�uence matrix A with the singularity strength vector Γ of each panel equals the Neumann
boundary conditions bN over all panels. During analysis, Eq.(3) is solved for Γ and these values can be
converted to pressure di�erence coe�cient values for each panel i in a post-processing step as shown in
Eq.(4).

∆CP i =
2

Pi
Γi · ni · (vi × li) (4)

Using the singularity strength Γi together with the panel area Pi, the panel normal vector ni, the �ow
velocity vector vi and the length of the vortex element li in the panel yields the pressure di�erence
coe�cient for panel i. This ∆CP i is then applied for evaluation of aerodynamic loads during aeroelastic
analysis. However, in order to obtain an AIC matrix as described in section 4.2, one has to combine the
solution of Eq.(3) and the post processing step of Eq.(4) into a single matrix. After some conversions the
pressure di�erence AIC matrix is de�ned as:

ACP
= − 2

ci
·A−1ij (5)

Eq.(5) relates the pressure coe�cient matrix introduced in Eq.(2) with the inverted aerodynamic in-
�uence matrix from Eq.(3) using the mean chord length ci of each panel i. Handing this matrix over
to LAGRANGE, enables the fully coupled aeroelastic analysis that was described earlier. The pressure
coe�cient AIC matrix only depends on the geometry of the aerodynamic panel model as well as the
Mach number (through Prandtl-Glauert transformation). Therefore, the same matrix can be used for
any possible �ight state with the corresponding Mach number as long as the shape of the aerodynamic
model remains unchanged.
The induced drag AIC matrix, also mentioned in section 4.2, relies on the solution of Eq.(3) as well.
Here, the singularity strength vector Γ is fed into the Tre�tz Plane analysis [10] to calculate the induced
drag coe�cient. During Tre�tz Plane analysis, downwash velocities are evaluated in a plane that is
located in�nitely far behind the aircraft, perpendicular to the direction of motion. Integration over these
velocities in the Tre�tz Plane allows an estimation of the induced drag value.
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Dind = −ρ
2

nP∑
i=1

Γiwindibi (6)

Eq.(6) shows that relation of downwash velocity wind and the induced drag force Dind for a discretized
vortex lattice formulation (see for example [5]). Summation over all panels nP of the product of singularity
strength Γi, downwash velocity windi and panel span bi for panel i produces the overall induced drag
force. The downwash velocity itself is dependent on the singularity strength vector as well:

wind = Aw · Γ (7)

In Eq.(7), Aw denotes the downwash in�uence matrix which is similar to A in Eq.(3), however, set up in
the Tre�tz Plane. After a number of conversions one can �nd the dependency shown in Eq.(8) (a similar
approach was shown in [6]):

CDind
= ΓTADΓ (8)

The induced drag AIC matrix AD can be handed over to an external program like LAGRANGE to
be applied for calculation of the elastic overall induced drag coe�cient CDind

. Additionally, required to
obtain Γ, the inverted aerodynamic in�uence matrix A−1 from Eq.(3) is also transferred to LAGRANGE.
During aeroelastic analysis, the Neumann boundary conditions are calculated from the displacement
vector, multiplied with the inverted aerodynamic in�uence matrix and then inserted into Eq.(8) for
induced drag coe�cient evaluation. The two in�uence matrices AD and A−1 have the same characteristics
as the pressure coe�cient AIC matrix ACP

and, therefore, only need to be updated once a shape change
to the aerodynamic model occurred.
Thus, AVL is called in the shape MDO framework by DescartesNDB every time a shape update a�ects
the aerodynamic model. It then re-calculates the three aerodynamic in�uence coe�cient matrices and
stores them on �le, which is subsequently read by LAGRANGE for aeroelastic analysis.

4.4 Sensitivity Analysis
An optimization applying gradient based optimizers requires calculation of sensitivities for the objective
function f as well as all constraint functions gi with respect to every de�ned design variable xj . In the
general case, the objective function and constraint functions depend on the design variable vector x but
also on the displacement vector u, which is itself dependent on x (Eq.(9)).

f = f(x,u(x))

g = g(x,u(x))
(9)

In the following, several approaches for sensitivity calculation are presented for the shape MDO frame-
work, all with respect to shape design variables. To simplify notation, this is done for one constraint
function g and one design variable x only, but can be extended to more constraints and design variables
without limitation.
The �rst method is the numerical gradient calculation using, in this case, so called forward di�erencing.
Eq.(10) shows the gradients for objective and constraint function, computed through a di�erence quotient
of two analysis results. Forward di�erencing does not require any knowledge of the involved mathematics
necessary for calculating f or g. Yet, a complete analysis must be done once for each design variable plus
an initial unperturbed analysis raising computational e�ort as the number of design variables increases.

df

dx
=
f(x+ ∆x) − f(x)

∆x
dg

dx
=
g(x+ ∆x) − g(x)

∆x

(10)

The second approach, which is usually much more e�cient with respect to computational e�ort, is
analytical gradient calculation. This means, derivation of all involved mathematical relations is required.
The great advantage of this is that a gradient evaluation only requires one analysis and one additional
for gradient calculation call. The achievable accuracy is independent of the currently solved problem and
is therefore more reliable than the �rst described method. Eq.(11) shows the analytical derivatives of f

6



and g split into the explicit partial derivative (direct dependency on x) and the implicit part (indirect
dependency on x via displacements u).

df

dx
=
∂f

∂x
+
∂f

∂u
· du
dx

dg

dx
=
∂g

∂x
+
∂g

∂u
· du
dx

(11)

Assuming the explicit derivatives can be calculated directly, the implicit derivative usually states more of
a challenge. Therefore, Eq.(12) and Eq.(13) show the derivation of the basic �nite element formulation
Eq.(1) and its expansion for aeroelasticity Eq.(2) with respect to a shape design variable.

K · du
dx

= −dK
dx

· u +
dFSt

dx
(12)

K · du
dx

= −dK
dx

· u +
dFSt

dx
+
dFAe

dx
(13)

with

dFAe

dx
=
dFAe0

dx
+ q · ST · P · ACP

· S · du
dx

+ q · ST · dP
dx

· ACP
· S · u + q · ST · P · dACP

dx
· S · u (14)

Eq.(13) shows a similar dependency on the displacement as its corresponding analysis Eq.(2) and is,
therefore, also solved iteratively for du

dx . The transformation S between aerodynamic and structural system
in Eq.(14) is assumed independent of the shape variable, but might also require derivation depending on
the coupling method. Multidisciplinary shape optimization requires sensitivities for mesh deformations
of all involved analysis meshes, represented here by the sti�ness matrix derivative dK

dx in Eq.(13), the AIC

matrix derivative
dACP

dx and the panel area derivative dP
dx in Eq.(14). This demands passing derivatives

between all programs in the framework as well as computation of analytical derivatives in the aerodynamic
solver. For these reasons, the fully analytical gradient calculation approach is not implemented in the
framework, for now.
The third method for gradient calculation described here is the semi-analytical derivation, which re-
presents a combination of the two previously presented approaches. This means that some parts of the
analytical derivation chain are calculated numerically and set into the main equation to solve analytically.
The semi-analytical approach generally has the advantage of exploiting the �black-box� behaviour of
numerical gradient calculation, while keeping accuracy high through analytical solution of the overall
equation. In this case, equations Eq.(13) and Eq.(14) can be rewritten as:

K · du
dx

= −∆K

∆x
· u +

dFSt

dx
+
dFAe

dx
(15)

dFAe

dx
=

∆FAe0

∆x
+ q · ST · P · ACP

· S · du
dx

+ q · ST · ∆P

∆x
· ACP

· S · u + q · ST · P · ∆ACP

∆x
· S · u (16)

The derivative parts that are calculated through �nite di�erencing are marked by using ∆ for the di�erence
quotient instead of the di�erential quotient. Through that, no derivative data has to be exchanged
across program boundaries and communication between programs can be limited to analysis evaluation
calls. This reduces the complexity of data transfer in the framework. Choosing the step size for the
�nite di�erences carefully, the results of semi-analytical gradient calculation closely match the analytical
gradients.
Thus, semi-analytical and numerical gradient calculation allow sensitivity analysis with respect to shape
design variables in this framework by calling DescartesNDB once per shape design variable to receive
perturbed analysis meshes. In case of the numerical gradient calculation, all analyses are performed
completely for each design variable and the initial state. For semi-analytical gradients, the perturbed
meshes are used to calculate the derivative parts marked in Eq.(15) and Eq.(16) with a subsequent
analytical solution of the overall system of equations. In order to bene�t from the computational e�ciency
and accuracy of the already implemented analytical gradient calculation for design variables other than
shape variables (e.g. sizing), the framework allows combination of these methods depending on the design
variable type.
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5. Optimization of Generic UAV Wing
To examine the capabilities of the developed multidisciplinary shape optimization framework, a high
aspect ratio wing of a generic unmanned aerial vehicle is studied. Its initial design has a rectangular
planform with an aspect ratio of 20 and a wing span of 20 meters. This form was chosen in order to
provide a neutral conceptual starting point for the shape optimization. A symmetric NACA0024 pro�le
describes the airfoil of the wing. The CPACS parametric model of the right half of the wing is built up of
10 segments of 1m length each providing 11 sections (boundaries of the segments), at which shape design
variables can be de�ned. The internal structural layout speci�ed in the CPACS data set is conventional
with 2 spars (at 15 % and 60 % chord) and 12 ribs (10 equally spaced span wise plus one at root and
tip end). Both an AVL model as well as a structural FE model for LAGRANGE are created from the
CPACS de�nition (Figure 4). The �nite element model is built out of aluminium using 2D shell elements
for skin, ribs and spars as well as 1D rods and bars for spar caps and stringers. The initial thickness
for the skin is varied from root 3mm to tip 1mm and 2mm for ribs and spars (Figure 4). With these
values, the mass of the modelled FE structure sums up to 193 kg. A maximum take o� mass of 2500 kg
for half the aircraft including this FE structural weight is assumed. For the aerodynamic AVL model,
the 10 segments of the CPACS de�nition are meshed with 10 × 5 equally distributed panel each, except
the outermost segment, which has 10 × 10 panel with a span wise sine distribution (Figure 4).

Figure 4: Models of the UAV wing in DescartesNDB, LAGRANGE and AVL (clockwise)

5.1 Aeroelastic Induced Drag Optimization
Two optimizations were conducted with this model. The objective of the �rst optimization was to
minimize the induced drag during cruise conditions. For this, one load case was de�ned that simulates
a 1g cruise �ight at 7500m altitude with a Mach number of 0.28. In addition to the objective function
of induced drag, a trimming constraint was de�ned to �x the aerodynamic lift force matching 2500 kg at
1g. Eleven shape design variables were de�ned by setting the chord length of each of the eleven CPACS
sections as variable. This means that the plan form of the wing could be altered by changing the chord
length between 300mm and 1500mm. Also, the airfoil thickness was a�ected by these shape variables,
since the thickness-to-chord ratio of the NACA pro�le was kept constant throughout the optimization.
Additionally, the angle of attack was included as a design variable so that the optimizer could constantly
trim the equilibrium of forces during optimization, which was enforced via the mentioned trimming
constraints. With this de�ned criteria model, the optimization only regarded the aerodynamic attributes
of the elastic wing when minimizing the induced drag, as no structural responses (e.g. stresses, strain
etc.) were constrained. The resulting wing shape of this optimization run can be seen in Figure 5.
Figure 6 shows the span wise lift distribution of the elastic wing. The green line represents the initial
state. It can be seen that the optimized state (red line) adapts closely to the elliptic distribution (black
dashed line), which is mathematically the ideal distribution for these problems [10]. As expected, the
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Figure 5: Optimization 1: Resulting shape of analysis models (FE with z-displacements, AVL with
pressure distribution)

Figure 6: Optimization 1: Elastic span wise lift distribution (green: initial, red: optimized, black:
aerodynamic ideal)
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elliptic shape can also be seen re�ected in the projected area of the analysis models (Figure 5). With this,
the induced drag coe�cient for the deformed wing could be reduced compared to the initial rectangular
design by about 8 % at constant lift force while the mass of the wing increased by roughly 20 % through
general increase in chord length.

5.2 Aeroelastic Induced Drag Optimization with Structural Criteria
The second optimization represents an extension of the �rst task by considering structural criteria as
well. Thus, two more design driving load cases were added to the 1g cruise load case from before. The
induced drag objective function is only de�ned for the 1g cruise case and, therefore, una�ected by the
two additional load cases. A −1g and a +2.5g load case were de�ned including their respective trimming
constraints and trimming variables. The shape design variable de�nition from the �rst optimization
remained unchanged. To respect the structural criteria, von-Mises stress constraints were speci�ed for all
�nite elements incorporating a safety factor of 1.5 summing up to 3300 constraints. Savings in structural
FE mass were accounted for by the trimming constraints which were now de�ned using the sum of
gravitational and aerodynamic forces instead of simply the target aerodynamic lift force. This means
that weight savings lead to lower required aerodynamic lift. Additionally to the 11 chord length variables
and the three trimming variables, 6 structural sizing design variables for the FE model skin thickness
were included (see colours in Figure 4 bottom right). The upper as well as the lower skin were each
divided span wise into 3 sizing variables that could vary between 0.8mm and 5mm thickness.

Figure 7: Optimization 2: Resulting shape of analysis models (FE with z-displacements, AVL with
pressure distribution)

Figure 8: Optimization 2: Elastic span wise lift distribution (green: initial, red: optimized, black:
aerodynamic ideal)

Figures 7 and 8 show that the second optimization did not reach the elliptic wing shape or lift distribution
as the �rst one did. In the vicinity of the wing root the chord length was increased to the maximum
gage of 1500mm, which is apparent in the increased lift generation there. The reason for this measure
was found to be the critical stress constraints in the skin elements in that region. These constraints
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were satis�ed through increasing the wing height via the constant lift-to-chord ratio while decreasing skin
thickness there. Through these measures, the elastic induced drag could be decreased by around 10 %
and the wing structural FE mass by 12 % with respect to the initial rectangular con�guration (total lift
force also decreased due to these savings). One has to mention, that the initial induced drag was higher
for this optimization than the �rst one, caused by increased lift enforced through the modi�ed trimming
constraint de�nition.
A manual test was conducted to understand why the optimizer sacri�ced an ideal lift distribution in
order to satisfy the stress constraints instead of obtaining an ideal lift distribution while adjusting the
sizing variables to meet the constraints. Hence, the resulting shape of the second optimization was
modi�ed manually to generate an ideal elliptic distribution comparable to the �rst result and the skin
design variables were adjusted to satisfy the stress constraints. This, however, increased the structural
mass necessitating a higher aerodynamic lift force through the trimming constraints. After trimming to
equilibrium of forces, the elastic induced drag value lay above the one found by the second optimization
due to a higher lift coe�cient. Thus, the optimizer found a better overall solution by diverging from
the ideal aerodynamic state. This shows how the interdependency of disciplines can cause the combined
optimum to deviate from the known optima for individual disciplines.

6. Summary and Outlook
The shown example underlines the importance of concurrent consideration of design driving phenomena
in order to �nd a design that exhibits good overall performance characteristics. Therefore, multidisci-
plinary design optimization combined with broad design criteria can streamline the search for globally
feasible designs during the conceptual design phase. Future work for the presented framework will include
implementation of higher order aerodynamic solvers as well as addition of other disciplines (e.g. radar
cross section, mass etc.). Higher �delity analysis methods (e.g. Navier-Stokes) will also be included in
the framework for result veri�cation of the optimized parametric models.
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