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1. Abstract  
Various Reliability-Based Design Optimization (RBDO) methods have been developed and widely used to solve 
design optimization problems with the existence of design uncertainties.  The general problem formulation states 
that the objective function is minimized while the failure probabilities of the performance constraints are 
subjected to the allowable probability levels.  RBDO algorithms derive and formulate various approximate 
probabilistic constraints with respect to the means of the randomly distributed design variables in replace of the 
evaluations of failure probabilities using the integral of joint probability density functions.  However, there is a 
huge diversity of approximate probabilistic formulations from various RBDO algorithms.  The goodness of fit of 
each approximate model is problem dependent but highly affects the accuracy and efficiency of the optimization 
process.  In this paper, a Unified Reliability Formulation (URF) is derived from the fundamental aspect of the 
linear expansion with allowable reliability level to provide a general category of first-order RBDO methods.  
The URF is determined by the linear expansion at an Allowable Reliability Point (ARP) with the sensitivity 
analysis associated with a Gradient-based Transformation Point (GTP).  The reliability of the ARP is exactly 
equal to the allowable probability. The GTP is the chosen expansion point of the approximate probabilistic 
constraint in each RBDO algorithm.  The derived URF not only provides a comprehensive understanding of 
approximate probabilistic constraint but also an insightful acknowledgment of how various RBDO algorithms 
can be unified into one general equation.  For instance, the various formats of the URFs for the existing RBDO 
algorithms are demonstrated.  The accuracy of each URF depends on the evaluations at the GTPs.  Therefore, an 
Ensemble of Unified Reliability Formulations (EURF) is formed to group together the approximate probabilistic 
formulations from various RBDO algorithms.  The intersection of the URFs from each RBDO algorithm is 
considered when the limit state is a convex function; on the other hand, the union of the URFs is considered for 
the concave limit state function. EURF covers a wider range of reliability analyses than any individual method. 
The benchmark examples show that the EURF requires fewer iteration to finds the optimal solutions than either 
RIA or PMA when dealing with highly nonlinear constraints. 
2. Keywords: ensemble of probabilistic constraints; Unified Reliability Formulation (URF); reliability analysis; 
Allowable Reliability Point (ARP); Gradient-based Transformation Point (GTP); Chance Constrained 
Programming (CCP); Reliability Index Approach (RIA); Performance Measure Approach (PMA). 
 
3. Introduction 
The deterministic design optimization problems, which minimize the objective (or cost) functions subject to the 
performance constraints, have been utilized to find the optimal engineering designs satisfying the optimality and 
feasibility conditions simultaneously.  However, the deterministic optimal solutions, in fact, have high 
probabilities (around 50% or even more) of system failures because of the existence of the design uncertainties.  
To decrease the failure probability and satisfy the acceptable reliability level, the more conservative design 
variables are desired on the compromise on the optimality.  The Reliability-Based Design Optimization (RBDO) 
problems have been formulated to minimize the cost function while the failure probabilities of the performance 
constraints are subjected to the allowable levels.  Nevertheless, the evaluations of the failure probabilities, which 
require the multivariate integrations associated with the joint probability density functions (JPDF), are 
computationally costly.  Many RBDO algorithms have been developed to transform the probabilistic constraints 
into solvable deterministic formulations and they have been widely utilized to solve the optimization problems 
with design uncertainties. 
In RBDO, Cornell [1] first defined a reliability index as the ratio of the negative expected value of the 
performance constraint function over its standard deviation in order to represent the reliability level of the 
design.  Accordingly, the probability of the system failure can be evaluated by the standard normal cumulative 
distribution function (CDF) of the negative value of the reliability index [2].  Following an inverse 
transformation of the standard normal CDF [3], the probabilistic performance constraint can be analytically 
transformed to a deterministic formulation, where the reliability index of the design is subjected to a minimum 
level.  During the optimization process, the design point, which violates the constraint of the reliability index, 
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will have failure probability higher than the acceptable level; contrarily, the one, which satisfies the 
reliability-based constraint, will fulfill the requirement of the reliability level.  Using the mean-value first-order 
approximation of second moment to evaluate the Cornell reliability index, the Chance Constrained Programming 
(CCP) [4, 5] has been developed.  In the CCP, the probabilistic constraints are linearly approximated associated 
with the mean values of the random design variables and they are iteratively updated with respect to the new 
design points.  However, the mean-value analysis of the reliability index is inaccurate when evaluating the 
failure probabilities associated with the nonlinear constraints [2]. 
In order to improve the accuracy of the reliability analysis, Veneziano [6] collected an approximate set of 
reliability indices along the tail of the random distribution and evaluated the failure probability by the smallest 
one in the set.  Hasofer and Lind [7] further found the minimum reliability index at the foot of the perpendicular 
from the origin to the tail approximation of the constraint in the standard normal space, that is, the normal tail 
approximation [8].  The foot point, also known as the Most Probable Failure Point (MPFP) [7, 9, 10], is crucial 
for the evaluation of the failure probability and it is determined by finding the shortest distance from the origin 
to the limit state of the performance constraint measured in the standard normal space.  The Reliability Index 
Approach (RIA) method [2, 11-17], which utilizes the First Order Reliability Method (FORM) [7, 9] to evaluate 
the failure probabilities and formulate the linearly approximated probabilistic constraint in terms of MPFPs, has 
been developed to solve RBDO problems.  The RIA [18] has been further modified to have stable evaluations of 
reliability indices during the optimization processes; therefore, the failure probabilities can be calculated 
correctly despite the feasibilities of design points. 
Alternatively, the inverse reliability analysis [3], which inverses the CDF of the failure probability to evaluate 
the performance function value, has been an essential approach in the study of RBDO.  Using the inverse 
reliability analysis, Tu et al. [19] evaluates the target performance function measure at the Most Probable Target 
Point (MPTP), which is the optimal point of maximizing the performance constraint function under the 
allowable reliability level in the standard normal design space.  For the convex nonlinear constraints, the MPTP 
has been efficiently determined by the Advanced Mean Value (AMV) method [20]; contrarily, the Conjugate 
Mean Value (CMV) method [21] has been developed for the concave ones.  The Hybrid Mean Value (HMV) 
method [21] examined the constraint curvature and adaptively utilized the AMV and CMV to determine the 
MPTPs for convex and concave constraints respectively.  The Performance Measure Approach (PMA) method 
[19, 22-25], which minimizes the cost function subject to the approximated probabilistic constraints formulated 
in terms of the MPTPs, has been greatly utilized to solve the engineering design problems with design 
uncertainties [24, 26, 27] because of the high efficiency of finding the MPTPs. 
There is a huge diversity of the approximate probabilistic constraint formulations among various RBDO 
algorithms and have been reviewed in the literature.  However, there has never been a general formulation for 
the RBDO methods and the information about the differences between the linearly approximated probabilistic 
constraints in these methods has been rather limited.  In this paper, a Unified Reliability Formulation (URF) is 
derived from the linear approximation with allowable reliability level in order to unify the linearly approximated 
probabilistic constraints in various RBDO algorithms into one general equation.  Furthermore, the URFs for 
some basic RBDO algorithms associated with specific sensitivity analyses are investigated while a 
comprehensive understanding of the differences between them will be presented.  Lin et al. [28] suggested a 
hybrid approach to select the approximate probabilistic constraints from RIA and PMA during the processes of 
RBDO.  RIA finds the MPFP at the limit state to perform accuracy reliability analysis but requires higher 
function evaluations than PMA.  The one-or-another selection in the hybrid approach was effective however it 
didn’t take advantage of both algorithms at the same time.  Therefore, an Ensemble of Unified Reliability 
Formulations (EURF) is proposed to consider a group of approximate probabilistic constraints from multiple 
RBDO algorithms at once in order to cover wider range of reliability analyses than any indusial method.  The 
section 4 introduces the derivation of the general equation of the URF.  The section 5 demonstrates the URFs for 
three basic RBDO algorithms: CCP, RIA and PMA.  The section 6 introduces the solution processes of the 
EURF.  The numerical examples are shown in the section 7 and the conclusions are presented in the section 8. 
 
4. The Unified Reliability Formulation for RBDO 
In this section, a Unified Reliability Formulation (URF) of the approximate probabilistic constraint is derived to 
unify the probabilistic formulations from various first-order RBDO algorithms into one general inequality 
equation. 
 
4.1. Evaluations of Failure Probabilities in RBDO 
The RBDO design problem is typically formulated as follows: 
 

   
Min

d
z d( ) s.t. P gi X( ) > 0!

"
#
$≤ Pf ,i  for i =1...n ; d L ≤ d ≤ dU  (1) 

where X  is the vector of random design variables; the expected value d  is bounded by the lower limit Ld  and 
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the upper limit Ud ; ( )z d  is the cost function; ( )ig X  is the thi  performance constraint; ( ) 0iP g >⎡ ⎤⎣ ⎦X  is the 

probability of violating the thi  constraint; ,f iP  is the thi  allowable failure probability; and n  is the number of 
constraints. 
Mathematically, the probability of the system failure in Eq. (1) can be calculated by an integral of the JPDF 
( )if x  within the infeasible domain, that is 

 
    
P gi X( ) > 0!
"

#
$= 

gi X( )>0
fi x( )dx1dxN∫∫  (2) 

where N  is the number of the random variables.  It is computationally expensive to evaluate the JPDF and 
compute the integral in Eq. (2).  Instead, several algorithms convert the probabilistic constraints to solvable 
deterministic inequality equations with respect to d  and the RBDO problem can be solved by general 
optimization solvers.  In the following subsections, the deterministic formulation for the probabilistic constraint 
is first derived from the fundamental aspect of linear approximation with the allowable reliability level and the 
URF for the RBDO methods is proposed. 
 
4.2. Linear Approximation with Allowable Reliability 
Suppose the thi  probabilistic constraint function with respect to the mean of the random variable is given by 
 ( ) ( ) ,0 0i i f iG P g P≡ > − ≤⎡ ⎤⎣ ⎦d X  (3) 

The probabilistic function iG  can be linearly approximated at an Allowable Reliability Point (ARP) A
ix  such 

that the failure probability evaluated at A
ix  equals ,f iP , yielding the following equation: 

 
   
Gi d( ) ≅ d − xi

A( ) ⋅∇xGi xi
A( ) ≤ 0  (4) 

In this paper, the notation of dot product is used for the scalar product, the tensor operating on a vector, and the 
product of tensors [29].  The Eq. (4) implies that the location of ARP and the sensitivity term ( )Ai iG∇x x  are 

crucial for the formulation of probabilistic constraint.  The contour of   xi
A  is exactly the boundary of the 

probabilistic constraint; however, it requires huge computational calculations to find enough points in the design 
space. 
Various linear RBDO methods have utilized different approaches to find the ARP and evaluate the sensitivity at 
ARP in the Eq. (4).  No matter which method is used, the failure probability is evaluated with respect to the 
gradient vector of the performance constraint at some design point.  Therefore, a general gradient-based 
transformation [30], which converts the multi-dimensional design space to a single-variate space along the 
gradient direction and scales by the factor of the gradient length, is studied, as in 
 

  
yi ≡ x − xi

G( ) ⋅∇xgi xi
G( )  (5) 

where G
ix  is called the Gradient-based Transformation Point (GTP).  The ARP is then determined along the thi  

gradient direction, shown in Figure 1 (a), in order to obtain the approximate probabilistic constraint in Eq. (4).  
Therefore, the GTP and the PDF of the gradient-based transformed random variable iY , illustrated in the 
subfigure (b), are crucial for the determinations of the ARP and sensitivity of the probabilistic constraint. 
Statistically, the reliability level can be quantitatively evaluated by the reliability index [1], which is given by the 
negative expectation of the performance function measured in the standard normal unit of the performance 
function.  Assuming the random variables are mutually independent and linearly approximating the second 
moment [8], the allowable reliability index is given by 

 
   
βi xi

A( ) = − gi xi
G( )+ xi

A − xi
G( ) ⋅∇xgi xi

G( )%
&

'
( σ ⋅∇xgi xi

G( )
−1
= β f ,i  (6) 

where the linear approximation of the performance function is expanded at the GTP and 
   
σ = σ je je jj=1

N
∑  is the 

standard deviation matrix.  The constitutive relation between the ARP and the GTP is then derived from Eq. (6): 

 
   
xi

A = xi
G − gi xi

G( )σ 2 ⋅∇xgi xi
G( ) σ ⋅∇xgi xi

G( )
−2
−β f ,iσ

2 ⋅∇xgi xi
G( ) σ ⋅∇xgi xi

G( )
−1

 (7) 

The Eq. (7) implies that the location of ARP can be determined by the addition of three vectors: the GTP, the 

reliability measure at GTP along the scaled gradient direction ( ) ( )
12 G G

i i i ig g
−

⋅∇ ⋅∇x xx xσ σ , and the coordinate 

shift of ,f iβ  along the negative scaled gradient direction. 
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Figure 1: Gradient-based transformation from  x -space to  yi -space: (a) a bird’s eye view; (b) angular view. 
 
4.3. Sensitivity Analysis 
In this subsection, the sensitivity of the probabilistic constraint will be derived based on the relation of ARP and 
GTP.  Using the chain rule, the sensitivity of the probabilistic constraint can be rewritten as 
 

  
∇xGi d( ) =∇ yi

Gi d( ) ⋅∇x yi =∇ yi
Gi d( ) ⋅∇xgi xi

G( )  (8) 

To study the sensitivity term of ( )
iy iG∇ d , the probabilistic constraint should be investigated along the 

gradient-based transformation direction.  Approximating the performance function at G
ix , the Eq. (3) is rewritten 

as follows: 
 

   
Gi d( ) ≅ P gi xi

G( )+ X − xi
G( ) ⋅∇xgi xi

G( ) > 0%
&

'
(− Pf ,i  (9) 

Applying the gradient-based transformation to Eq. (9) yields to  
 

   
Gi d( ) ≅ P Yi d( ) > −gi xi

G( )#
$

%
&− Pf ,i  (10) 

where iY  is the gradient-based transformed random variable.  Therefore, the sensitivity of the probabilistic 
constraint with respect to the gradient-based transformed variable is given by 
 

  
∇ yi

Gi d( ) =∇ yi
P Yi d( ) > −gi xi

G( )#
$

%
&= fYi

−gi xi
G( )#

$
%
&  (11) 

where 
iY
f  is the PDF of iY .  Therefore, the sensitivity term ( )Ai iG∇x x  in Eq. (4) is rewritten as 

 
  
∇xGi xi

A( ) = fYi
−gi xi

G( )#
$

%
&∇xgi xi

G( )  (12) 

where 
  
fYi

−gi xi
G( )"

#
$
%  remains positive for the continuous random distribution in the entire design space. 

Finally, the URF is defined in the Eq. (13) by the substitutions of Eqs. (7) and (12) to the Eq. (4). 

 

   

Gi
URF d( ) ≡Gi d( ) fYi

−gi xi
G( )#

$
%
&

≅ d − xi
G + gi xi

G( )σ 2 ⋅∇xgi xi
G( ) σ ⋅∇xgi xi

G( )
−2
+β f ,iσ

2 ⋅∇xgi xi
G( ) σ ⋅∇xgi xi

G( )
−1#

$,
%

&-
⋅∇xgi xi

G( ) ≤ 0
 (13) 

which is a general linear approximation of the probabilistic constraint.  In the derived URF, the selection of GTP 
is crucial for the location of the ATP and the gradient direction of the probabilistic constraint.  Various RBDO 
algorithms have considered different GTPs to formulate the linearly approximated probabilistic constraints in 
this unified format.  In the next section, the approximate probabilistic constraints of some basic RBDO methods 
will be reviewed and the URFs for these methods will be first revealed in the literature. 
 
5. Basic formats of the URFs 
The URFs associated with the mean-value, reliability, and inverse reliability analyses have previously been 
studied.  In this section, the basic RBDO methods, which are directly linked to the three reliability aspects, are 
reviewed and their corresponding URFs are determined. 
 
5.1. Chance Constrained Programming (CCP) 
Cornell [1] defined the reliability index  βi  to represent the reliability level of the system.  Assuming the random 
variable is normally distributed and transforming the coordinate to the standard normal design space, the failure 
probability is then approximated by a standard normal CDF of the reliability index [2], which is given as 
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P gi X( ) > 0!
"

#
$≅Φ −βi( )  (14) 

Using an inverse transformation of the standard normal CDF [3], the probabilistic constraint in Eq. (14) is then 
converted to a solvable formulation: 
 

   
−βi d( ) ≤ −β f ,i  (15) 

Linearly approximating the 
  
βi d( )  at the mean value of the random variable, the Eq. (16) is determined. 

 
   

gi d k( )( )+ d − d k( )( ) ⋅∇xgi d k( )( )$
%&

'
() σ ⋅∇xgi d k( )( )

−1

≤ −β f ,i  (16) 

This approach is called the CCP [4, 5].  The approximate probabilistic constraint in Eq. (16) can be easily 
transform to the following equation: 

 
   

d − d k( ) + gi d k( )( )σ 2 ⋅∇xgi d k( )( ) σ ⋅∇xgi d k( )( )
−2

+β f ,iσ
2 ⋅∇xgi d k( )( ) σ ⋅∇xgi d k( )( )

−1&

'
(

)

*
+⋅∇xgi d k( )( ) ≤ 0  (17) 

which is identical to the URF in Eq. (13) using the mean of the  k th  random variable as the GTP.  Therefore, the 
URF for the mean-value reliability analysis in the CCP has been revealed. 
 
5.2. Reliability Index Approach (RIA) 
In RIA [2, 11-15], the reliability index has first been defined as the distance from the point to the failure region 
measured in standard deviation units [7].  Lin et al. [18] modified the reliability index as follows: 

 
   
βi = ui

* ⋅∇ugi ui
*( ) ∇ugi ui

*( )
−1

 (18) 

In Eq. (18), the MPTP    ui
*  is the design point that has the shortest distance from the current design point to the 

limit state of the  ith  performance constraint measured in the standard normal unit.  Substituting equation 
reference goes hereEq. (18) to Eq. (15) and linearly approximate 

  
βi d( )  at the current deign point, the following 

approximate probabilistic constraint is obtained: 

 
   
−ui

* ⋅∇ugi ui
*( ) ∇ugi ui

*( )
−1
+ d − d k( )( ) ⋅∇xgi ui

*( ) ∇ugi ui
*( )

−1
≤ −β f ,i  (19) 

Transforming the standard normal variables to original design space using the relation of 
   
u =σ −1 ⋅ d − d (k )( ) , the 

Eq. (19) can be rewritten as follows: 

 
   

d − xi
* +β f ,iσ

2 ⋅∇xgi xi
*( ) σ 2 ⋅∇xgi xi

*( )
−1&

'(
)

*+
⋅∇xgi xi

*( ) ≤ 0  (20) 

where    xi
*  is the MPTP in the original design space.  Since 

   
gi xi

*( ) = 0 , the Eq. (20) is identical to the URF in 

Eq. (13) using the MPTP as the GTP. 
 
5.3. Performance Measure Approach (PMA) 
PMA utilized the inverse reliability analysis to evaluate the target performance measure [19] as in 
 ( ) { }1

,1
ii g f iFγ β− ⎡ ⎤= −Φ −⎣ ⎦d  (21) 

where ( )
ig

F γ  is the probability of the event of ( )ig γ≤X .  Since the probabilistic constraint in Eq. (1) can be 
rewritten as 
 ( ) ( ) ,0 1 0

ii g f iP g F β⎡ ⎤> = − ≤ Φ −⎡ ⎤⎣ ⎦ ⎣ ⎦X  (22) 
an approximate probabilistic constraint is obtained by applying Eq. (21) into Eq. (22): 
 ( ) 0iγ ≤d  (23) 

The target performance measure is then evaluated at the MPTP #
iu  and a linear approximate probabilistic 

constraint is formulated as 
 ( ) ( )( ) ( )# # 0k

i i i ig g+ − ⋅∇ ≤xu d d u  (24) 

where 
   
ui

# = β f ,i∇ugi ui
#( ) ∇ugi ui

#( )
−1

 is found toward the direction of most probable target on the 
  
β f ,i -sphere 

centered at the current design point.  A dummy term of 
   
σ ⋅ −ui

# +β f ,i∇ugi ui
#( ) ∇ugi ui

#( )
−1&

'(
)

*+
 is added to the 
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Eq. (24), as in 

 
   

d − d k( ) −σ ⋅ui
# +β f ,iσ ⋅∇ugi ui

#( ) ∇ugi ui
#( )

−1&

'(
)

*+
⋅∇xgi xi

#( )+ gi xi
#( ) ≤ 0  (25) 

Transforming the standard normal variable to the original design space, the Eq. (25) is then converted to the 
URF in Eq. (26) which utilizes the MPTP as the GTP. 

 
   

d − xi
# + gi xi

#( )σ 2 ⋅∇xgi xi
#( ) σ 2 ⋅∇xgi xi

#( )
−2
+β f ,iσ

2 ⋅∇xgi xi
#( ) σ 2 ⋅∇xgi xi

#( )
−1&

'(
)

*+
⋅∇xgi xi

#( ) ≤ 0  (26) 

where    xi
#  is the MPTP in the original design space. 

 
5.4. Remarks about the URFs for the existing RBDO algorithms 
Lin and Gea [31] have compared the solution processes using the linear approximate probabilistic constraints of 
CCP, RIA, and PMA.  The results showed the approximation in CCP is less accurate than the ones in RIA and 
PMA.  The solution process of PMA is the most efficient when HMV is used.  RIA guarantees to perform the 
reliability analysis on the limit state of the performance constraint for continuous random variables.  Based on 
the newly revealed URFs, the major differences between each RBDO algorithms are the selections of the GTPs.  
To sum up, CCP, RIA, and PMA consider the different GTPs to find the expansion point with the allowable 
reliability, shown as follows: 

 

   

xi
A =

d k( ) − gi d k( )( )σ 2 ⋅∇xgi d k( )( ) σ ⋅∇xgi d k( )( )
−2

−β f ,iσ
2 ⋅∇xgi d k( )( ) σ ⋅∇xgi d k( )( )

−1

for CCP

xi
* −β f ,iσ

2 ⋅∇xgi xi
*( ) σ 2 ⋅∇xgi xi

*( )
−1

for RIA

xi
# − gi xi

#( )σ 2 ⋅∇xgi xi
#( ) σ 2 ⋅∇xgi xi

#( )
−2
−β f ,iσ

2 ⋅∇xgi xi
#( ) σ 2 ⋅∇xgi xi

#( )
−1

for PMA

&

'

(
(
(

)

(
(
(

 (27) 

In other words, CCP and PMA estimate the design points on the limit state of the performance constraint, 

denoted as estimated design point (EDP), using the vectors of 
   
d k( ) − gi d k( )( )σ 2 ⋅∇xgi d k( )( ) σ ⋅∇xgi d k( )( )

−2

 and 

   
xi

# − gi xi
#( )σ 2 ⋅∇xgi xi

#( ) σ 2 ⋅∇xgi xi
#( )

−2
, respectively.  Therefore, the accuracy of the reliability analysis 

increases when the performance measure at the EDP is close to zero, as in Eq. (28). 

 
   
gi xi

G − gi xi
G( )σ 2 ⋅∇xgi xi

G( ) σ ⋅∇xgi xi
G( )

−2%

&'
(

)*
≈ 0  (28) 

In the following section, the well-fit functions are found based on the checking criteria in Eq. (28) and 
considered simultaneously during the optimization processes. 
 
6. EURF 
In this paper, an Ensemble of Unified Reliability Formulations (EURF) is proposed to consider a group of the 
well-fit approximate probabilistic constraints from multiple RBDO algorithms at once in order to cover wider 
range of reliability analyses than any indusial method.  The general optimization formulation of the EURF is 
defined as follows: 

 

    

Min
d

z d( )

s.t.


m=Si

Gi,m
URF d( ) ≤ 0"

#
$
% for convex gi


m=Si

Gi,m
URF d( ) ≤ 0"

#
$
% for concave gi

&

'
((

)
(
(

*

+
((

,
(
(

i =1...n

d L ≤ d ≤ dU

 (29) 

where  Si  is the set of well-fit approximate probabilistic constraints from multiple RBDO algorithms.  In our 
implementation, the indices for CCP, RIA, and PMA are given as 1, 2, and 3 respectively.  In Eq. (29), the 
symbols of    and    represent the operations of union and intersection respectively.  From section 5, each 
RBDO algorithm performs a unique reliability analysis to determine the ARP and formulate the approximate 
probabilistic constraint regarding to different selections of the GTPs.  The probabilistic constraints generated by 
each RBDO algorithm are mostly different from each during the optimization processes.  In the common 
practices, only one formulation is chosen from multiple algorithms based on the designers’ preferences [31].  
The Eq. (29) represents a novel approach to take advantage of the linear approximate probabilistic constraints 
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from various RBDO algorithms in terms of considering every well-fit URFs at once during the optimization 
processes. 
From Eq. (28), the goodness of fit of the approximate probabilistic constraint is determined based on the 
closeness of the EDP to the limit state of the performance function, illustrated by the highlighted area in Figure 2.  
The probabilistic constraints from a benchmark mathematical problem in the literature [22, 23, 32] , as in 
Eqs. (30) and (31), are considered in the subfigures (a) and (b), respectively. 
 

   
P ga X( ) =1− X1

2 X2( ) 20 > 0"
#

$
%≤ 0.13%  (30) 

 
   
P gb X( ) =1− X1+ X2 −5( )2

30− X1 − X2 −12( )2
120 > 0"

#$
%
&'
≤ 0.13%  (31) 

The location of   d
k( )  is   [5, 5]T  and the standard deviations are 

 
σ 1,σ 2
"# $%= 0.3, 0.3"# $% .  There should not be exact 

criteria for the closeness of the EDPs.  For the maximum accuracy of the reliability analysis, the allowable range 
of the well-fit area is narrowed to zero and the URF of RIA will be utilized.  The relaxation of the range of 
allowable closeness between the EDP and the limit state enables the consideration of more URFs from other 
RBDO algorithms, which is beneficial for the realization of the shape of the true probabilistic constraint.  For 
example, Figure 2 (a) shows that the EDPs of CCP and PMA are outside of the well-fit area.  The EURF, which 
therefore includes only the URF of RIA in Eq. (20), is estimated as a linear probabilistic constraint.  Furthermore, 
the subfigure (b) shows that only the EDP of CCP is outside of the well-fit area.  In this circumstance, both the 
URFs from RIA and PMA are considered in the ensemble of constraints in order to have better approximation of 
the nonlinear behavior of the probabilistic constraint.  From Eq. (29), the union operation is utilized since the 
limit state is a convex function near the investigated area. 
 

 
 

Figure 2: Linear approximate probabilistic constraints of CCP, RIA, and PMA for (a) the concave constraint and 
(b) the convex constraint. 

 
The convexity of the limit state of the performance constraint near the investigated location is crucial for the 
selections of probabilistic constraints in the EURF, previously presented in Eq. (29).  The constraint convexity 
can be determined by the calculation in terms of the information from any two well-fit URFs, as shown in 
Figure 3.  The angle 

 
θij  represents the angle between the vectors from the  ith  EDP to the  ith  ARP and the  j

th  

EDP.  When 
  
θij < 90° , the limit state is concave near the  ith  and  j

th  EDPs.  When 
  
θij > 90° , the limit state is 

convex.  The situation of 
  
θij = 90°  occurs when the limit state function is linear; otherwise, it is rare in the 

numerical implementation for nonlinear constraints.  The situation of 
  
θij ≈ 90°  may happen when the 

investigated EDPs are very close to each other, yielding minimal differences between the investigated URFs.  In 
our implementation, only the URF with the most accurate reliability analysis is chosen in replace of the EURF.  
In the circumstances of disagreed convexity analysis (such as more than two well-fit URFs near a saddle point), 
only the URF with the most accurate reliability analysis is considered. 
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Figure 3: Convexity investigation for (a) the concave constraint and (b) the convex constraint. 
 
7. Numerical Examples 
In this section, two benchmark mathematical problems are studied.  The problems will be solved by the 
individual RBDO methods, including CCP, RIA, and PMA, as well as the proposed EURF.  The Monte Carlo 
Simulations will be utilized to confirm the correctness of the optimal solutions.  The required numerical 
performances will be compared to demonstrate the efficiency of each method. 
 
7.1. Example 1: Benchmark Mathematical Problem 
The same benchmark mathematical problem in the section 6 is considered as the first numerical example.  The 
optimization problem formulation is given as follows: 

 

   

Min
d

z d( ) = d1+ d2

s.t. P g1 X( ) =1− X1
2 X2( ) 20 > 0"

#
$
%≤ 0.13%

P g2 X( ) =1− X1+ X2 −5( )2
30− X1 − X2 −12( )2

120 > 0"
#'

$
%(
≤ 0.13%

P g3 X( ) =1−80 X1
2 +8X2 +5( ) > 0"

#
$
%≤ 0.13%

0.1≤ d1, d2 ≤10

 (32) 

The random variables are assumed normally distributed and mutually independent.  The location of initial design 
is   [5, 5]T  and the standard deviations are 

 
σ 1,σ 2
"# $%= 0.3, 0.3"# $% .  In our implementation, the criteria of allowable 

closeness of the well-fit area in Eq. (33) are given by 

 
   
gi xi

G − gi xi
G( )σ 2 ⋅∇xgi xi

G( ) σ ⋅∇xgi xi
G( )

−2%

&'
(

)*
≤α σ ⋅∇xgi xi

G( )  (33) 

where  α = 0.2  is defined so that no disagreement of the constraint convexity is found.  The results are listed in 
Table 1.  CCP requires the highest iteration number to converge and it is too conservative as none of the failure 
probabilities (denoted by  pfi ) approach to the allowable limit.  RIA, PMA, and EURF all converge at the same 

optimal solution (denoted by   d opt ) using 4 iterations.  It is expected that the function evaluations of EURF are 
almost double of the ones of RIA and PMA.  It is guaranteed the iteration of EURF won’t exceed RIA and PMA. 
 
7.2. Example 2: Benchmark Highly Nonlinear Mathematical Problem 
The next example is a highly nonlinear mathematical problem [33], which is given by 

 

   

Min
d

z d( ) = − d1+ d2 −10( )2
30− d1 − d2 +10( )2

120

s.t. P g1 X( ) =1− X1
2 X2( ) 20 > 0"

#
$
%≤ 0.13%

P
g2 X( ) = −1+ 0.9063X1+0.4226X2 −6( )2

+ 0.9063X1+0.4226X2 −6( )3

−0.6 0.9063X1+0.4226X2 −6( )4
− −0.4226X1+0.9063X2( ) > 0

"

#

'
'
'

$

%

(
(
(
≤ 0.13%

P g3 X( ) =1−80 X1
2 +8X2 +5( ) > 0"

#
$
%≤ 0.13%

0.1≤ d1, d2 ≤10

 (34) 
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The random variables are assumed normally distributed and mutually independent.  The location of initial design 
is   [3.5, 4]T  and the standard deviations are 

 
σ 1,σ 2
"# $%= 0.2, 0.2"# $% .  Only the accurate reliability analyses in RIA 

and PMA are considered in this highly nonlinear mathematical problem.  There will be no disagreement in the 
convexity check when only two URFs are considered.  Therefore, α  is relaxed to 0.5 in our implementation.  
Furthermore, the convexity is only checked when the investigated EDPs are close to each other.  The maximum 
allowable distance between EDPs is defined as 

  
β f ,i ×min(σ ) .  The results are listed in the Table 1. RIA, PMA 

and EURF all are capable of finding the correct optimal solution while EURF requires the fewest function 
evaluations to converge at the solution.  In the current literature, it is difficult to find an existing method that 
requires less iteration to find optimal solutions than both RIA and PMA.  Moreover, the EURF will be most 
beneficial for the real-world applications where each function evaluation is cheap and fast. 
 

Table 1. Results of the Numerical Examples. 
 

Example Method   [d1
opt , d2

opt ]  Iteration Function 
Evaluations   [ pf1, pf2 , pf3]  

1 

CCP [3.6364, 3.4472] 8 72 [0.0066%, 0.0422%, 0%] 
RIA [3.4390, 3.2866] 4 227 [0.1463%, 0.1152%, 0%] 
PMA [3.4391, 3.2866] 4 231 [0.1547%, 0.1150%, 0%] 

EURFa [3.4391, 3.2866] 4 568 [0.1451%, 0.1137%, 0%] 

2 
RIA [4.6716, 1.5684] 5 319 [0.1504%, 0.0887%, 0%] 
PMA [4.6716, 1.5684] 7 474 [0.1514%, 0.0849%, 0%] 

EURFb [4.6709, 1.5690] 4 618 [0.1462%, 0.0810%, 0%] 
a: The URFs from CCP, RIA, and PMA are considered simultaneously. 
b: The URFs from RIA and PMA are considered simultaneously. 
 
8. Conclusions 
In the Reliability-Based Design Optimization (RBDO), the probabilistic constraints have been linearly 
approximated with various approaches of reliability analysis but there is a huge diversity of the approximate 
constraints in the existing methods.  In this paper, the Unified Reliability Formulation (URF) is derived from the 
linear approximation with allowable reliability level and is utilized to unify the probabilistic constraints in 
various RBDO algorithms into one general equation.  The determinations of the Allowable Reliability and the 
Gradient-based Transformation Points are crucial for the URF.  The URFs for three basic RBDO algorithms 
have newly been revealed: Chance Constrained Programming (CCP), Reliability Index Approach (RIA), and 
Performance Measure Approach (PMA) utilize the mean point, the most probable failure points, and the most 
probable target points as the GTPs, respectively.  An Ensemble of Unified Reliability Formulations (EURF) has 
been proposed to take advantage of the linear approximate probabilistic constraints from each RBDO algorithm.  
The goodness of fit of the probabilistic constraint is first verified.  The union and intersection of the well-fit 
probabilistic constraints are then considered for concave and convex limit states, respectively.  Two benchmark 
mathematical problems have been studied to show the numerical performances of the proposed method.  As a 
result, EURF is capable of finding the correct optimal solutions.  It is guaranteed the iteration of EURF won’t 
exceed RIA and PMA.  It is beneficial for some real-world applications that EURF may require less iteration to 
find the optimal solutions than RIA and PMA.  However, EURF requires more function evaluations than any 
individual methods.  Some other URFs are currently under investigation in Chung Yuan Christian University to 
improve the efficiency of EURF. 
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