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1. Abstract  
Nonparametric (distribution-free) reliability analysis (RA) is suggested as an alternative for RA of a mechanical 
system working on an inaccessible area, for instance, vehicle traveling on deep-seabed. Generally, it is not easy to 
estimate the appropriate statistical distribution function on the base of sample data, especially noise or 
environmental factors. Since the probability distributions of noise random variables are not often known and only 
a few sample data is given for design of a mechanical system working on the inaccessible area, the usage of 
nonparametric estimation is an emerging method to estimate the reliability of the system. Nonparametric RA is 
defined as reliability estimation of performance function from nonparametrically estimated distribution of noise 
random variables. A mathematical example is illustrated to compare the characteristics of nonparametric RA with 
those of parametric RA. Test statistic for estimated distribution of a noise random variable and reliability accuracy 
at a design point are used for evaluation of the performance and robustness of each RA. It is concluded that the 
nonparametric RA is more robust then the parametric RA for few sample data of stochastic variables. 
 
2. Keywords: Nonparametric estimation, Reliability analysis (RA), Inaccessible area, Noise random variables 
(NRVs), Robustness 
 
3. Introduction 
The activity of mankind has been broader than the past in order to exploit the new energy and mineral resources, to 
utilize the new space for transportation and defense, and to perform the other newly required task. The activity of 
mankind have reached the inaccessible area in which people has no interest in the past because the area is hard to 
access. A new mechanical system working on the area would be required and designed. A deep-sea mining system 
for exploitation of deep-sea mineral resources is a representative example of a mechanical system working on the 
inaccessible area.  

The factors affecting the response of a mechanical system could be classified as design and noise factors with 
respect to design optimization. The design factors are defined as the factors of which the values can be determined 
by designer. The noise factors are defined as the factors of which the values cannot be determined by designer. The 
design factors are also classified as design variables and design parameters. The design variables (DVs) are 
defined as the design factors which the designer intends to determine. The design parameters are defined as the 
design factors of which the values are already determined. Designer has no interest to determine the value of the 
design parameters. The design parameters would be regarded as constant values in the optimization formulation. 
The noise factors include the environmental factors, the operational factors, aging factors, tolerance factors, and 
etc. The noise factors would content all factors that the designer cannot control. The noise factors are classified as 
noise random variables and noise parameters. The noise random variables (NRVs) are defined as stochastic factors 
of which the variation is too large to be negligible. Deterministic parameters are defined as deterministic factors 
which can be treated as a constant value. When the variation of the noise factors is so small to be negligible, the 
noise factors can be regarded as noise parameters. 

Design characteristics of a mechanical system working on an inaccessible area are summarized as follows:  
　 - Small quantity and order-made production: Generally only small number of a mechanical system working 
on an inaccessible area would be required. Thus, the order-made production system is required against mass 
production such as automobiles and electronics. Thus, the variation of design factors due to the production 
tolerance is relatively minor than that of noise factors such as the environmental and operational factors. The 
tolerance of design factors can be controlled easily due to small quantity. The noise factors due to tolerance factors 
can be regarded as noise parameters. 
　 - Hardness of testing and verifying the performance of the system: It is extremely expensive and 
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time-consuming to perform the design verification of the system. Thus, laboratory experiments and computational 
simulation technique would be required for compensating the insufficient number of verification tests. Simulation 
based design (SBD) would be effective to design a mechanical system working on inaccessible area.  
　 - Hardness of estimating the probability distribution of noise random variables (NRVs): The variations of 
NRVs due to environmental factors are large and the probability distributions of the NRVs are not known yet. In 
addition to that, it is very hard to acquire the sample data for some of NRVs and sometimes insufficient sample 
data can be only available. 
　 - Nonlinear responses due to large variation of NRVs and broad range of design variables: Since no mother 
design is referred to design the new mechanical system working on an inaccessible area, the searching range of the 
design variables is generally broad. The responses of the performance functions would be nonlinear due to the 
large variation of the environmental factors and broad range of the design variables. 

In order to consider systematically the effect of the NRVs to the performance function, the reliability based 
design is necessary. In the deterministic design, a factor of safety is used to determine the value of the design 
variables. By using the factor of safety, the variation of noise factors is vaguely considered. In the reliability based 
design, the variation of noise factor is considered as the probability distribution. The effect of variation of the noise 
factor to performance functions can be systematically considered. 

The main issue of reliability based design is how to estimate effectively the reliability of performance function. 
In this study, reliability analysis (RA) is defined as estimation of reliability of performance function. It is assumed 
that the variation of performance function is caused by the variation of NRVs at a given design point. Many 
researches on RA for design optimization have been studied in various fields ([1], [2], [3], [4]). Various methods 
are proposed for RA: Monte Carlo Simulation [Neumann et al., 1949], 2nd moment based approximation method 
[5] such as first order reliability method (FORM) and second order reliability method (SORM), and 4th moment 
based methods such as multiplicative decomposition (MD) [2] and dimension reduction (DR)[6]. Hence, the 
mentioned RA methods are performed on the basis of the assumption that the each probability distribution of 
NRVs is Gaussian one or at least is parametrically known probability distribution such as beta distribution, 
Weibull distribution, and etc. 

In previous study, it was assumed that the probability distributions of the NRVs are already known and given to 
designer, or the probability distributions are easily constructed. However, in designing a new mechanical system 
working on an inaccessible area, the probability distributions of NRVs are usually not known, and moreover the 
number of sample data of the NRV is not enough to estimate the distribution as mentioned before. The accuracy of 
RA depends on the completeness of the probability distribution model and the accuracy of estimation of its 
parameters. The wrong selection of probability distribution model of NRVs would mislead to poor RA. The 
parametric model of probability distribution has been used in the previous study. In this study, nonparametric 
estimation method for the noise random variables is proposed. Since there is no assumption for probability 
distribution model in nonparametric estimation, the possibility of poor estimation of the reliability resulting from 
the wrong selection of probability distribution model is very low. 

Nonparametric RA is defined as reliability estimation of performance function from nonparametrically 
estimated distribution of NRVs. Hence, parametric RA is defined as reliability estimation of performance function 
from parametrically estimated probability distribution of NRVs. In nonparametric RA, the NRVs are 
nonparametrically estimated using nonparametric estimators such as piecewise linear estimation (PLE), kernel 
density estimation (KDE) [7], or generalized Pareto distribution (GPD) in tails [8] for cumulative distribution. In 
this study, the performance and robustness of nonparametric RA are evaluated and compared with those of 
parametric RA by illustration of a mathematical example. 
 
 
4. Estimation of probability distribution from sample data of noise random variables 
4.1. Parametric estimation 
The procedure of the parametric estimation from sample data of noise random variables consists of three steps: 
collection of candidate distributions, parameter estimation of each candidate distribution by using distribution 
fitting, and the selection of best fit distribution. The candidate probability distributions would be chosen by a 
designer. The designer would consider several points: pre-information of the NRVs, the applicability for RA, and 
easiness of distribution fitting and goodness-of-fit. After collecting the candidate probability distributions, 
distribution fitting is performed to each candidate distribution. By performing distribution fitting, the parameters 
of each candidate are decided. Four types of distribution fitting methods could be employed such as, maximum 
likelihood estimation (MLE), method of moments (MOM), method of L-moment (LMOM) [9], and least square 
estimation (LSE). MLE is the most popular distribution fitting method. MLE could be applied to most of 
probability distributions. If the MLE is not applicable, MOM, LMOM, or LSE would be used for distribution 
fitting. 

In order to suggest the best probability distribution model among candidate models, goodness-of-fit (GOF) tests 
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are performed such as the Kolmogorov–Smirnov (K-S) test [10], Anderson-Darling test, and chi-square test. 
Among them, the K-S test is the most popular GOF method and could be applied for any probability distribution. 
The K–S test compares the observed empirical cumulative density function (eCDF),  XFn , of sample data with 

the theoretical cumulative density function (CDF),  XF , obtained from the candidate probability model whose 

parameters are already determined using distribution fitting methods. The eCDF is denoted by 

  
n

XFn

X]nsobservatio of[Number 
   (1) 

where n  denotes the number of samples. The maximum absolute difference, D , between the empirical and 
theoretical cumulative values for each is evaluated as follows:  

    XFXFD n  max   (2) 

D  is also called test statistic used as decision measure of the hypothesis test. There are critical values ( crD ) 

corresponding to the number of samples ( n ) for each significance level of probability distributions. The critical 
value is a criterion for the determination of a significant fit. If a test statistic is less than or equal to the critical value, 
then the probability distribution model is considered as significant fit to the observed distribution.  
 
4.2. Nonparametric estimation 
As mentioned in the introduction, the probability distributions of noise random variables for a new mechanical 
system working in an unveiled area are generally not known and the sampled data for the random variables are not 
enough to estimate the probability model. The reliability would be sometimes poorly estimated due to the wrong 
assumption of probability distribution in parametric estimation. Nonparametric estimation does not mislead 
reliability with large modeling error because of less assumption for probability distribution. There are several 
nonparametric estimation methods: piecewise linear estimation (PLE), kernel density estimation (KDE), and the 
dual estimation. The dual estimation is composed of nonparametric model in body and tail model in tails. PLE and 
KDE are generally used for nonparametric model in body. Generalized Pareto distribution (GPD) is used for tail 
model in both tails. 
 
4.2.1 Piecewise linear estimation 
The empirical cumulative distribution function (eCDF) is related with the empirical measure of given sample. The 
eCDF is defined as  
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where, }{1 A  is the indicator of event A. Breakpoints are defined as the center point of jump of step function. 

Piecewise linear function of the breakpoints can be used more easily than the step function of eCDF for estimating 
a CDF of population. The piecewise linear function of breakpoints of eCDF is called as piecewise linear 
estimation.  
 
4.2.2 Kernel density  
Silverman [7] and Wand & Jones [11] summarized the KDE methods. For given sample data of j-th noise random 

variable, jN , the estimated probability density, 
jNf


, is expressed as linear combination of each kernel which is 

located in its sample point. The coefficient is the inverse of number of data, jk , multiplied to bandwidth, jh . The 

definition of KDE is given as follows: 
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Many kernels could be used: Epanechnikov, cosine, biweight, triweight, Gaussian, triangular, and uniform as 
shown in Table 1. However, Gaussian kernel is commonly used in the literature.  
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Table 1 : Kernels commonly used in KDE [11] 
Kernel name Form 

Epanechnikov    11 2
4
3  uIu  

Cosine    1cos 24 uIu  

Biweight    11
22

16
15  uIu  

Triweight    11
32

32
35  uIu  

Gaussian 
25.0

2
1 ue


Triangular    11  uIu  

Uniform  15.0 uI  

 1uI  means 1 for 1u , 0 (zero) for otherwise. 

 
In order to complete the estimation of density of noise random variables, kernel and bandwidth are determined. 
Bandwidth should be selected for getting a good balance of variation of deviation for asymptotic mean integrated 
square error (AMISE). There are several bandwidth selection methods: Gaussian optimal smoothing, least square 
cross validation, and plug-in bandwidth ([10], [11]). Gaussian optimal smoothing is commonly used as a 
bandwidth selection method. 

Gaussian optimal smoothing is simple and practical estimation method of bandwidth ([10], [11]). The 
bandwidth is given as 
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where, ̂  is the standard deviation of the sample, RQI ˆ  is an interquartile range of the sample. This bandwidth is 

calculated on univariate Gaussian kernel function. This bandwidth selection method is practical because of fast 
calculation. Hence, a robust estimate of   is preferable to the usual sample standard deviation in order to 
accommodate long tailed distributions and possible outliers. A simple choice is the median absolute deviation 
estimator.  

   6745.0/~ˆ 111 NNmedian     (6) 

where, 1
~
N  

and 1
~

N  denotes the median of the sample [12]. 

 
4.2.3 Dual estimation 
In order to overcome insufficient tail modeling in the application of PLE and KDE due to a few data in tails, dual 
estimation methods are proposed. The probability distribution is nonparametrically estimated in body and 
estimated by 2nd extreme value theorem in tails. The central part, or body part, of probability distribution, is 
modeled nonparametrically as PLE or KDE. Both tails of CDF are modeled parametrically as generalized Pareto 
distribution (GPD).  

Pickands-Balkema-de Haan (PBH) theorem, often called as 2nd extreme value theorem, describes the 
distribution of sample above a high threshold or/and below a low threshold as a GPD. This PHB theorem is 
particularly useful for modeling tails of sample from any distribution. CDF of GPD is defined as    
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The dual estimation of probability distribution of a NRV is defined as  
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   LF ,,,   for Lux     

   HF ,,,   for Hux    (8) 

 PLE or KDE for HL uxu     

 
Importance and difficulty for threshold selection of dual estimation are analogous with that of bandwidth selection 
of KDE. Threshold selection is determined by a tradeoff between bias and variance. If the threshold selected is too 
low, the assumption for GPD, sufficient large threshold, is largely violated and do not provide a good 
approximation to the tails. On the other hand, if the threshold selected is too high, the number of data available for 
the tail approximation is much less and this may lead to excessive scatter in the final estimate. The proper selection 
of threshold is very important because it has important consequence on the estimated value of the shape factor. 
Easy and practical threshold selection method is suggested by Boos [13] and Hasofer [14]. Boos suggested that the 

ratio exN (number of tail data) to N  should be 0.02 (50< N <500) and 0.1 (500< N <1000). Hasofer suggested 

exN should be N5.1 . 

 
5. Nonparametric RA 
While the efficient estimation of reliability such as FORM, SORM, MDM and eDRM could be possible from the 
probability distribution of NRVs using parametric RA, the wrong choice of probability distribution model of NRV 
would directly affect the reliability of performance function. Since the RA process is performed on the assumption 
that the chosen probability distribution and its fitted parameters completely estimates the distribution of the 
population of a NRV, the insufficient choice of candidate distributions would cause a wrong estimation of 
reliability irrespective of the accuracy of fitted parameters. 

In order to reduce the invulnerability of estimating the reliability due to wrong choice of candidate distributions 
in parametric RA, the use of nonparametric RA is suggested for estimating the probability distribution of NRVs. 
Nonparametric estimation of probability distribution is taken into account in previous section. Since there is only a 
little assumption for probability distribution model, it is very low possibility that nonparametrically estimated 
probability distribution leads to wrong estimation. If the probability distribution is not known, the nonparametric 
estimation of NRV can be an alternative for parametric one. It is rationally deduced that the good estimation of 
probability distribution of NRVs would lead to good estimation of reliability of the performance function. 

Monte Carlo simulation (MCS) could be applied to identically both parametric RA and nonparametric RA. In 
this study, MCS is applied to nonparametric RA. Four steps of nonparametric RA by using MCS are given: 
nonparametric estimation of probability distribution from sample data of each NRV, sampling from 
nonparametrically estimated probability distribution of NRVs, putting the sample into performance function, and 
reliability estimation nonparametrically from performance random variables. 
 
5.1 Nonparametric estimation of probability distribution from sample data of each NRV 
In section 4, the nonparametric estimation of probability distribution from sample data of each NRV is already 
explained. PLE, KDE, PLE/GPD, and KDE/GPD can be used. Since inverse CDF of each NRV is constructed, 
re-sampling for MCS can be possible by inverse transform method. In this study, resampling is used for 
distinguishing the given sample of NRV. Simulation is performed for the resampled data. 
 
5.2 Sampling from estimated probability distribution of NRVs 
In this study, Latin hypercube sampling [15] is used in order to minimize the variance of resampling. The resample 
is generated based on the inverse transform method for putting the sample data to m -th performance function. It is 
assumed that the number of resample data for MCS can be chosen differently as the target reliability of 
probabilistic constraints corresponding for each performance function.  
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where, mjN ,  denotes the resampled random variable corresponding to NRV and performance function, nnrv  

denotes the number of NRVs, nc  denotes the number of constraints equivalent with the number of performance 

functions, )1,0(iP denotes a uniform random sample, and  PF
jN
1ˆ   denotes the inverse transform for the 
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particular input distribution, )1,0(P . The order of resampled data of each NRV is randomly determined. The 

sample set for simulation is made by assembling random permutation of each NRV.  
As the number of sample increases, the estimation accuracy would increases. The solution of MCS will be 

converged to mk1 . The higher reliability a designer wants to set as target reliability, the more resampled data 

one puts into the performance function.  
 
5.3 Putting the resample data into performance function 
The performance random variables (PRV) are obtained by putting the resampled data into the performance 
function.  

  )()2()1( ,...,, mk
mmmm GGGG  , ncm ,...,2,1  (10) 

where mG  denotes m -th PRV. In this study, PRV is introduced in order to calculate the reliability from not 

counting but nonparametric estimation. 
 
5.3 Putting the resample data into performance function 
In crude MCS, the reliability of m-th performance function is evaluated as follows:  

 
PRVsth-mofallofNo.

function eperformanc satisfying  PRVsth-m of No.

 trialsofNo.

results successful of No.
R m  (11) 

In this study, the reliability is obtained by nonparametric estimation as follows: 

    00PrR
mGmm Fg   (12) 

where,  F is CDF estimated from PLE, KDE, PLE/GPD, or KDE/GPD. Generally nonparametric estimation, Eq. 
(12) would give a designer the more exact results for the same number of data than just counting the number of 
trials which satisfy the performance function of Eq. (11).  
 
6. Mathematical example 
A mathematical example is chosen in order to investigate the characteristics of parametric RA and nonparametric 
RA with respect to the estimator for the probability distribution of NRVs. Probability distribution for NRVs is 
assumed as GOK (God only knows) distribution which is introduced in order to measure the performance of 
parametric and nonparametric RA. No one knows the probability distribution of NRVs, called as GOK distribution. 
GOK distribution is used as reference distribution for obtaining the test statistic and reliability accuracy that are 
used as measures of evaluating the performance of estimator.  
 
6.1 Performance function and GOK distribution 
The RA problem is defined as estimating the reliabilities of performance functions at a point of design variables. 
The two performance functions, 1g  and 2g , are given as 
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where, 1n  and 2n  denote the noise factor #1 and #2, respectively. 1d  and 2d  denote the design variable #1 and 
#2, respectively.  The nonlinearity of performance function #2 is higher than the performance function #1.  

The sample data are collected randomly from GOK distributions of NRVs. In order to reduce the variation due to 
random sampling, many groups of sample were randomly extracted.  
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where, i  denotes the repetition number of random sampling. In this study, 10 groups of sample are extracted and 
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used. The sample data are chosen from GOK distribution #1,  11
nfN , and GOK distribution #2,  22

nfN . 

The GOK distribution #1 is chosen as normal distribution: 
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where,   denotes mean of the distribution, 0.5, and   denotes standard deviation, 0.11. The GOK distribution #2 
is chosen as beta distribution: 
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where,  B  denotes the beta function. a  is given as 2.7, and b  is given as 4.3. 
 
6.2 Parametric RA 
In parametric RA, the candidate distributions are chosen as well-known unimodal distributions: Gaussian, 
lognormal, Weibull, Gumbel, uniform, exponential, gamma, generalized extreme value, generalized Pareto, and 
Rayleigh. The best fit of which test statistic is minimum among the candidate distributions is chosen for each group 
of sample data of noise random variables #1 and #2. The better fit is defined as worst fit distribution among 
no-rejected distributions for null hypothesis at 5% significant level, or 2nd best fit distribution if there is no other 
distribution except best fit among no-rejected distributions. The best fit and better fit are used for analyzing the 
characteristics of parametric RA. 
 
6.3 Nonparametric RA 
In nonparametric RA, the PLE, KDE, and KDE at body and GPD at tails are used for analyzing the characteristics 
of nonparametric RA 
 
6.4 Performance measure: test statistic 
Ten groups of sample data are randomly produced from GOK distribution. The test statistic of an estimator is 
defined as the maximum difference of CDF of GOK distribution and the estimator for randomly chosen sample 
data from GOK distribution. Mean and standard deviation of test statistic of m-th estimator for noise random 
variables #1 are defined as  
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where, s  denotes the estimator name. In this study, best fit and better fit in parametric RA, and PLE, KDE, and 
KDE/GPD in nonparametric RA are adopted. 
 
6.5 Performance measure: reliability accuracy 
Since MCS is the only RA method which can be adopted for both parametric and nonparametric RA, MCS is used 
for estimating the reliability. When the reliabilities for the estimation models are compared, the accuracy of the 
reliability is defined as the relative difference of MCS solution for each estimation model on MCS solution of 
GOK’s probability distribution. Mean and standard deviation of reliability error of s -th estimator for performance 
function #1 are defined as  
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In this study, design point of design variables is given as (0.6, 0.6). The number of sample of MCS is chosen as 106. 

Latin hypercube sampling (LHS) is adopted for sample data extraction of MCS. The reliability is calculated by 
using KDE from PRV.  
 
6.6 Comparison of test statistic of NRVs  
The test statistic of each estimator from 10 sets of random sample data of GOK distributions are shown in Table 2 
and Table 3. The parametric estimated probability distributions, best fit and better fit, for 10 sets of random sample 

data are also listed in Table 2 and Table 3. The average (
)(

1
sD , 

)(
2

sD ) and standard deviation (
)(

1
ˆ sD , 

)(
2

ˆ sD ) of test 

statistics are shown to compare the test statistics for each estimator in Fig. 1 and Fig. 2.  
The best fit showed minimum test statistic for NRV #1 in Table 2 and Fig.1. It means that the parametric 

estimation is best if a designer selects the appropriate candidate distributions. KDE showed a slightly higher test 
statistic for NRV #1 in Table 2 and Fig. 1. The difference of test statistics of nonparametric estimators is not larger 
than that of parametric estimation of best and better fit. For NRV #2 in Table 3 and Fig. 2, KDE showed minimum 
test statistic. The difference of test statistics of nonparametric estimators is so small to be equivalent in test 
statistics. Best fit in parametric estimation showed higher test statistic than that of any nonparametric estimator. It 
means that the performance of nonparametric estimators is good and robust. From the above analysis, it is deduced 
that nonparametric estimators do not lead bad estimation results. 
 
6.7 Comparison of reliability accuracy of performance functions 
The reliability errors based on GOK reliability which denotes MCS solution from GOK’s probability distribution 
were illustrated in Fig. 3 and Fig. 4. The mean values of reliability error in nonparametric estimators are smaller 
than those of parametric estimations. The standard deviations of the error in nonparametric estimators are much 
smaller than those of parametric estimators for performance function #2 as shown in Fig. 4. 
 
 
Table 2: Test statistics and name of fitted probability distribution for 10 sets of random sampling data of NRV #1 

with respect to best fit, better fit, PLE, KDE, and KDE/GPD 
 

Parametric Nonparametric 

No. of sets 
Best fit Better fit 

PLE KDE KDE/GPD
Name Value Name Value 

1 Normal 5.62E-02 Gumbel 9.63.E-02 6.86E-02 3.25E-02 4.99E-02 

2 Normal 1.18E-02 Gumbel 6.38.E-02 5.47E-02 1.75E-02 1.91E-02 

3 Normal 5.80E-02 Gen. Pareto 9.71.E-02 9.74E-02 6.41E-02 6.42E-02 

4 GEV 2.86E-02 Uniform 7.87.E-02 5.16E-02 4.04E-02 4.04E-02 

5 Gamma 3.04E-02 Uniform 9.43.E-02 4.51E-02 4.35E-02 4.25E-02 

6 Gamma 3.58E-02 Uniform 9.91.E-02 5.77E-02 4.42E-02 4.43E-02 

7 GEV 3.30E-02 Gumbel 1.06.E-01 5.78E-02 4.11E-02 4.12E-02 

8 Normal 3.56E-02 Gumbel 1.51.E-01 1.03E-01 8.21E-02 8.23E-02 

9 GEV 2.44E-02 Lognormal 6.15.E-02 5.45E-02 2.78E-02 3.84E-02 

10 GEV 5.83E-02 Uniform 5.79.E-02 8.59E-02 5.97E-02 5.97E-02 

Mean 3.72E-02 9.05.E-02 6.77E-02 4.53E-02 4.82E-02 

St. 
deviation 

  1.56E-02   2.74.E-02 2.06E-02 1.89E-02 1.72E-02 
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Table 3: Test statistics and name of fitted probability distribution for 10 sets of random sampling data of NRV #2 
with respect to best fit, better fit, PLE, KDE, and KDE/GPD 

 

Parametric Nonparametric 

No. of sets 
Best fit Better fit 

PLE KDE KDE/GPD
Name Value Name Value 

1 Weibull 1.25E-02 GEV 1.38.E-02 5.69E-03 5.51E-03 5.64E-03 

2 Weibull 1.02E-02 GEV 1.32.E-02 7.20E-03 7.24E-03 7.38E-03 

3 Weibull 1.21E-02 GEV 1.40.E-02 7.30E-03 5.11E-03 5.11E-03 

4 Weibull 1.30E-02 GEV 1.56.E-02 9.50E-03 8.09E-03 8.11E-03 

5 Weibull 1.39E-02 GEV 1.66.E-02 8.17E-03 3.79E-03 3.78E-03 

6 Weibull 9.10E-03 GEV 1.32.E-02 4.41E-03 7.00E-03 7.12E-03 

7 Weibull 9.10E-03 GEV 1.72.E-02 1.22E-02 1.31E-02 1.32E-02 

8 Weibull 7.80E-03 GEV 1.46.E-02 5.32E-03 6.83E-03 6.93E-03 

9 Weibull 9.90E-03 GEV 1.26.E-02 8.56E-03 9.43E-03 9.53E-03 

10 Weibull 1.76E-02 GEV 1.95.E-02 1.64E-02 1.42E-02 1.42E-02 

Mean 1.15E-02 1.50.E-02 8.47E-03 8.03E-03 8.10E-03 

St. 
deviation 

  2.91E-03 
 

2.19.E-03 3.57E-03 3.37E-03 3.36E-03 

 
 

 
 

Figure 1: Mean and standard deviation of test statistics for 10 sets of random sampling data of NRV #1 with respect 
to best fit, better fit, PLE, KDE, and KDE/GPD 
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Figure 2: Mean and standard deviation of test statistics for 10 sets of random sampling data of NRV #2 with respect 
to best fit, better fit, PLE, KDE, and KDE/GPD 

 

 

 
 

Figure 3: Mean and standard deviation of reliability error for performance function #1 from 10 sets of random 
sampling data of NRVs with respect to best fit, better fit, PLE, KDE, and KDE/GPD 
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Figure 4: Mean and standard deviation of reliability error for performance function #2 from 10 sets of random 
sampling data of NRVs with respect to best fit, better fit, PLE, KDE, and KDE/GPD 

 
6.8 discussions 
It seems that any RA is not distinctly better than the other RA. If one can choose appropriate candidate 
distributions of NRV, the parametric RA will be best. But, the nonparametric RA would be cautiously 
recommended in designing a mechanical system working on an inaccessible area. The reasons are shown as 
follows:  

- The performance of nonparametric RA would not be worse than parametric RA. 
- A designer can often face that probability distributions are not known and the small number of sample 

data for NRV are just given. In parametric RA, a wrong choice of candidate distributions due to 
insufficient information about NRVs yields the poor RA.  

- Nonparametric RA shows robust and stable results regardless of choosing any estimators as shown in 
previous example.  

- Since the nonparametric estimator is very simple to use, the estimation time is generally shorter than the 
parametric estimation process that includes time consuming work of parameter estimation of all 
candidate distributions. 

 
7. Conclusions 
In this study, nonparametric reliability analysis (RA) is introduced in order to overcome the design difficulties in a 
reliability based design of a new working system on an inaccessible area. Since the probability distributions of 
noise random variables are not often known and only a few sample data are given, the usage of nonparametric 
estimation is an emerging method to estimate the reliability of the system. The parametric and nonparametric 
estimation of noise random variables are summarized. The procedure of Monte Carlo simulation for nonparametric 
RA is outlined. A mathematical example is illustrated to compare the characteristics of nonparametric RA with 
those of parametric RA. Test statistic and reliability accuracy are used for evaluation of the performance and 
robustness of each RA. Based on the example study several conclusions are drawn:  

- The performance of nonparametric RA would not be worse than parametric RA. 
- The nonparametric RA is more robust then the parametric RA for few sample data of NRVs. 
- The nonparametric RA would be cautiously recommended in designing a mechanical system working on 

an inaccessible area. 
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