
10
th

 World Congress on Structural and Multidisciplinary Optimization 

May 19 -24, 2013, Orlando, Florida, USA 

 

 

 

 

1 

Multi-Objective Structural Optimization of Wind Turbine Tower and Foundation 

Systems using Isight: A Process Automation and Design Exploration Software 
 

John C. Nicholson
1
, Jasbir S. Arora

2
, Deepak Goyal

3
, James M. Tinjum

4
 

 
1 The University of Iowa and Dassault Systèmes SIMULIA, Iowa City, Iowa, USA, John-Nicholson@uiowa.edu 

2 The University of Iowa, Iowa City, Iowa, USA, Jasbir-Arora@uiowa.edu 
3 Dassault Systèmes SIMULIA, Saint Paul, Minnesota, USA, Deepak.Goyal@3ds.com 

4 University of Wisconsin-Madison, Madison, Wisconsin, USA, Tinjum@epd.engr.wisc.edu 

  

1. Abstract  

Currently, wind turbine towers are being built to increasing heights in order to tap into higher and more consistent 

winds available at these heights.  Additionally, increasingly large wind turbines are being deployed atop these 

towers in order to capture more energy.  This trend of larger turbines being deployed at greater heights makes 

obtaining the most efficient and safe, or optimal, designs of the structures that support them ever more important.  

Towards this goal, the present work formulates the design of an integral wind turbine tower and foundation system 

as a multi-objective optimization problem using the process automation and design exploration software Isight.  

Specifically, a new general metamodeling and optimization methodology for highly non-linear multi-objective 

problems is applied to the design of a 130-m hybrid pre-cast concrete and tubular steel tower supported by a 

gravity based foundation by: 1) applying Design of Experiments (DOE) techniques to identify response drivers 

and collect experimental data 2) developing metamodels of responses from this experimental data using Elliptical 

Basis Functions (EBF) 3) performing Multi-Objective Genetic Algorithm (MOGA) optimization to generate a 

Pareto Front of Pareto-Optimal designs 4) performing Multi-Objective Gradient Based (MOGB) optimization 

from select Pareto-Optimal designs 5) validating the resulting optimal designs by full finite element simulations 6) 

performing Reliability Based Design Optimization (RBDO) to ensure reliability of the final design.  To analyze the 

support structure and obtain response information, a geometrically non-linear transient finite element analysis is 

performed at each DOE sample point using Abaqus.  This problem is multi-objective in nature with an ideal design 

being one that both minimizes costs and maximizes structural stiffness to reduce vibrational wear on turbine 

components.  Therefore, a composite objective function is developed that minimizes raw material costs and 

deflections.  The physical dimensions of the wind turbine support structure are taken as design variables.  Design 

requirements such as yielding or fracture of the tower wall, limits on tower top deflection and rotation, limits on 

the natural frequency of the tower and foundation system, bearing capacity of the foundation, stiffness of the 

foundation, and foundation overturning moment are evaluated using Isight’s calculator component and converted 

to optimization constraints by Isight.  Results obtained show that the proposed methodology yields significant 

value to the design engineer in terms of improved designs and enhanced understanding of the problem.  

Additionally, this work shows how Isight can be used to overcome many of the practical barriers associated with 

applying advanced optimization methods at the detailed design level. 

 

2. Keywords: Multi-Objective Optimization, Metamodeling, Reliability Based Design Optimization (RBDO), 

Wind Turbine Tower and Foundation System, Isight. 

 

3. Introduction 

A recent study estimates world wind power potential to be 40 times greater than total current power consumption 

[1]. This large increase over previous studies, which found this multiple to be closer to 7, is primarily due to the 

deployment of larger turbines that rise to greater heights where winds are higher and more consistent. As larger 

turbines are deployed at greater heights, obtaining the most efficient and safe, or optimal, design of the tower and 

foundation systems that support them is critical to their successful proliferation. 

The success of wind energy relies heavily on wind power’s levelized energy cost being lower than that of other 

energy sources.  While current total system levelized energy cost projections (in 2010 $/megawatthour) for 2017 

predict that wind energy will be more cost effective than coal, nuclear, geothermal, biomass, and solar, much work 

still needs to be done to make wind competitive with natural gas and hydro: wind, 96.0; coal, 97.7; nuclear, 111.4; 

geothermal, 98.2; biomass, 115.4; solar, 152.7; natural gas, 63.1; hydro, 88.9 [2]. The key factors in calculating the 

levelized energy cost for wind energy, which can be directly affected by better engineering design, include: initial 

capital investment cost, unscheduled maintenance costs, levelized replacement cost.  The first factor can be 

reduced by decreasing the cost of the installed system.  The last two factors can be reduced by improving system 

reliability and extending the lifespan of the system, respectively, which can both be improved by minimizing tower 
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vibrations.  Therefore, we define an optimal wind turbine tower and foundation system as one that costs as little as 

possible to build and is as stiff as possible in order to reduce vibrational wear on the turbine components. 

Much work has been done over the past 20 years to optimize various pole and tower structures.  Kocer and Arora 

1996a [3] formulated the design of a dodecagonal steel transmission pole as a mixed continuous-discrete variable 

optimization problem and showed that the optimal design process can yield more efficient and safe designs than 

the conventional design process. This work also demonstrated how the optimal design process allows for various 

design options to be trialed relatively quickly through the example of substituting a circular cross section for the 

dodecagonal one and re-solving, which resulted in a 2.4% cost savings in material.  In this work, various structural 

mechanics equations and numerical methods were implemented to complete the analysis of the structure.  Kocer 

and Arora 1997 [4] extended the work of Kocer and Arora 1996a.  It was especially interesting in that it used 

discrete optimization to select the optimal design from a set of prefabricated pole sections in a catalog.  This work 

also incorporated cross-sectional shape and steel grade as additional design variables, which expanded the feasible 

design space and allowed for further reductions in cost.  Kocer and Arora 1996b [5] formulated the design of a 

prestressed concrete transmission pole as a mixed discrete-integer-continuous variable optimization problem.  

This work discussed many of the practical aspects of converting precast concrete design requirements into 

optimization constraints and showed that the inclusion of second order moments due to deflections (i.e. nonlinear 

geometric effects) in the analysis leads to substantially different final designs.  Here, an iterative numerical method 

was implemented to calculate second order moments.  Negm and Maalawi 1999 [6] formulated the design of a 

wind turbine tower, which was made up of multiple uniform segments, as a continuous variable optimization 

problem and tested various optimization objectives.  Additionally, a variety of design criteria were converted into 

optimization constraints.  Using a simplified model of the tower allowed for an analytical analysis of the structure, 

which made use of Euler-Bernoulli beam theory, to be performed.  Silva, Arora, and Brasil 2008 [7] formulated the 

design of a reinforced concrete wind turbine tower as a continuous variable optimization problem that minimized 

material cost and incorporated a numerical procedure for performing a non-linear dynamic analysis.  This work 

highlighted the fact that the foundation is not infinitely rigid and suggested incorporating the foundation into tower 

dynamic analyses.  Nicholson 2011 [8], which the present work is an extension of, formulated the optimal design 

of a steel wind turbine tower and shallow concrete foundation as an integral system where the foundation is 

considered in tower natural frequency calculations.  A combination of structural mechanics equations, numerical 

methods, and structural design calculations were implemented in Excel to analyze the structure and an equivalent 

lumped mass method was employed to estimate the system natural frequency. 

While these works are quite commendable, many areas for further innovation still exist: the incorporation of a full 

transient finite element analysis into the optimization process, optimization of new space frame and hybrid 

concrete-steel towers that rise to extreme heights, application of discrete multi-objective and other advanced 

optimization techniques, etc.  The challenge that arises as more complex analyses and designs are incorporated 

into the optimization process is that the problem becomes highly non-linear and often discontinuous.  This limits 

the choice of optimization strategies to discrete methods that can be prohibitively computationally expensive if the 

analysis is complex.  Furthermore, advanced optimization methods, such as RBDO, are almost always too 

cumbersome when expensive analyses are used.  The present work overcomes these challenges and addresses 

some of the areas for further innovation listed above by suggesting and applying a general metamodeling and 

optimization methodology for highly non-linear multi-objective problems.  Section 4 summarizes the wind turbine 

tower and foundation system optimization problem and the analysis methodology.  Section 5 introduces the 

general metamodeling and optimization methodology.  Section 6 shows the results of applying this methodology 

to the problem at hand and section 7 summarizes the conclusions of this work and areas for further study.   

 

4. Wind Turbine Tower and Foundation System Design Optimization Problem 

The conversion of an engineering design problem into a design optimization problem involves three primary steps: 

choosing an analysis methodology, identification of objective(s) and design variables to be optimized, and 

transformation of design requirements into optimization constraints [9].  In this section, we describe how this 

general methodology can be used to convert the design of a wind turbine tower and foundation system into a 

design optimization problem.  For implementation details beyond those given in this section, the reader is directed 

to the work of Nicholson [8] of which the present work is an extension. 

 

4.1. Analysis Methodology 

The wind turbine tower and foundation system optimization problem presented here is based on a full-scale 

transient Finite Element Analysis (FEA) of a hybrid concrete-steel 130-m tower and a spreadsheet analysis of a 

reinforced concrete shallow foundation.  The overall Isight [11] analysis process flow is outlined in Figure 1, 

which shows the steps required to analyze the structure and calculate the outputs to be used in optimization.  As 

can be seen, the foundation design is completed as a sub-optimization problem, at each tower analysis task 

iteration, since we’re analyzing a structural system where the tower analysis depends on the foundation design.  
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The foundation spreadsheet analysis, which is run at each foundation design optimization iteration, calculates the 

ultimate soil bearing capacity, maximum allowable pressure on soil, soil rotational stiffness, and the overturning 

and resisting moments for the assumed soil parameters and the current foundation geometry.   

The tower transient FE analysis, which accounts for geometric nonlinearity, is analyzed using Abaqus Standard 

6.12-2 [12] after the foundation design optimization loop completes.  It consists of 130 quadratic beam (B32) 

elements as well as 130 material, section, and pipe profile definitions (one of each for each element) that are 

dynamically updated from an Excel spreadsheet by Isight at each analysis iteration.  Additionally, 130 horizontal 

distributed line loads resulting from wind action on the tower are calculated in Excel and dynamically updated by 

Isight for the current geometry.  Vertical distributed loads due to tower self-weight and internal fixture weight are 

also considered.  All degrees of freedom at the tower base are assumed fixed except those for the rotational and 

horizontal-translation degrees of freedom orthogonal to the plane of loading, which are dynamically set by Isight 

to the calculated foundation rotation and translation.  The lumped masses of the foundation and turbine are also 

automatically input into the FEA by Isight.                             

 

 
 

Figure 1: Isight tower analysis task process flow starting at the green dot and finishing at the red dot 

 

4.2. Design Objectives and Variables 

As we discussed earlier, an optimal wind turbine tower and foundation system design is best described as one that 

costs as little as possible to build and is as stiff as possible in order to reduce vibrational wear on the turbine 

components.  Therefore, this problem is multi-objective in nature with an ideal design being one that both 

minimizes cost and maximizes stiffness.  In order to formulate the cost objective,      , the volumes of tower 

steel, tower concrete, and foundation concrete are multiplied by their respective cost per volume values, which 

were obtained by averaging values from multiple completed projects [13], and summed.  In formulating the 

stiffness objective, tower top deflection is used as a rough indicator of stiffness since stiffer structures will deflect 

less.  Therefore, in order to maximize stiffness, the second objective,      , is to minimize tower top deflection.  

The physical dimensions of the tower and foundation shown in Figure 2 and listed in Table 1 make up the design 

variable vector,  .     

 

 
 

Figure 2: Tower and foundation cross-sectional dimensions taken as design variables 
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4.3. Transformation of Design Requirements into Constraints 

An optimal wind turbine tower and foundation system design must satisfy certain design requirements.  These 

design requirements ensure the safety and functionality of a design and protect against: yielding or fracture of the 

tower wall, buckling of the tower wall, excessive tower top deflection and rotation, natural frequency of the tower 

and foundation system coinciding with that of the turbine, bearing capacity failure of the soil being exceeded, 

excessive foundation rotation, foundation overturning, and others.  Transforming these design requirements into 

optimization constraints allows the optimization algorithm to automatically handle the laborious task of enforcing 

these design requirements as it minimizes the chosen objectives.  The present work converts twelve such design 

requirements into constraints.  Table 1 lists these constraints and whether they are greater-than-or-equal-to type or 

less-than-or-equal-to type by giving their lower or upper bound, respectively.  Here, constraints with very large 

values have been normalized by dividing them by their limiting values to avoid ill-conditioning of the optimization 

problem.                             

 

Table 1: Design variable, objective, and constraint values at initial design 

 

Variable Description Lower 

Bound 

Initial 

Design 

Upper 

Bound 
Unit 

Tower Design Variables 

   Concrete height 60.000 65.000 70.000 m 
   Concrete base outer radius  3.3500 4.6125 5.8750 m 
 3 Concrete thickness at base 0.4250 0.4625 0.5000 m 
 4 Concrete-steel interface outer radius 2.0000 2.1250 2.2500 m 
 5 Concrete thickness at interface 0.3000 0.3500 0.4000 m 
 6 Steel thickness at interface 0.0300 0.0350 0.0400 m 
 7 Steel thickness at top 0.0100 0.0150 0.0200 m 

Foundation Design Variables 

 8 Concrete base diameter 10.000 13.029 30.000 m 
 9 Concrete outer edge thickness 0.7000 0.7000 1.5000 m 
  0 Concrete top taper height 1.0000 1.0000 4.0000 m 

Objectives 

      Tower and foundation cost - 1.86e+6 - $ 
      Tower top deflection - 1.1815 - m 

Tower Constraints 

      Min. allowable natural frequency 0.2400 0.2317 - Hz 
      Von Mises yield criterion at A-A - 0.0270 1  
 3    Von Mises yield criterion top - 3.90e-4 1  
 4    Max. principal stress failure criterion bottom - 0.1734 1  
 5    Max. principal stress failure criterion at A-A - 0.8118 1  
 6    Max. tower top rotation - 0.0254 0.0873 rad 

Foundation Constraints 

 7    Reqd. rotational stiffness - 0.1052 1  
 8    Reqd. horizontal stiffness - 0.0390 1  
 9    Reqd. factor of safety bearing capacity failure - 1.0000 1  
  0    Reqd. factor of safety overturning - 0.7457 1  
       Reqd. factor of safety max. pressure on soil - 0.9372 1  

 

5. General Metamodeling and Optimization Methodology 

This section describes a metamodeling and optimization methodology suitable for a large class of highly 

non-linear multi-objective engineering design problems.  The overall strategy is to develop accurate metamodels 

of the highly non-linear objectives and constraints and use them, in place of the original objectives and constraints, 

to efficiently apply advanced optimization methods that thoroughly search the design space. 

 

5.1. Design of Experiments to Collect Experimental Data and Identify Response Drivers 

Design of experiments not only provides us with a means to systematically select experimental or full-analyses 

points from the design space, which will be used to train the metamodels, but also allows us to better understand 

the relationship between inputs and responses.  Understanding this relationship permits us to select appropriate 

response drivers for the various objective and constraint metamodels created in the next step.    
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5.2. Metamodel Generation from Experimental Data and Error Analysis 

After implementing a design of experiments technique to collect experimental training data and identify the 

response drivers for each objective and constraint response, various metamodels for each objective and constraint 

should be created and the metamodel that provides the best fit for an individual objective or constraint selected.  

Metamodel types that typically give the best fit for highly non-linear problems with experimental data that may be 

unevenly spaced include: Elliptical Basis Functions (EBF), Radial Basis Functions (RBF), Quadratic Response 

Surface Methodology (RSM).  The coefficient of determination or R-squared, which varies between 0 and 1 with 

higher values representing a better fit, is taken as the primary error analysis measure when comparing fitness of 

metamodels.  A higher order metamodel than 2 should only be selected if both the maximum and average errors do 

not increase; since an increase would indicate that the higher order model may not fit interpolated points located 

between the experimental points well.  Last, the residual plot of the selected metamodel should not contain a 

discernible pattern (e.g. curved, upward/downward trend, increasing/decreasing trend, etc.) as this is an indication 

that there is a problem with using the selected model to approximate the experimental data [10].                 

 

5.3. Multi-Objective Genetic Algorithm (MOGA) Optimization to Generate Pareto Front 

Performing MOGA optimization using the Neighborhood Cultivated Genetic Algorithm (NCGA) technique [11] 

ensures that the entire design space is searched and reduces the likelihood of converging to a local minimum.  

Additionally, it provides the engineer with a set of Pareto-Optimal designs to choose from and optimize further 

using gradient based optimization techniques.  The Pareto Front of Pareto-Optimal designs is generated by plotting 

each objective vs. another objective and shows the best that could be achieved without disadvantage to at least one 

objective [11].  Therefore, it is a useful tool in understanding the trade-off between objectives as well.   

  

5.4. Multi-Objective Gradient Based (MOGB) Optimization from Pareto-Optimal Designs 

Multi-Objective Genetic Algorithms will terminate after a predetermined number of evaluations based on the 

genetic algorithm population size and number of generations parameter values chosen.  The Pareto-Optimal design 

set found at termination may be near optimal but often not sufficiently so.  Therefore, gradient based optimization 

techniques such as Nonlinear Programming by Quadratic Lagrangian (NLPQL) [11] can be performed starting 

from the Pareto-Optimal designs identified by the engineer as best (using his or her intuition and judgment) in 

order to fine tune the designs to the desired level.  It is important to note that the chosen Pareto-Optimal designs 

were obtained by considering each objective separately and hence no scaling factors were employed. In contrast, 

gradient based optimization will require us to combine the objectives into one scalar function.  Therefore, to 

preserve the trade-off identified by the engineer as best, it is recommended that each objective be scaled by its 

current Pareto-Optimal value before performing gradient based optimization.  This will help ensure that the chosen 

trade-off is maintained and one objective does not dominate the optimization as much as possible. 

 

5.5. Validation of Optimal Design by Full Finite Element Simulation 

Once a deterministic optimal design has been obtained using the process outlined above, a full analysis can be 

carried out and the error between the predicted and actual objectives and constraints at the optimal design 

calculated.  If a large error exists between the predicted and actual values then take steps to refine the metamodels 

and re-optimize before moving on; since RBDO results will only be meaningful if accurate metamodels are used.   

 

5.6. Reliability Based Design Optimization (RBDO) 

Previously, we used MOGB optimization to obtain a deterministic optimum that assumes no variability in the 

design variables and exactly satisfies the binding constraints.  Now we wish to consider variability in the design 

variables and ensure that all of the constraints are satisfied 99% of the time by performing RBDO.   

 

6. Results 

In this section, the general metamodeling and optimization methodology described above is applied to the problem 

of wind turbine tower and foundation system design.  Implementation details for each step applied to the specific 

problem at hand are given and results of each step are discussed. 

 

6.1. Design of Experiments Results 

To select experimental or full-analyses points from the design space, the Optimal Latin Hypercube DOE technique 

in Isight was used with 50 sample points, initially.  As we’ll discuss in section 6.6, however, a 3-level full factorial 

technique was eventually required to achieve sufficiently accurate metamodels.  Once design of experiments has 

been run, various plots can be created to assist the engineer in visualizing DOE results.  Engineering data mining 

plots can be created that clearly illustrate interactions among design variables and trade-offs among design 

responses.  Figure 3 clearly shows how, in general, any reduction in cost requires an increase in deflection and a 

decrease in natural frequency.  For instance, the green line shows how choosing the lowest cost design increased 
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top deflection and lowered natural frequency.  Conversely, the blue line shows how choosing the highest cost 

design decreased top deflection and increased natural frequency.  Another type of plot useful in visualizing DOE 

results is the Pareto plot.  Pareto plots illustrate how various design variables, or interactions between design 

variables, affect design responses.  Figures 4, 5, and 6 are examples of Pareto plots and show concrete height to be 

one of the leading factors affecting cost, deflection, and natural frequency, respectively.         

 

 
 

Figure 3: Engineering data mining plot showing trade-offs in cost, top deflection, and natural frequency. 

 

   

 

Figure 4: Pareto plot: design 

variable effect on cost. 

 

 

Figure 5: Pareto plot: design 

variable effect on top deflection. 

 

Figure 6: Pareto plot: design variable 

effect on natural frequency. 

 

6.2. Metamodel Results 

All of the metamodel types recommended in section 5.2 were trialed and RBF and EBF methods provided the best 

approximations of the objective and constraint responses for the DOE data.  EBF was chosen over RBF for its 

property that it ranks input variables in the order of influence on output variables [11].  Quadratic RSM appeared to 

provide a good fit for the data as well; however, some plots of the residuals of the responses exhibited curved or 

sine wave behavior suggesting that quadratic RSM is not well suited for approximating those responses.  Figures 7, 

8, and 9 show that responses predicted by EBF (red dots) match actual response (black line) very well for cost, top 

deflection, and natural frequency, respectively.  Figures 10, 11, and 12 show how increasing concrete base outer 

radius increases cost linearly at a high rate, but decreases top deflections and increases natural frequency nearly 

quadratically.  Figures 13, 14, and 15 show how increasing concrete base outer radius increases cost linearly at a 

low rate and decreases top deflections and increases natural frequency linearly at a medium rate.          

 

   
 

Figure 7: Predicted vs. actual cost 

response (R
2
 = 0.99). 

 

Figure 8: Predicted vs. actual top 

deflection response (R
2
 = 0.99). 

 

Figure 9: Predicted vs. actual natural 

frequency response (R
2
 = 0.99). 



 

 

7 

 

   
 

Figure 10: Concrete base outer 

radius effect on cost. 

 

Figure 11: Concrete base outer 

radius effect on top deflection. 

 

Figure 12: Concrete base outer radius 

effect on natural frequency. 

 

   

 

Figure 13: Concrete-steel interface 

outer radius effect on cost. 

 

 

Figure 14: Concrete-steel interface 

outer radius effect on top 

deflection. 

 

Figure 15: Concrete-steel interface 

outer radius effect on natural 

frequency. 

 

6.3. MOGA Optimization Results 

To identify a set of Pareto-Optimal designs, the NCGA optimization technique in Isight was used with genetic 

algorithm population size and number of generations parameter values set to 10 and 20, respectively, which 

resulted in 200 NCGA iterations.  Figure 16 shows the Pareto Front of Pareto-Optimal designs (blue dots) 

generated by plotting the cost objective vs. the top deflection objective.  From Figure 16, we can see that the 

cost-deflection trade-off is nearly linear with every cm reduction in deflection costing roughly $7,000.  In our case, 

minimizing cost is more important than minimizing deflection so we select the Pareto-Optimal design represented 

by the green diamond in Figure 16 to optimize further using MOGB and RBDO techniques.      

 

 
 

Figure 16: Pareto plot of cost vs. deflection from MOGA optimization. 
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6.4. MOGB Optimization Results 

To further optimize the chosen Pareto-Optimal design, a gradient based NLPQL technique in Isight is used to 

minimize the composite objective function, (1).  Scaling factors    and    are taken as the values of       and 

     , respectively, at the Pareto-Optimal design selected in the previous step.  Weights    and    are taken as 0.8 

and 0.2, respectively, in order to preserve the desired trade-off of minimizing cost over deflection.  In Table 2, it 

can be seen that performing MOGB optimization resulted in an additional $110,000 reduction in cost with only a 

slight increase in deflection.  Figures 17 and 18 show how the composite objective function varies with some of the 

design variables.  Figure 17 suggests that some combinations of concrete base outer radius and thickness may 

greatly reduce the chosen objective and some may greatly increase it and shows us where those occur.  Figure 18 

suggests that the chosen objective can be decreased by reducing steel interface thickness and reducing or possibly 

maximizing outer radius. 

 

          
     

  
    

     

  
          (1) 

 

  

 

Figure 17: Concrete base outer radius and thickness effect 

on objective function 

 

Figure 18: Concrete-steel interface outer radius and 

steel thickness effect on objective function 

 

6.5. Validation Results  

The second to last column in Table 2 shows the percent error between the objective and constraint metamodel 

values at the deterministic optimal design and the actual objective and constraint values at the deterministic 

optimal design, which were obtained by performing a full FEA.  This percent error represents the error in the 

underlying objective and constraint metamodels, which have been used so far during optimization, near the 

solution.  While the percent errors shown are relatively small, many DOE points had to be added to achieve this.  In 

all, a 3-level full factorial requiring 3
7 

= 2187 design points for 7-variables was executed in parallel in Isight.  

Another strategy for refining metamodels, which doesn’t involve adding additional DOE points, is to scale the 

DOE sample point variables [9].  This strategy may be helpful if additional analyses are prohibitively expensive or 

unavailable.  Isight does this automatically for all metamodel types.  

 

6.6. RBDO Results 

To ensure that all of the constraints are satisfied 99% of the time, when some variability is present in concrete and 

steel wall thicknesses, the Six Sigma Optimization or RBDO component is invoked in Isight.  A Monte Carlo 

analysis is used and a descriptive sampling technique with 1000 simulation points is implemented in order to 

ensure a broad spread of data across the distributions of each random variable while still following the shape of the 

individual distributions.  In addition to the standard design constraints and objectives, we create lower bound 

constraints on the probability of success of each standard constraint and incorporate additional terms in the 

objective to maximize the probability of success of each standard constraint.  Since the optimization problem now 

depends on randomness, we have a very discontinuous and expensive problem requiring an optimization technique 

that doesn’t rely on gradients but is still efficient.  Therefore, a Hooke-Jeeves technique is chosen and is modified 

by setting the relative-step-size and the step-size-reduction-factor to 0.8 to handle the highly discontinuous design 

space and reduce the likelihood of convergence to a local minimum. 

Once RBDO has been run, we obtain a design that is more conservative, but satisfies the constraints 99% of the 
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time.  Table 2 shows how cost has increased, but natural frequency is no longer close to falling below its lower 

bound.  Figure 19 further illustrates this by showing how, for the assumed probability distributions of the design 

variables, the probability of natural frequency falling below its lower bound of 0.24 is extremely small. 

 

 
 

Figure 19: Natural frequency probability distribution histogram. 

 

Table 2: Design variable, objective, and constraint values at MOGA, MOGB, and RBDO optimal designs 

 

Var. 
Final Lower 

Bound 

Final Upper 

Bound 

Initial 

Design 
MOGA MOGB 

FEA at 

MOGB 
% Error RBDO 

   60.000 70.000 65.000 69.544 70.000 70.000 - 70.000 
   3.3500 5.8750 4.6125 4.1950 3.9300 3.9300 - 4.5512 
 3 0.4250 0.5000 0.4625 0.4954 0.4250 0.4250 - 0.4525 
 4 2.0000 2.2500 2.1250 2.2471 2.2500 2.2500 - 2.2500 
 5 0.3000 0.4000 0.3500 0.3090 0.3000 0.3000 - 0.3000 
 6 0.0300 0.0400 0.0350 0.0318 0.0363 0.0363 - 0.0358 
 7 0.0100 0.0200 0.0150 0.0190 0.0100 0.0100 - 0.0100 
 8 10.000 30.000 13.029 13.133 13.004 13.004 - 13.385 
 9 0.7000 1.5000 0.7000 0.7000 0.7000 0.7000 - 0.7000 
  0 1.0000 4.0000 1.0000 1.0000 1.0000 1.0000 - 1.0000 

      - - 1.86e+6 1.81e+6 1.70e+6 1.70e+6 0.00% 1.85e+6 
      - - 1.1815 1.0420 1.1285 1.1088 1.75% 0.9858 
      0.2400 - 0.2317 0.2433 0.2400 0.2404 0.17% 0.2548 
      - 1 0.0270 0.0226 0.0221 0.0226 2.26% 0.0222 
 3    - 1 3.90e-4 7.78e-4 0.0011 0.0009 18.18% 0.0005 
 4    - 1 0.1734 0.2287 0.2731 0.2624 3.92% 0.1809 
 5    - 1 0.8118 0.7386 0.7494 0.7492 0.03% 0.7437 
 6    - 0.0873 0.0254 0.0213 0.0237 0.0237 0.00% 0.0225 
 7    - 1 0.1052 0.1031 0.1057 0.1057 - 0.0982 
 8    - 1 0.0390 0.0388 0.0391 0.0391 - 0.0381 
 9    - 1 1.0000 1.0000 1.0000 1.0000 - 1.0000 
  0    - 1 0.7457 0.8352 0.8978 0.8978 - 0.7598 
       - 1 0.9372 0.9246 0.9135 0.9135 - 0.9343 

 

7. Conclusions 

In this paper, we proposed a general metamodeling and optimization methodology and applied this methodology 

to the problem of wind turbine tower and foundation system design.  It was found that the proposed methodology 

yields significant value to the design engineer in terms of improved designs and enhanced understanding of the 

problem.  Implementing DOE not only allowed us to systematically select design points to be used in generating 

the metamodels, but clearly showed how cost and natural frequency are inversely related to top deflection and how 

individual design variables affect the responses.  Using the DOE sample points to generate accurate metamodels 

provided us with computationally inexpensive continuous representations of the objectives and constraints that 

0.24 
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allowed us to apply advanced optimization methods.  These metamodels also gave us further insights into how the 

design variables influence responses.  For instance, it was shown that both concrete base outer radius and 

concrete-steel interface outer radius could be increased to decrease top deflection and increase natural frequency.  

Performing MOGA optimization provided us with a set of Pareto-Optimal designs to choose from that clearly 

illustrated the trade-off between minimizing deflection and cost.  Performing MOGB optimization on the chosen 

Pareto-Optimal design and using appropriate scale factors and weightings allowed us to further optimize the 

design while maintaining the chosen trade-off in objectives.  We were also able to develop 3D contour plots that 

allowed us to better understand how individual design variables affect the composite objective function.  Finally, 

performing RBDO allowed us to ensure that the constraints will be satisfied 99% of the time when small 

uncertainties in tower wall thickness are present.  Performing a full FEA at the final MOGB and RBDO designs 

confirmed that the error in the objective and constraint metamodels near the optimized designs is small and the 

MOGB and RBDO designs are valid.  
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