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Abstract: A shape design sensitivity analysis and optimization procedure is proposed using a meshfree method. A CAD tool connection is

established to facilitate the seamless integration of structural modeling, simulation, and design optimization. A new CAD-based method for

design velocity computation is proposed, applicable to both the meshfree method and the finite element method. A shape design variable can

be chosen among the geometric parameters defined in the CAD model in order to support a concurrent engineering environment. A new

CAD-based method for updating the discrete model is proposed, such that the meshfree model is automatically updated in a continuous and

consistent way during design optimization. The proposed method is applied to 2D and 3D linear elastic problems, as well as to a large

deformation hyperelastic problem.
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1. Introduction

Recent advances in the field of shape design
optimization make it possible to develop an automated,
CAD-based product design process. In order to apply
shape optimization to industrial problems, the following
methods must be developed: geometry-based design
parameterization, automatic mesh generation, design
velocity computation, and seamless integration with a
CAD tool. A seamless integration between a CAD tool,
simulation, design sensitivity analysis, and optimization
is established in the Pro/ENGINEER environment [1],
which provides access to a model database through a set
of functions organized in Pro/TOOLKIT and Pro/
DEVELOP libraries. These libraries allow users to add
functionality to Pro/ENGINEER as well as the ability
to integrate the resulting application. A graphical user
interface is developed under the Pro/ENGINEER’s
menu system.
In the shape optimization, the design velocity is

important information for calculating sensitivity and
updating the discrete model. A number of design
velocity computation methods have previously been
proposed: the finite difference method [2,3], the iso-
parametric mapping method [4–6], the boundary dis-
placement method [7], the fictitious load method [8,9],
and a combination of the isoparametric mapping and
boundary displacement method [5,10]. Hardee et al. [3]

propose updating the discrete model using a linear
design velocity field obtained from the finite difference
technique, while the CAD model is updated by
automatic parameter regeneration. With a small shape-
changing problem the difference between two updating
processes can be ignored. As the design change
increases, however, nonlinear effects become dominant
such that a node on the boundary surface of the initial
design may not remain on the boundary of the
perturbed design, causing inconsistency between the
discrete and CAD model.
In this paper, a new hierarchical boundary displace-

ment method is proposed. The coordinates of the
perturbed points on the edges are computed by iso-
parametric mapping, using the 1D parameters from the
initial design. Points on the boundary surfaces are
updated using a 2D boundary displacement method in
the surface parametric space. The points in the interior
of the structure are updated using a 3D boundary
displacement method. This method is capable of
maintaining consistency between the discrete and CAD
model throughout the design optimization process.
More specifically, points that were initially on an edge
will remain on that edge, points that were initially on a
surface will remain on that surface. Current limitation of
the procedure proposed above is that the design changes
are in such a way that underlying topology of the CAD
model is not changed, i.e., the number and connectivity
of curves and surfaces are not changed due to design
changes.*Author to whom correspondence should be addressed.
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Hardee’s development of a CAD-based design opti-
mization process is based on the finite element method.
However, the mesh quality generated from a CAD tool
is not good enough for FEA purposes. In addition,
conventional mesh distortion still takes place during the
shape optimization process. In this paper, a meshfree
method is used as a simulation tool, such that solution
accuracy and mesh quality problems in the CAD tool
can be resolved. Meshfree methods [11] require a set of
nodes (particles) to be defined in the domain, but do not
require any pre-specified connectivity between nodes, or
any locally regular topological structure as is required in
traditional meshing. These particles can be automati-
cally generated using a variety of methods that have
been borrowed from traditional FEA. An important
advantage of the meshfree method is the continuity of
the approximation on internal boundaries. The most an
FEA solution can exhibit is C1-continuity properties
across the element boundaries, while a meshfree solution
may exhibit any degree of regularity necessary for a
given problem.

2. Reproducing the Kernel Particle Method

Although the meshfree method requires a set of
particles to be defined in the domain, it does not require
a locally regular topological structure (connectivity) that
is used in traditional meshing for the finite element or
finite difference method. With the meshfree approach,
the Galerkin procedure is employed in a similar way to
the finite element method, but the finite dimensional
solution space and trial space are constructed using
meshfree shape functions as the basis functions. The
shape function associated with each particle has a
compact support, and its construction depends on the
geometric relations between the surrounding particles
and the boundary of the physical domain. Starting from
a CAD model, the generation of particle points used in
the meshfree method is automated where a boundary
representation of the model is available. Topologically

complex domains can be discretized automatically with
tetrahedral (or triangular) finite elements. Typically,
finite element results based on these elements have a low
rate of accuracy. However, the decomposition of the
physical domain using tetrahedrons or triangles can be
successfully used in the meshfree method for numerical
integration purposes.
In Figure 1, the discretization process is explained.

Starting from a CAD model, a set of particles is
generated in the domain, and a finite support is
associated with each particle. Meshfree shape functions
can be constructed at any point X in the domain, using
the formula from Liu [12]

�I ðXÞ ¼ CðX ,X � X I Þ�aðX � X I Þ�WI

¼ HT ðX � X I ÞM
�1ðXÞHð0Þ�aI ðX � XI Þ�WI

ð1Þ

where C(X,X�XI)¼H(X�XI)
TM�1(X)H(0) is a correc-

tion function, H(X�XI)¼ {1, X�XI, Y�YI, . . . ,
(Y�YI)

n}T is a vector that contains monomials up to
degree n, �aI ðX � X I Þ is the window function associated
with the particle I with support size aI, and �WI is the
weight associated with each particle. The weight
function (also called the window, or the kernel function)
is obtained by extension to 2D or 3D of a 1D cubic
spline function as

�aI
ðX � XI Þ ¼ w

X � X Ik k

aI

� �
or

�aI ðX � X I Þ ¼ w
X � XIj j

aI

� �
� w

Y � YIj j

aI

� �
ð2Þ

where

wð�Þ ¼
2=3� 4�2 þ 4�3 for �j j 	 1=2
4=3� 4�þ 4�2 � 4�3=3 for 1=2 < �j j 	 1
0 for �j j > 1

8<
:

ð3Þ

Figure 1. The meshfree discretization process.
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The moment matrix M is computed from the
following relation:

MðXÞ ¼
XN
J¼1

HðX � XJ ÞHðX � XJ Þ
T�aJ

ðX � XJÞ�WJ

ð4Þ

The window function �a has a finite support size that
is controlled by the dilation parameter a. Therefore, the
sum in Equation 4 does not need to be performed for all
particles XJ; only those particles whose support covers X
are involved in the computation. Consequently,
Equation 4 can be rewritten as

MðXÞ ¼
X

J2PðXÞ

HðX � XJÞHðX � XJÞ
T�aJ

ðX � XJÞ�WJ

PðXÞ ¼fJ, support ð�aJ Þ covers Xg ð5Þ

The space spanned by the shape functions in
Equation 1 satisfy the reproducing conditions as defined
by Liu [12], which are that this space contains all
polynomials up to degree n. A Galerkin procedure is
devised using the finite dimensional space spanned by
the meshfree shape functions. Displacement variable u is
approximated at any point X in the physical domain as

uðXÞ ! uhðXÞ ¼
XN
I¼1

�I ðXÞdI ð6Þ

where the unknowns are the generalized displacement dI,
which are associated with each shape function. It is
important to note that meshfree shape functions do not
possess the Kronecker delta property; thus, the imposi-
tion of essential boundary conditions is more difficult
than with FEA. In this paper, the Lagrange multiplier
method is used to impose such conditions.
To evaluate the integrals that appear in the weak

formulation, an integration method is necessary over the
physical domain. A background mesh is used for this
purpose, as shown in Figure 1. This mesh, unlike the
mesh for FEA, does not have to be connected, because
its only purpose is to provide a non-overlapping
decomposition of the domain into smaller, simpler
domains, for which a Gauss integration rule can be
used.

3. Variational Equations of Nonlinear
Hyperelastic Structures

Consider the structural domain � whose boundary is
composed of �¼Sf [Su and Sf \Su¼ 6 0. The displace-
ment value is prescribed on surface Su, while the traction
force is provided on surface Sf. In conjunction with the

Lagrange multiplier method used to impose the essential
boundary condition, the total potential energy of hyper-
elasticity in the mixed formulation is

�ðu, ~pp, �Su Þ ¼

Z
0�

Wðu, ~ppÞ d��

Z
0�

ui f
B
i d�

�

Z
0Sf

ui f
Sf

i d��

Z
0Su

�Su

i ðui � u
p
i Þd�

ð7Þ

where Wðu, ~ppÞ is the strain energy density function for
the nearly incompressible hyperelastic material, ~pp is the
hydrostatic pressure, u is the displacement vector, �Su is
the Lagrange multiplier associated with the essential
boundary conditions, f B is the externally applied body
force, f Sf is the surface traction, and up is the prescribed
displacement on surface Su. The reason for introducing
the Lagrange multiplier is that the meshfree interpola-
tion function in Equation (1) does not pose a Kronecker
delta property on the essential boundary.
First, by applying the stationary condition of the total

potential energy, and then by linearizing the variational
equation, the incremental system of equations can be
written in as

a�ðtz;�z, 
zzÞ ¼ ‘ð 
zzÞ � aðtz, 
zzÞ, 8 
zz 2 Z ð8Þ

where the unknown variables are collected in
z ¼ fu, �Su , ~ppg, �z is the increment of z, and 
zz is the
variation of z. The left superscript t denotes the
configuration time, and the overbar ‘‘–’’ represents the
quantity’s first–order variation. In Equation (8), a*(tz; �,�)
is an energy bilinear form, a(�,�) is an energy nonlinear
form, and (�) is a load linear form. The detailed
derivations of these forms can be found in [13]. For
the purposes of completeness, only the final expression
of these forms have been presented as follows:

aðtz, zzÞ ¼

Z
0�

tSij 
""ij d�þ

Z
0�


~pp~ppðtJ � 1� t ~pp=kÞ d�

�

Z
0Su

t�Su

i 
uuSu

i d��

Z
0Su


��Su

i ðtuSu

i � tu
p
i Þ d� ð9Þ

‘ð 
zzÞ ¼

Z
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uui
tf B

i d�þ

Z
0Sf


uui
tf

Sf

i d� ð10Þ

a�ðtz;�z, 
zzÞ ¼

Z
0�

Dijkl 
""ij�"kl d�þ

Z
0�

tSij�
��ij d�

þ

Z
0�

tJ, "ij 
""ij�~pp d�

þ

Z
0�


~pp~ppðtJ, "ij�"ij ��~pp=kÞ d�

�

Z
0Su

ð��Su

i 
uuSu

i þ �
Su
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In Equations (9)–(11), Sij is the second Piola–
Kirchhoff stress, "ij is the Green–Lagrangian strain, �ij
is the nonlinear strain, Dijkl is the fourth-order material
tensor, J is the determinant of the deformation gradient,
and k is the bulk modulus.
The linear, incremental expression in Equation 8 is

discretized using the meshfree method discussed in the
previous section. For highly nonlinear problems, the
load is applied in several steps, and the iterative
procedure in Equation (8) is needed to find a solution
for each load step.

4. Shape Design Sensitivity Analysis of a
Hyperelastic Structure

In shape design optimization, the geometry of the
structure changes during the design process. Choi and
Haug [14] have divided the process into two stages for
obtaining the shape design sensitivity. First, the
influence of the shape design variable on the physical
domain is taken into account using the design velocity
concept. Second, the shape design sensitivity coefficient
is computed using the material derivative concept from
continuum mechanics. Shape design sensitivity for
nonlinear structures has been reviewed and summarized
by Choi [15].
The sensitivity equation can be obtained by taking the

material derivative of the equilibrium Equation 8 at the
final load step for each design variable as

a�ðtz; t _zz, 
zzÞ ¼ a0V ð
tz, 
zzÞ þ ‘0V ð 
zzÞ, 8 
zz 2 Z ð12Þ

where

a0V ð
tz, 
zzÞ

¼

Z
0�

ðDijkl 
""ij"
V
klþDijkl 
""

V
ij "klþ

tSij 
��
V
ij þ

tSij 
""ijdivVÞd�

þ

Z
0�


~pp~pp½tJ,"ij"
V
ij þðtJ�1� ~pp=kÞdivV �d� ð13Þ

‘0V ð 
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Z
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uui0r
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tf
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0Sf


uut
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In Equation 13, strain terms "Vij , 
""Vij , and 
��V
ij are

explicitly dependent on the design velocity, for which
expressions can be found in [13]. In Equation 14, the
applied loads are presumed to be conservative; thus,
they are independent of the design velocity.
For the hyperelastic structure, the same bilinear form

that appeared in Equation 8 also appears on the left side
of Equation 12. This fact offers an important computa-
tional advantage, since the last stiffness matrix that was
factorized at the analysis stage in Equation 8 can be
reused for solving the design sensitivity equation. After
solving for _zz, the sensitivity coefficient of a performance
measure can be obtained by using the chain rule of
differentiation.

5. CAD-Based Optimization Procedure

The integration of the CAD tool, meshfree analysis
tool, and DSA and optimization tool is illustrated in
Figure 2. The discrete model is constructed using the

Figure 2. CAD-meshfree analysis–optimization flowchart.
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built-in capabilities of Pro/ENGINEER that were
originally developed for the finite element method.
Pro/ENGINEER provides access to a model database
through a set of functions organized in Pro/TOOLKIT
and Pro/DEVELOP libraries. These libraries allow users
to add functionality to Pro/ENGINEER, and to seam-
lessly integrate the resulting application. The Graphical
User Interface is developed under a Pro/ENGINEER
cascade menu system, as shown in Figure 3. The
meshfree module is launched within Pro/ENGINEER
as a separate application. The definition of the meshfree
model can be made using the cascading menus devel-
oped for seamless integration.
CAD-based shape design parameterization identifies

CAD parameters as design variables for shape DSA and
optimization. In a dimension-driven CAD tool such as
Pro/ENGINEER the design engineer can capture design
intent in the model. Because dimensions that define the
CAD model change during the optimization process, the
model can be updated automatically. For a consistent
and stable optimization, cost and constraints need to be
defined with respect to those same particles in the initial
design. It is therefore necessary to update the discrete
model in a way that is consistent with the updated CAD
model. The particles that were on a particular edge or
surface of the initial design must remain on that same
edge or surface of the updated design, although the
shapes of the edges and surfaces themselves may change.
To achieve an accurate computation of design

sensitivity coefficients, a reliable and efficient method
to determine the design velocity fields is essential. It is
difficult to compute the velocity fields analytically with a

general CAD model. In this paper, a new hybrid method
is proposed that is based on finite difference and
boundary displacement procedures and that overcomes
the difficulties experienced by Hardee et al. [3].
For this proposed method, a design velocity field

associated with a shape design variable is computed
for any point in the CAD model. Denoting T as the
transformation corresponding to a design variable 
, the
velocity field is

Vð0x
 , 
Þ �
d0x

d


¼
dTð0x
, 
Þ

d

¼

@Tð0x
 , 
Þ

@

ð15Þ

The velocity at point A is calculated using the finite
difference method as

VA ¼ ð0x pertA � 0xAÞ=�
 ð16Þ

In the finite difference approach, the smallest possible
step size �
 has to be selected, although it cannot be so
small that there is numerical error. A further difficulty in
applying this method is that it is not easy to determine
the position of point A in the perturbed model (0xpertA ),
as it corresponds to the initial position 0xA. This is the
same previously discussed problem of starting with an
initial discrete model that is consistent with the CAD
model, and then locating a discrete model that
corresponds to the updated (or perturbed) CAD
model. If another automatic discretization procedure is
used, as with the building of the initial meshfree model,
then the process will create a different number
of particles in general, and it will be impossible to

Figure 3. CAD integrated menu organization.
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obtain a mapping from the initial to the new particles.
A hierarchical boundary displacement method is pro-
posed, and is discussed in the following section.

6. The Hierarchical Boundary Displacement
Method

One of the most important procedures of design
optimization is the model update procedure. Most
modern CAD tools allow the design engineer to obtain
a new design by changing key parameter values. As
noted earlier, the problem is how to update the discrete
model. The approach proposed here assumes that the
CAD tool uses a surface modeling technique and that
the geometric representation of curves and surfaces is
available via API. Because only the boundary geometry
is represented by the CAD tool, the particles on the
boundary are the first to be updated.
A hierarchical boundary displacement method fol-

lows the geometric hierarchy of the CAD model: a
general part is a boundary-represented solid, and each
surface on the boundary is a parametric surface trimmed
by one external contour and, possibly, several internal
contours. Each contour is formed by edges, which have
a simple 1D parameterization.
The method follows the hierarchy of the geometry,

starting from the particles on the edges, continuing to
the particles on the boundary surfaces, and finally,
moving to the particles on the interior of the solid
model. The particles on the edges are updated using a

1D parametrization, as explained in Figure 4(a). The
parametric position tA of particle A in the initial design,
and retrieved using API, is used to compute the
corresponding position of the particle A0.
For those particles that are on boundary surfaces but

not on edges, a 2D boundary displacement method is
used, as explained in Figure 4(b). First, the two-
parameter position (u,v) is obtained for all initial
design particles using API. Next, the two-parameter
position (u,v) pert is retrieved for all particles on the edges
of the perturbed surface. Further, a 2D boundary value
problem is solved in the parametric space (u,v), in order
to find the parametric position corresponding to
particles on the interior of the surface. The algorithm
for computing the design velocity fields is given below.
This method is implemented using the functions avail-
able in the Pro/TOOLKIT library.

1. Using API, retrieve the parameter (u,v)S,P for each
surface S, for each particle P on surface S, and
retrieve the parameter tE,Q for each edge E, for each
particle Q on edge E. Parameter t is always between 0
and 1 (Step 1 in Figure 4).

2. Using a small design perturbation �d, regenerate the
CAD model to obtain the perturbed model.

3. Calculate the new position of particle Q on edge E
on the perturbed model, using the parameter tE,Q
(Step 2).

4. For each face (trimmed surface) of the perturbed
model:

(a) Find the new parameters (u,v) pert for all the
particles on the edges.

(b) Solve the boundary value problem in space (u,v),
to find (u,v) pert for all particles on the interior of
the surface that are not on the edges (Step 3).

(c) Find new positions of all particles on the surface,
using the corresponding (u,v) pert (Step 4).

(d) Compute the velocity for all particles on the
boundary (Step 5).

5. Repeat Steps 2–4 for each design variable.

Once the parametric position has been obtained, the
actual position can be found for any particle on the
updated surface using API. This method ensures that
particles on the surface of the initial design will remain
on the surface of the updated design. If a boundary
displacement method has been directly applied to the
general 3D surface, then the above consistency cannot
be guaranteed.
Next, a 3D boundary displacement method is used

to find the updated position of particles on the interior
of the solid model during the initial design. To this
end, a 3D boundary value problem is solved for all
shape design parameters at the same time, using the
Lagrange multiplier method. Only one factorization of
the augmented stiffness matrix is required, and only

Figure 4. CAD-based update for particles on the edges and
boundary surfaces.
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forward and backward substitutions are necessary for the
design velocity computation of each shape design
parameter.

7. CAD-Based Optimization of an Engine Mount

In order to illustrate the proposed methodology, half
of an engine mount with imposed displacement bound-
ary conditions is modeled, as shown in Figure 5(a). The
engine mount is composed of an outer metal casing
attached to the car body, an inner metal piece connected
to the engine, and intermediary rubber material to
provide appropriate stiffness and compliance to isolate
engine vibration. The interior metal block is treated as
a rigid body, and the stiffness of the mount is selected as
a performance measure. The exterior casing is consid-
ered fixed. Stiffness is determined by calculating the
ratio between the reaction force and the imposed
displacement in the final load step. The hydrostatic
pressures at critical points are also selected as perfor-
mance measures.
The engine mount particle model and integration zone

model is created using Pro/ENGINEER’s FEA func-
tions. The model has 361 particles and 218 integration
zones, as shown in Figure 5(b). The displacements are
prescribed on the particles located at the interface
between the rubber and interior metal block. The
interface particles are pushed downward (with lateral
movement restrained) to a displacement of 13.79mm,
which is the distance between the inner metal block
and the lower rubber bumper. The Mooney-Rivlin
material model is employed to describe the hyperelastic

behavior, with material constants A10¼ 0.145MPa,
A01¼ 0.062MPa, and bulk modulus k¼ 10,000MPa,
to enforce the nearly incompressible condition.
The meshfree analysis is carried out in 25 load steps,

due to the high nonlinearity of the model and the large
deformation. Figure 5(c) shows the fringe plot of the
hydrostatic pressure on the deformed structure. This
hydrostatic pressure is interpolated separately from the
displacements, and it is assumed to be constant over an
integration zone. It is condensed at the integration zone
level.
Eighteen shape design parameters are selected for this

problem: the x- and y-coordinates of the nine datum
points on the boundary, as shown in Figure 5(a). These
datum points control the shape of the engine mount’s
interior boundary. Eighteen corresponding design velo-
city fields are computed using the method explained in
previous sections. The shape design velocity field
corresponding to design parameter d67 is plotted using
the vector plot in Figure 5(d).
After the meshfree analysis converges to the final load

step, design sensitivity analysis is carried out once using
the factorized tangent stiffness matrix. Table 1 shows
the sensitivity results of various performance measures
with respect to design variable d76. In order to verify the
accuracy of the design sensitivity coefficients, the
forward finite difference method is employed with a
perturbation of 0.01mm for design variable d76.
Excellent agreements between the continuum-based
sensitivity and finite difference results are obtained in
the last column of the table.
Design optimization of the engine mount is carried

out using the design optimization tool. The structure’s

   
(a) CAD Model (b) Discretization (c) Analysis Results (d) Design Velocity

Figure 5. An engine mount example.
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area is selected as the object function. Two types of
constraints are considered: the hydrostatic pressure
and stiffness. The pressure should be within an
acceptable limit at the final design stage. It is also
important that the stiffness of the engine mount, defined
as the ratio between resistance force and maximum
displacement, be maintained at the same level with the
initial design.
The values for object and constraint functions

are provided from the meshfree analysis results, and
the gradients for these functions are computed from
DSA. Velocity fields are obtained every time the
optimization algorithm requests sensitivity information.
The position of the particles is updated following the
same procedure used in the computation of the velocity

field. The integration model is changed at each design
iteration using API, and a meshfree model that is
consistent with the CAD model is generated at each
design iteration.
The design optimization problem converges after six

iterations. Optimization histories (cost, design variables
and normalized constraints) are shown in Figure 6(a),
the meshfree model at the optimum design is shown in
Figure 6(b), and the hydrostatic pressure plot on a
deformed structure is shown in Figure 6(c). Table 2
compares the initial and optimum design. About 16%
of the initial material is reduced in the optimum
design, while maintaining the same mechanical perfor-
mance. Load–deflection curves at the initial and
optimum design are shown in Figure 7, where it is

 
(a) Optimization History (b) Optimum Geometry (c) Analysis Results at Optimum

Figure 6. Design optimization results.

Table 1. Design sensitivity verification for engine mount model.

Performance Measure Initial Value Perturbed Value* Sensitivity Coefficient Verification

Pressure, particle 7 � 0.4542325Eþ 0 �0.4547694Eþ0 �0.5381110E�1 99.78
Pressure, zone 146 � 0.3512860Eþ0 �0.351394Eþ 0 �0.1090690E�1 99.20
Total reaction force � 0.3032391Eþ1 �0.3033125Eþ1 �0.7351846E�1 99.92
Total volume � 0.1073783Eþ4 �0.1073874Eþ4 �0.9061015Eþ1 100.00
y-displ., at particle 59 � 0.7765927Eþ0 �0.7766633Eþ0 �0.7056031E�2 100.06

*perturbation 0.01 mm for design variable d76

Table 2. Design optimization results of engine mount model.

Performance Measure Initial Design Optimum Design Absolute Change Relative Change [%]

Total area (cost) 1073.7833 894.7004 � 179.0829 16.67
Total reaction force �3.032390 � 2.9647224 0.06767 2.23
Pressure, particle 7 �0.4542325 � 0.4307406 0.0235 5.17
Pressure, zone 146 �0.3512860 � 0.4200193 0.06873 19.56
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evident that mechanical characteristics are nearly
identical.

8. CAD-Based Optimization of an Elastic Beam

Even though design optimization of the nonlinear
problem has been carried out in the above 2D example,
a major advantage of CAD-based optimization appears
in the 3D design problem, which is the purpose of this
section. A variable-section beam is modeled as a 3D
problem, as shown in Figure 8(a). The CAD model
consists of general blend protrusions and cross sections
with I-shape.
Two cut features are made in order to minimize the

amount of material used. The beam is simply supported
at both ends, and a uniform pressure is applied in the
vertical direction.
Because the geometry and applied load are symmetric,

only a quarter of the model is analyzed. The discrete
model is shown in Figure 8(b). This model contains
817 particles, and 1548 10-node tetrahedrons that are
used as integration zones. A total of 2842 nodes are used
to describe the tetrahedrons. The global distance
between particles in this model is 15mm, and the
support size is set to 20mm in each direction, ensuring
that every point in the model is covered with at least
four particle supports that are not on the same plane.
The integration model has a global size of 20mm, and is
more refined near the cut feature. Young’s modulus is
E¼ 21000N/mm2 and Poisson’s ratio is ¼ 0.3. The von
Mises stress plot on the deformed shape is shown in
Figure 8(c). With a total force of 4000N, a maximum
displacement of 0.0018mm appears at particle 689, and
the maximum von Mises stress of 4.26MPa appears at
particle 79.
To achieve shape design optimization, thirteen design

variables are selected, as shown in Figure 9(a). There are
nine parameterized sections, but because of symmetry,

only five are independent. Each section has two variable
dimensions: d1 and d6 for section 1, d13 and d16 for
section 2, d20 and d22 for section 3, d27 and d29 for
section 4, and d34 and d36 for section 5. The cut feature is
controlled by three parameters, d50, d51 and d52, which
define the length of the cut, the radius of the arc, and the
distance between the center of the cut and the end of the
beam.
Shape design velocity fields corresponding to these

design variables are computed using the previously
discussed method. The vector plot corresponding to
design d51 is shown in Figure 9(b), illustrating how
design parameter changes affect the CAD model and the
discrete model.
The volume of the beam is selected as the object

function. Two types of constraints are considered:
vertical displacement of the beam’s middle section and
maximum von Mises stress developed at the simply
supported ends. The maximum von Mises stress should
not exceed 5.0MPa, and the maximum displacement
allowed is 0.0035mm.
The design optimization converges in seven iterations.

The meshfree model and von Mises stress on a deformed
structure at optimum design is shown in Figure 10. The
volume of the beam was reduced from 824,064mm3 to
543,699mm3, while maintaining the maximum displace-
ment at 0.0035mm and the maximum von Mises stress
at 5.0MPa.
The optimum CAD model is compared to the

initial model in Figure 11. At the initial design stage,
all constraints were satisfied; at the optimum design,
displacement constraints became active in the middle
section. The beam’s volume decreases by increasing
the length and the radius of the cut features, and
by reducing the width of the five parameterized sections.
It is interesting to note that the third section has a
bigger width value than the second or fourth section.
This can be explained by the presence of the hole,
which weakened the beam primarily in the third section.

 
(a) Initial Design (b) Optimum Design

Figure 7. Load–deflection curve.
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(b) Discrete Meshfree Model (c) Stress Contour Plot

Figure 8. 3D beam CAD model and meshfree analysis results.

(a) CAD-Based Design Parameters (b) Design Velocity Field

Figure 9. Beam parametrization and design velocity field plot.
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9. Conclusions

CAD-based shape design sensitivity and optimization
methods using a meshfree method were presented. The
proposed approach is quite general and can be applied
to large deformation problems and to important
modifications in the design. The method proved to be
effective for optimization using the examples of an
engine mount and an elastic beam.
Shape DSA and optimization using the meshfree

method holds great potential for eliminating mesh dis-
tortion problems that occur when the traditional finite
element method is used. Currently, such research is being
extended to 3D elasto-plastic problems, and contact pro-
blems, demonstrating the advantages of applying mesh-
free design to support CAD-based shape optimization.
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