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Abstract 
 
Prognostics methods model the degradation of system performance and predict remaining useful life using degradation data measured 

during service. However, obtaining degradation data from in-service systems in practice is either difficult or expensive. Therefore, accel-
erated life testing (ALT) is instead frequently performed for validating designs using considerably heavy loads. This work discusses the 
methods and effectiveness of utilizing ALT degradation data for the prognostics of a system. Depending on the degradation model and 
loading conditions, four different ways of utilizing ALT data for prognostics are discussed. A similar transformation method used in ALT 
is adopted to convert accelerated loading conditions to field loading conditions. To demonstrate the proposed approach, synthetic data are 
generated for crack growth under accelerated loading conditions; these data are used for training a neural network model or identifying 
model parameters in a particle filter. The applied example shows that the use of ALT data increases the accuracy of prognostics in the 
early stages in all four cases and compensates for the problem posed by data insufficiency through the proposed method.  

 
Keywords: Accelerated life testing; Prognostics; Neural network; Particle filter  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

The performance of a system degrades over time. Prognos-
tics uses degradation/damage data obtained in service to 
model the degradation behavior. The model aims to estimate 
the time for maintenance. The time to the next maintenance is 
called the remaining useful life (RUL). The system is consid-
ered to perform its intended function until RUL. A general 
process of prognostics is shown in Fig. 1. Once degradation 
data are collected from the in-service system, physics-based 
prognostics first determines the parameters of the damage 
model under given loading conditions using degradation data 
(black dots) up to the current time k and then predicts the RUL. 
Data-driven prognostics uses degradation data under simi-
lar/different usage conditions (gray dots) to train mathematical 
models. Due to various sources of uncertainty, such as meas-
urement variability, model form uncertainty, and usage condi-
tions, the predicted RUL often shows a statistical distribution. 

Compared to scheduled maintenance, condition-based 
maintenance (CBM) using prognostics [1] is safe and cost-
effective. However, several challenges remain in making 

CBM practical in industry. An et al. [2] summarized several 
challenges in prognostics. Among them, the issue of the lim-
ited number of data during field operation is the focus here. In 
practice, field degradation data are rare, and their acquisition 
is either difficult or expensive. This study aims to utilize dam-
age data measured during accelerated life testing (ALT) for 
system health management and prognostics. Most companies 
have many ALT data because these are frequently used to 
validate designs. However, ALT data cannot be used for 
prognostics directly because loading conditions considerably 
differ from field loading conditions. 
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Fig. 1. Illustration of prognostics process with training data. 

 



2498 D. An et al. / Journal of Mechanical Science and Technology 32 (6) (2018) 2497~2507 
 

 

Many previous studies have covered life estimation using 
ALT data [3, 4], which focus on validating designs and esti-
mating the average life of systems. Degradation data during 
ALT are also used for prognostics by ignoring the difference 
between accelerated loading conditions and field loading con-
ditions. Estimating the useful life under field conditions is 
challenging because ALT conditions differ from field condi-
tions [5]. When physics-based models that describe degrada-
tion behavior are available, ALT data can be used with ALT 
loading conditions because the major task is to identify model 
parameters [6]. ALT data have also been used to build a 
mathematical model for data-driven methods [7]. However, 
predicting the RUL without converting ALT loading condi-
tions to real field conditions is generally difficult. 

In this paper, four different ways of utilizing ALT degrada-
tion data are presented to predict degradation in terms of the 
RUL of a system under field loading conditions. The individ-
ual methods are categorized depending on the amount of in-
formation available, such as the availability of degradation 
models and/or field operation loading conditions. Several 
cases are available in the literature; however, the last case in 
this work is unique because no physics-based models and field 
loading conditions are given. In such a case, a mapping meth-
od that can compensate for insufficient field data using a data-
driven approach must be introduced. Although other scenarios 
are not new, they are also discussed here. 

During ALT, damage growth is closely monitored using 
sensors or scheduled inspections until it reaches a threshold, 
which is the level of damage at which the system cannot func-
tion unless the damage is fixed. The current system measures 
damage up to the current time using onboard sensors. How-
ever, with the current system alone, the number of degradation 
data is not enough to accurately predict the RUL. The RUL 
must be predicted such that the system can undergo mainte-
nance before it becomes inoperable. Prognostics involves 
numerous uncertainties. Hence, RUL prediction must be given 
as a probability distribution, and maintenance can be per-
formed on the basis of the level of risk. 

This paper is organized as follows. Two prognostics ap-
proaches are reviewed in Sec. 2. Sec. 3 introduces the crack 
growth example used to explain the proposed methods. Sec. 4 
explains how ALT data are used for four different cases. The 
conclusions in Sec. 5 summarize the four proposed cases.  

 
2. Review of prognostics approaches 

In general, three prognostics methods are available: Phys-
ics-based [8], data-driven [9], and hybrid [10] approaches. The 
difference lies in the use of information. Defining hybrid ap-
proaches is difficult. Hence, only data-driven and physics-
based approaches are discussed in this section. The two ap-
proaches differ in (1) whether a physical model is available to 
describe the degradation behavior, (2) whether the usage or 
loading conditions in the field are available, and (3) whether 
training data are used to predict the damage growth. Detailed 

explanations for the two approaches are provided in the fol-
lowing subsections.  

 
2.1 Review of physics-based approaches 

Physics- or model-based approaches use degradation mod-
els that describe the behavior of degradation, estimate un-
known model parameters with degradation data, and predict 
the future behavior of damage. The process of physics-based 
prognostics using the Bayesian framework is shown in Fig. 2. 
The damage degradation behavior is described as a function of 
usage or loading conditions U , operation cycles or time t , 
and the model parameters q . The usage/loading conditions 
and operation time are normally given. Thus, identifying the 
unknown model parameters is the most important step in pre-
dicting the RUL. Therefore, physics-based prognostics algo-
rithms are categorized on the basis of parameter estimation 
methods. Bayesian inference-based methods [11] are the most 
popular, including the Kalman filter [12], extended Kalman 
filter [13], particle filter [14], and Bayesian method [15].  

In physics-based prognostics methods, the Bayesian method 
is often used to infer unknown model parameters using meas-
ured data. The uncertainty is represented using a probability 
density function (PDF). Bayesian inference is a special form 
of Bayes’ theorem, which can be expressed as follows [11]: 

 
( ) ( ) ( )| z z |p L pµq q q , (1) 

 
where ( )| zp q  is the posterior PDF of model parameters q  
conditional on measured data z , ( )z |L q  is the likelihood 
function, and ( )p q  is the prior PDF. The likelihood function 
represents the probability of obtaining data z  with the pa-
rameters assumed to be q . Any prior information, such as 
experts’ opinion or the range of generic material properties 
from a material handbook, can be represented in the prior PDF. 
When no prior information is available, ( )p q  can be ignored, 
which is also referred to non-informative prior. The uncer-
tainty in the posterior PDF can be decreased when additional 
data are used. Thus, the RUL can be predicted precisely. 

Any physics-based algorithm can be used, but the particle 
filter algorithm is considered here because of its popularity. 
The particle filter algorithm sequentially estimates and up-
dates model parameters with data. The posterior PDF is ex-
pressed in the form of many particles and their weights. De-
tailed explanations of the particle filter algorithm can be found 

 
 
Fig. 2. Illustration of physics-based prognostics. 
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in the Refs. [14, 16, 17]. 
Loading conditions for ALT are known. Hence, physics-

based approaches can be applied without any modification to 
estimate model parameters. However, the assumption is that 
the model parameters of the system used in ALT are the same 
as those of the current machine. The accuracy of predicting 
the RUL can be affected by the difference in system model 
parameters caused by manufacturing variability. 

 
2.2 Review of data-driven approaches 

Data-driven approaches are advantageous when no reliable 
degradation model is available or the model is too complex. 
These approaches use collected data from similar systems 
(training data) to train a mathematical model, from which the 
RUL can be predicted. Data-driven algorithms can be divided 
into two categories: (1) Artificial intelligence approaches that 
include fuzzy logic [18] and neural networks [19, 20]; and (2) 
statistical approaches that include gamma processes [21], hid-
den Markov models [22], and regression-based models. Re-
gression models include the Gaussian process [23, 24], rele-
vance vector machine [25], and least squares regression [26]. 

As shown in Fig. 3, data-driven approaches are a regression 
comprising a mathematical model ( f ), input variables ( p ), 
and parameters ( w ). The model f  relates the input variables 
to the output damage state mathematically but does not repre-
sent any physics. This relationship can be established in nu-
merous ways. In this work, an incremental relationship be-
tween consecutive damage states is generated, where the dam-
age states at previous times are used as input variables. In 
addition to damage states at previous times, the loading condi-
tion can be included if available, thereby potentially increasing 
prediction accuracy. Once the form of the mathematical model 
is fixed, its parameters can be estimated by minimizing the 
discrepancy between the damage states predicted by the model 
and the measured ones. The data used for identifying the pa-
rameters are called training data. Training data are obtained 
from similar systems under the same or different loading con-
ditions. Fig. 1 shows the training data in gray dot markers. The 
training data can also be obtained from the current system at 
previous times under a given usage condition, as shown by the 
black dot markers in Fig. 1. The estimated model parameters 
can be used to predict the future damage state and the RUL. 
The mean-squared-error between training outputs and training 
data is used as a measure of uncertainty in prediction. 

Among the many data-driven algorithms, neural networks 
are the most commonly used. A typical neural network model 
comprises several input and hidden nodes and one output node. 
A detailed explanation of neural network models can be found 
in the Refs. [2, 27]. For demonstration purposes, the neural 
network model in Sec. 4 is constructed with three input nodes 
and two hidden nodes with one hidden layer. The damage data 
at the three previous times are used for the input layer. For the 
transfer functions, the pure linear and tangent sigmoid func-
tions are used. When the measured previous damage data are 
used as input, the prediction will be one step ahead (short-term 
prediction). The predicted damage states can be used as input 
to predict the damage state in a future time (long-term predic-
tion).  

The number and quality of training data are the major fac-
tors behind the performance of data-driven approaches. Hypo-
thetically, the best scenario is when accurate degradation data 
of the same system under the same loading conditions are 
available. In practice, however, such a scenario is unlikely. 
Therefore, this study aims to show that ALT data from differ-
ent loading conditions can be used as training data. A techni-
cal challenge is how ALT data, which are obtained under 
loading conditions that differ from field loading conditions, 
can be used for training the current system.  

 
3. Demonstration example: Fatigue crack growth 

A small initial crack on the fuselage panel of aircraft can 

 
 
Fig. 3. Illustration of data-driven prognostics. 
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(a) Accelerated life tests 
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(b) Field operating conditions 

 
Fig. 4. Crack growth data under various loading conditions (simulated 
measurement by addition of random noise). 
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grow over time under repeated pressurization loadings. This 
situation is used as a demonstration example in this work. The 
crack is the damage, and the size of the crack is the damage 
state. When the crack size reaches a threshold, the panel is 
considered failed. Therefore, maintenance needs to be con-
ducted before the crack size reaches the threshold.  

For physics-based prognostics, the growth of a crack can be 
modeled using the following Paris model [28]: 

 

( ) ,mda C K K a
dN

s p= D D = D , (2) 

 
where d / da N  is the rate of crack growth with the half crack 
size a  and the number of loading cycles N ; m  and C  
are Paris model parameters; KD  is the range of mode 1 
stress intensity factor; and sD  is the stress range due to the 
pressure differential. The rate of crack growth depends on the 
model parameters and the loading conditions sD . 

Obtaining real data is difficult. Thus, measurement data are 
simulated using Eq. (2) with the following assumed true pa-
rameters: true 3.5,m =  11

true 6.4 10C -= ´ , and initial half crack 
size 0 10 mma = . These true parameters are used only for 
generating simulated data and verifying the accuracy of esti-
mated parameters. 

For the demonstration example, ALT is assumed to be con-
ducted at three stress ranges, sD = 135, 140 and 145 MPa, 
while the real operating condition is with sD = 68 MPa. A 
uniformly distributed random noise between u±  mm is 
added to the crack growth data in Eq. (2) to consider the real 
measurement environment. The laboratory environment for 
ALT is controlled better than the field operating environment. 
Hence, u = 0.7 mm is used for ALT data, and u = 1.5 mm is 
adopted for the field loading condition. Fig. 4 shows the dam-
age degradation data generated for the demonstration problem. 
The three markers in Fig. 4(a) represent the three sets of ALT 
data at high-stress ranges, which are used to increase the accu-
racy of prognostics along with the measured damage data of 
the current system, which are depicted by star markers in Fig. 
4(b). This study is unique in that the ALT data in Fig. 4(a) are 
used to predict the damage state under field loading conditions 
with considerably low stress levels in Fig. 4(b). 

 
4. Four scenarios of using accelerated life test data 

for prognostics 

Four ways of utilizing ALT data are presented in this sec-
tion. As listed in Table 1, these techniques differ in terms of 
the availability of information about physical models and field 
loading conditions. Cases 1 and 4 assume the most and least 
information, respectively. In case 4, a new method is proposed 
to utilize ALT data effectively. 

 
4.1 Case 1: Physical model + field loading information 

When the number of data is the same, physics-based prog-

nostics algorithms are preferred to data-driven ones. Therefore, 
the use of physics-based algorithm is always recommended 
when a physical model that describes the behavior of damage 
is available. In general, physics-based prognostics algorithms 
can predict damage behavior without utilizing ALT data. 
These algorithms can improve prognostics accuracy and re-
duce uncertainty in early-stage prognostics because ALT data 
can be used to generate good prior information for the model 
parameters. 

To show how to utilize ALT data in physics-based prognos-
tics, consider that the Paris model parameters m and C in Eq. 
(2) need to be estimated for the fuselage panel of an airplane. 
As prior information, the values from a generic Al 7075-T651 
material are used. Newman et al. [29] provided the lower and 
upper bounds of these parameters that are due to material vari-
ability. In the current work, the exponent m and the logarithm 
of C are assumed to be uniformly distributed; that is, m ~ 
( )3.3,4.3U  and log(C) ~ ( ) ( )( )11 10log 5 10 ,log 5 10U - -´ ´ . 

Fig. 5(a) shows 5000 samples of m and C, where the true val-
ues of the two parameters are denoted by star markers. The 
true value must be determined using crack growth measure-
ment data. The uncertainty in the initial uniform distribution in 
Fig. 5(a) is so large that it fails to provide useful information 
for predicting the crack growth. 

Although any physics-based prognostics algorithm can be 
used, the particle filter is used in this paper to demonstrate 
how to utilize ALT data. In the current airplane, the ALT data 
may not be accurate because they are not from the same panel 
of the same airplane. Therefore, ALT data are used only for 
reducing the uncertainty in the prior distribution of m and C. 
After updating the initial distribution with the three sets of 
ALT data in Fig. 4(a), a narrow prior distribution shown in Fig. 
5(b) is obtained. The updated prior in Fig. 5(b) is considerably 
narrower than the initial uniform distribution in Fig. 5(a). The 
updated distribution does not converge toward the true values 
because the two model parameters are strongly correlated. 

Table 1. Four scenarios considered in numerical study (PF: Particle 
filter, NN: Neural network). 
 

 Case 1 Case 2 Case 3 Case 4 

Physical model O O X X 

Field loading O X O X 

Available method Physics-based (PF) Data-driven (NN) 
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Fig. 5. Prior distributions of two Paris model parameters. 
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Instead, the updating process in the particle filter becomes a 
narrow band between the two parameters. As claimed by An 
et al. [30], the crack propagation will be the same if any com-
bination within the band is used. The advantage of using ALT 
data for physics-based prognostics is that the prognostics can 
start with a narrow prior distribution, as shown in Fig. 5(b). 

To evaluate the effect of ALT data, the two prior distribu-
tions in Figs. 5(a) and (b) are used, and the particle filter algo-
rithm is adopted to estimate the posterior distributions with the 
field-measured data. Then, these distributions are used to pre-
dict the RUL. Fig. 6(a) shows the median and 90 % prediction 
intervals of RUL when the uniformly distributed prior in Fig. 
5(a) is used. Fig. 6(b) is the case where the prior information 
from the ALT data in Fig. 5(b) is applied. Accurate and pre-
cise predictions are obtained at an early stage because the 
prior information is precise. Table 2 compares the two RUL 
results in terms of the prognostics metrics [31]. The larger the 
prognostics metrics, the better the prediction. In all metrics, 
using the prior from ALT data is better than using uniformly 
distributed prior from the literature. 

4.2 Case 2: Physical model + no field loading information 

In addition to the physics-based model, the available load-
ing condition is also a unique feature of physics-based prog-
nostics approaches. Loading conditions can significantly af-
fect the evolution of degradation. The loading condition in 
ALT is relatively well identified as a specific load (or the his-
tory of loads) is applied to the system. In the field, however, 
measuring the real operating loads is difficult, and the loads 
may not be constant. Therefore, case 2 corresponds to the case 
when the degradation model is available (albeit its model pa-
rameters need to be estimated) but the field loadings are un-
known. For simplicity of presentation, this work considers the 
case where the field loading is constant but its magnitude is 
unknown. 

The field operation loading, which is unknown, must be es-
timated using the same process as the model parameters. The 
prior distribution of the loading is assumed uniformly distrib-
uted between 50 and 90 MPa, while the true loading is 68 
MPa. With a given degradation model, two ways of predicting 
the RUL are considered: (A) Updating parameters and load-
ings simultaneously and (B) updating loadings with a fixed 
distribution of parameters. 

For case 2-A, the prior distribution of the model parame-
ters can be either that in Fig. 5(a) or in Fig. 5(b). Then, the 
data from field operation are used to update the model pa-
rameters and uncertain loading conditions. Therefore, the 
particle filter algorithm updates the joint PDF of all three 
variables with field data. Fig. 7 and Table 3 show the com-
parison of the RUL prediction using the two priors given in 
Figs. 5(a) and (b). Although the difference is not clear in the 
graph, the prognostics metrics in Table 3 show that the case 
with the prior from ALT data yields slightly better results 
than that using the prior from the literature. The improve-
ment is small for a narrow prior in Fig. 5(b) because of the 
correlation between model parameters and loading. Even if 
the case with a uniform prior in Fig. 5(a) may converge 
slowly in finding accurate values of the parameters and load-
ing, the predicted RUL can be accurate when the correlation 
is well identified. In addition, the number of field data is 
large enough to identify the correlation structure between 
model parameters and loading condition. However, if many 
model parameters are present and correlation relationships 
among parameters are complex, then narrow priors may 
outperform uniform priors.  

In case 2-A, the model parameters and uncertain loading 
conditions are updated using the field-measured data. In case 
2-B, only uncertain loading conditions are updated; the model 
parameters remain the same with the prior distribution in ei-
ther Fig. 5(a) or 5(b). Fig. 8 and Table 4 show that utilizing 
the prior distribution from ALT significantly improves the 
performance of prognostics. The best prediction among all 
cases is also shown (Tables 3 and 4). In addition, the esti-
mated loading converges to the true value because the correct 
ALT loading information is applied. 

Table 2. Prognostics metrics for case 1. 
 

 PH 
(a = 10 %) 

-a l  accuracy 
(a = 10 %, l = 0.5) 

RA 
( l = 0.5) CRA 

Prior from  
literature 11000 False (0.2504) 0.9161 0.8479 

Prior from  
ALT data 21000 True (0.6046) 0.9240 0.9285 
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Fig. 6. RUL prediction of case 1. 
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4.3 Case 3: No physical model + field loading information 

Case 3 corresponds to the case where the physical model is 
not available but the field loading conditions are known. Since 
no physics-based model is available, a data-driven approach 
must be chosen. Among different data-driven approaches, the 
neural network is utilized in this paper. In addition to damage 
growth information, loading conditions are added to the input 
variables. This addition is particularly important because the 
ALT data are under different load levels, and the neural net-
work must consider the varying damage growth rates under 
different load levels. 

Fig. 9 shows the prognostics results obtained without the 
use of ALT data. In this case, only damage data from field 
loading conditions are used for training the network. The me-
dian of prediction results (red dashed lines) approach the true 
damage growth (black solid lines), and the prediction intervals 
(red dotted lines) become narrow as the number of cycles 
increases from 10000 to 18000. However, the prediction re-
sults cannot keep up with the rapidly growing true damage 
even at 18000 cycles because the damage grows slowly in the 

training data relative to the damage at the prediction cycles. 
When the training data include ALT data, the prediction re-

sults are better than those obtained without use of ALT data, 
as shown in Fig. 10. The prediction uncertainties are remarka-
bly high because of the large difference in degradation rates 
between ALT and field data. However, the prediction results 
obtained using ALT data in Fig. 10 are more reliable than 
those obtained without ALT data in Fig. 9, considering that 
the decision for maintenance is usually made on the basis of 
the lower bound of prediction results. This finding is sup-
ported by the results of RUL and prognostics metrics, as 
shown in Fig. 11 and Table 5. These results show that using 
ALT data for training is beneficial even when loading condi-
tions differ. 

 
4.4 Case 4: No physical model + no field loading informa-

tion 

Case 4 is the most difficult but also practical case because it 
requires the least amount of information. Data-driven prog-

Table 3. Prognostics metrics for case 2-A. 
 

 PH 
(a = 10 %) 

-a l  accuracy 
(a = 10 %, l = 0.5) 

RA 
( l = 0.5) CRA 

Prior from  
literature 11000 False (0.3246) 0.8739 0.8116 

Prior from  
ALT data 13000 False (0.4728) 0.9704 0.8643 
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(a) Based on prior from literature 

 

0 0.5 1 1.5 2 2.5
x 104

0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

Cycle

R
U

L

 

 

True
Median
90% P.I.

 
(b) Based on prior from ALT 

 
Fig. 7. RUL prediction of case 2-A. 

 

Table 4. Prognostics metrics for case 2-B. 
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(a = 10 %) 

-a l  accuracy 
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RA 
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Prior from  
literature 2000 False (0.0578) 0.4627 0.4450 

Prior from  
ALT data 11000 True (0.5182) 0.9727 0.8751 
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Fig. 8. RUL prediction of case 2-B. 
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nostics (neural network algorithm) is adopted because no deg-
radation model is available. In general, data-driven approaches 
require a large volume of training data under the same or simi-

lar usage/loading conditions with the field condition because 
they do not use physical degradation models. Measuring deg-
radation data is expensive. Therefore, degradation data meas-
ured during ALT are transformed into those at the field load-
ing condition instead so that they can be considered as training 
data for the prognostics of the current in-service system.  

The inverse power model in ALT [3] is adopted to trans-
form the ALT data to field-measured data that can be used for 
training. This model is commonly used in such applications as 
metal fatigue, bearings, and electric insulators. The model is 
mostly used to estimate life under different loading conditions. 
In this study, the model is used to transform ALT data to field 
loading condition data. The inverse power model [3] is linear 
between the applied load and the logarithm of life. 

 

Life
Load b

a
= , ( ) ( ) ( )log log logLife Loada b= - , (3) 

 
where Life  is the lifespan of a system and ,a b  are un-
known coefficients. The coefficients are estimated using life-
span data under different usage/loading conditions. Once these 
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Fig. 9. Damage predictions without using ALT data. 
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Fig. 10. Damage prediction using ALT data with loading information 
(case 3). 

 

Table 5. Prognostics metrics for case 3. 
 

 PH  
(a = 10 %) 

-a l  accuracy 
(a = 10 %, l = 0.5) 

RA 
( l = 0.5) CRA 

Without 
ALT data 4000 False (0.0000) 0.5239 0.5210 

Case 3 9000 False (0.0333) 0.5445 0.7810 

 

 
(a) Without using ALT data 

 

 
(b) Using ALT data with loading information 

 
Fig. 11. RUL prediction (case 3). 
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coefficients are estimated, the lifespan under field loading 
conditions can be obtained from Eq. (3). The above relation-
ship is widely used for design validation using ALT. This 
relationship has not been used for prognostics, particularly for 
generating training data for data-driven prognostics. 

The coefficients ,a b  in Eq. (3) need to be estimated be-
fore the inverse power model is applied. The lifespan is the 
time consumed as the damage reaches the threshold. In this 
study, 50 mm is used as the threshold and shown as a horizon-
tal dashed line in Fig. 12(a). On the basis of this threshold, the 
lifespans of three load levels, 145, 140 and 135 MPa, are re-
spectively determined as 1734, 1947 and 2241 cycles, respec-
tively; these lifespans are indicated by three markers in Fig. 
12(b). The parameters of the inverse power model are the 
slope b  and y-intercept log( )a  of the line connecting these 
three markers. To build the model, at least two sets of data for 
different loading levels should be available. When more than 
two sets are available, the line can be found using regression. 

Once log( )a  and b  are found, the lifespan at the field 
loading can be calculated using the inverse power model in Eq. 
(3). The star markers in Fig. 12(c) show the transformed life-
span at different load levels from 50 MPa to 90 MPa at 5 MPa 
increments. The same process can be repeated by gradually 
changing the threshold to obtain the solid curves in Fig. 12(c), 
which are the damage growth curves for a given load. How-
ever, the range of load (50 MPa to 90 MPa) is too wide 
because, as shown in Fig. 12(c), the rates of damage growth 
are significantly different over the range. The range of loading 
can be reduced by comparing the mapped damage curve with 
the field-measured damage data. Although all data between 50 
and 90 MPa can be used for training, the use of data that are 
close to the field loading conditions is recommended. Without 
knowing the field loading conditions, data can still be selected 
from 65, 70 and 75 MPa because their damage growths are 
close to the field-measure damage growth rate. Therefore, 
these three sets of transformed data are used for training. 

The above three steps of transformation in Figs. 12(a)-(c) 
involve the following three sources of uncertainty. 

(1) Uncertainty in the regression process of ALT data: The 
first step is conducting regression to calculate the lifespan 
using ALT data, which are given at every 100th cycle in terms 
of damage size (markers in Fig. 12(a)). For a given loading, 
the regression process is repeated 30 times, where the initial 
weights and training data are randomly selected in the neural 
network. The three curves in Fig. 12(a) show the medians of 
the regression results under three different loading conditions. 

(2) Uncertainty in the inverse power model: The second 
step is identifying the coefficients of the inverse power model 
using the lifespan data. The mapping results are highly sensi-
tive to small variations in the regression coefficients due to the 
logarithmic transformation in the inverse power model. Al-
though both parameters can influence the results, only the 
effect of the y-intercept log( )a  is considered in this work 
because the slopes at different thresholds are nearly identical, 
as shown in Fig. 12(b). The average slope of −3.5 is deter-

mined (solid line in Fig. 12(b)) using the 630 samples of 
slopes that are calculated using 21 thresholds between 20 and 
50 mm and 30 sets of regression models. Once the slope is 
fixed, the uncertainty in is estimated using the Bayesian ap-
proach from 30 samples. 

(3) Uncertainty in the inverse regression process: In the 
third step, the mapping data in Fig. 12(c) are obtained as life-
span at a given damage threshold, which is the inverse rela-
tionship to the data in Fig. 12(a). Therefore, to calculate the 
damage size for a given cycle, an inverse regression process is 
required with the mapping data in Fig. 12(c). In the same 
manner as in the first regression model, the inverse regression 
process 30 sets of inverse regression models are constructed to 
consider uncertainty in damage size at given cycles. 

Fig. 13(a) shows the uncertainty in the mapping process us-
ing confidence intervals. The confidence intervals are calcu-
lated from 27000 data (30×30×30). In the figure, the 90 % 
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Fig. 12. Mapping process based on linear relationship between 
logarithm of life and load. 
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confidence intervals are shown as the height of the markers. 
The figure also shows the true damage growths at three differ-
ent load levels using solid curves. The trend of the trans-
formed data is close to that of the true data, and the magnitude 
of uncertainty is in a level that is similar to the noise in the 
field data. Among the 27000 sets of data, any set can be ran-
domly selected for training. The training data are obtained 
from a well-controlled ALT environment. Hence, all trans-
formed results are close to the true damage trend with a nar-
row level of uncertainty. The transformed data can be used 
because they have narrow uncertainty, but they may yield an 
RUL prediction that is overly narrow relative to the level of 
noise in the field. To make the transformed data representative 
of realistic field data, the median trend in the mapping process 
is obtained, and then the same level of noise in the field data is 
added to the trend. Fig. 13(b) shows the final data after the 
addition of noise; these data are used for training in the data-
driven approach. The noise is uniformly distributed as 

[ 1,1] mmU - . The level of noise is estimated on the basis of 
the field-measured data of the current system. 

Fig. 14 shows the results of damage prediction with mapped 
data, where the prediction accuracy is similar to the results in 
case 3 (which uses the given loading information in Fig. 10), 
but the uncertainties are considerably smaller. The RUL pre-
dictions in Fig. 15 show good accuracy (small uncertainty) at 
every cycle. However, these results are obtained by selecting 
three loads that are close to the field data up to 10000 cycles. 
Therefore, RUL results from only 10000 cycles are meaning-
ful. The corresponding metrics of the red curves in Fig. 15 are 

listed in Table 6. 
According to the results of prognostics metrics listed in Ta-

bles 2-6, the physics-based approach (case 1) shows the best 
performance with the same number of data (using ALT data) 
because case 1 has fewer uncertainty sources (no model and 
load uncertainties with three [the smallest number] unknown 
parameters) than other cases, as listed in Table 7. The data-
driven approach with mapping data (case 4) has more uncer-
tainty sources (model and load uncertainties with 11 unknown 
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Fig. 13. Mapping between nominal and accelerated condition data. 

 

Table 6. Prognostics metrics for case 4. 
 

PH 
(a = 10 %) 

-a l  accuracy 
(a = 10 %, l = 0.5) 

RA 
( l = 0.5) CRA 

14000 True (0.5000) 0.8885 0.9050 
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Fig. 14. Damage prediction results of case 4. 
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Fig. 15. RUL prediction of case 4. 
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parameters) than other cases. The performance of case 4 is 
comparable to that of the physics-based approach without 
loading information (case 2). This finding means that the 
mapping data that are generated to be close to the field-
measured ones for training can compensate for the uncertain-
ties from the model and many unknown parameters. In this 
context, the prediction results in Figs. 14 and 15 may not be 
considerably different without mapping data at 75 MPa, which 
is far from the field one. Also, the prediction accuracy can be 
increased by updating the training data; that is, training data 
do not need to be the same as the number of cycles increases. 
For example, data at 75 MPa can be excluded at 13000 cycles 
in Fig. 13(b) because the damage level between 75 and the 
field loading have a large difference. Additional data between 
65 and 70 MPa can be generated instead because the mapping 
data can be readily generated through the mapping process.  

Mapping data at field loading can be generated and predic-
tion results improve when the real operating loading is known. 
These results show that the proposed inverse mapping method 
can effectively compensate for the inaccuracy caused by in-
sufficient field data. This compensation is achieved by gener-
ating a training dataset for nominal loading conditions. 

 
5. Conclusions 

In this work, four methods are presented to utilize ALT data 
for estimating damage degradation model parameters or train-
ing mathematical models in data-driven approaches. The new 
methods are based on available information: (1) the physical 
model and loading conditions are given; (2) the physical 
model is given, but loading conditions are uncertain; (3) no 
physical model is given, but loading conditions are known; 
and (4) neither physical model nor loading conditions are 
given. Cases 1 and 3 are considered typical ways of utilizing 
ALT data in physics-based and data-driven prognostics, re-
spectively. The prediction results are improved by using ALT 
data in both cases. In case 2, an effective manner of utilizing 
ALT data is discussed by considering two ways to predict 
RUL with uncertain loading information. Lastly, a new 
method is proposed to consider case 4, which is based on a 
mapping process that uses the inverse power model. The in-
verse power mapping between field and ALT conditions can 
compensate for the limited number of in-service damage data, 
which is the most practical situation. 
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