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Abstract
This research presents a new method of degradation feature extraction to predict remaining useful life, the remaining
time to the maintenance, of rolling element bearings. Since bearing fault is the foremost cause of failure in rotating
machinery, there are many studies for evaluating bearings’ health status to prevent a catastrophic failure. Most of these
studies are based on health monitoring data, such as vibration signals that are indirectly related to bearing fault, from
which degradation feature can be extracted. It is, however, challenging to extract a degradation feature that can be
applied to all rolling elements. This study focuses on the amplitude decrease at specific frequencies, from which a robust
degradation feature is extracted by employing the information entropy. Some important attributes are found from the
degradation feature, which is used to predict the remaining useful life of bearings. This method is demonstrated using
the real test data provided by FEMTO-ST Institute. The results show that bearings can be used up to 87% of their whole
life and 59%–74% of life in average.
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Introduction

Bearing spall is the foremost cause of failure in rotating
machinery, as 80%–90% of aircraft engine failures are
caused by bearing failure. If bearings are not repaired
before failure, it can lead to a catastrophic failure. Since
bearings cannot be disassembled during operation, it is
difficult to measure how much the degradation is pro-
gressed, and when the maintenance is required. Instead,
indirect system responses, such as vibration signals, oil
debris, and thermography, are used to evaluate the level
of degradation. Especially, vibration signals have been
used for damage evaluation for several decades.1–3

Diagnostics techniques for bearings have been devel-
oped based on vibration signals, which finds the rela-
tionship between failure mechanisms and frequencies.
This relationship can be used to estimate the current
damage level. There are many effective methods for
bearing diagnostics such as discrete/random separation
(DRS), minimum entropy deconvolution (MED), and

envelope analysis.4–6 Since damage can grow rapidly,
however, sometimes the maintenance is performed too
early or too late to prevent the failure especially when
only the information from the current damage is
considered. For this reason, the prognostics studies
focus on predicting the degradation level and remain-
ing useful life (RUL, remaining cycles before the
maintenance).
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While studies on bearing diagnostics are well estab-
lished based on physical phenomena, studies on bearing
prognostics depend on the case-by-case application,
and no general method can be found even if many
efforts have been made to predict bearings’ life. There
are studies based on a physical model for life prediction
of bearings, but they have limitations that uncertainties
in service were not considered,7 or the model is limited
to a spall on the outer raceway of a typical roller bear-
ing.8 Since it is challenging to develop a physical degra-
dation model that includes complicated failure
mechanisms, most studies on bearing prognostics rely
on extracting degradation features from vibration sig-
nals.9–12 Some of these studies, such as the study of Li
et al.,9 are based on changes in fault-related frequen-
cies, but seeded faults are different from real ones and
relatively easy to detect. However, bearing prognostics
is difficult when the cause of failure is unknown, espe-
cially starting from intact bearings. In such cases, stud-
ies focus on finding monotonic degradation features
with respect to cycles. Usually a few features distinctly
showing monotonic behavior are selected for the pur-
pose of prognostics. For example, Loutas et al.10

selected the wavelet packet to transform nodal energies
and the Wiener entropy based on Spearman’s rank cor-
relation coefficient. Kim et al.11 selected kurtosis,
entropy estimation value, and entropy estimation error
of time domain signals based on the long-distance eva-
luation criteria. Sutrisno et al.12 used the average of the
five highest values of absolute acceleration data. Some
of the results from previous studies show good RUL
prediction results for given vibration signals. However,
the vibration signals can significantly be different even
from nominally identical bearings under the same usage
conditions.

Figure 1 from FEMTO bearing experimental data13

shows the challenges in predicting bearing failure. The
data shown as blue in the two figures are vibration sig-
nals measured by accelerometer until failure occurs,
and the red horizontal line represents a threshold
(20 g). Note that the two quite different signals are
obtained under the same usage conditions and from the

nominally identical bearings. There is no consistency in
the behavior of signals and life span. The life span of
test 1 (Figure 1(a)) is around 2800 cycles, but it is
870 cycles for test 2 (Figure 1(b)) even before the signal
reaches the threshold.

This article proposes a new method to extract a
monotonic degradation feature of bearings from vibra-
tion signals having no consistency as shown in Figure 1,
which is based on the change in amplitudes at specific
frequencies. The nature of the vibration signals changes
as the mechanical condition changes, but it is difficult
to find any change from raw data that is a result of a
combination of system dynamics, damage, and noise
signals. Therefore, the signals are decomposed into vari-
ous frequencies, and those ones that show a change with
respect to cycle are selected and analyzed. While most
studies have focused on the increase in features, this
study pays attention to the decrease in the feature with
time. The entropy of each frequency’s amplitude is cal-
culated, and specific frequencies showing the decrease
in entropy are selected as the degradation feature. Some
important attributes are found from the proposed
degradation feature, which is used to predict the RUL
of bearings. More detailed explanations and procedures
are presented in the next section.

FEMTO bearing experimental data13 are employed
to demonstrate the proposed method, whose experi-
mental platform and bearing information are shown in
Figure 2 (more detailed explanation of test apparatus
can be found in IEEE PHM 201214). Vibration signals
are monitored during 0.1 s with 25.6 kHz every 10 s. In
this study, the 0.1 s in every 10 s is considered as one
cycle, and there are 2560 samples in each cycle. This
setting is necessary because otherwise the amount of
data would be huge. The information of usage condi-
tions and the number of experimental data are listed in
Table 1. Two different usage conditions in terms of the
radial force applied to the tested bearing and rotating
speed are used in this article. The usage conditions of
Conditions 1 and 2 are, respectively, 4 kN and 1800 r/
min and 4.2 kN and 1650 r/min. Seven sets of experi-
mental results from each condition are obtained until

Figure 1. Vibration signal from the nominally identical bearing and the same usage conditions: (a) test 1 (Set 1, Condition 1) and (b)
test 2 (Set 2, Condition 1).
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failure occurs. Three sets of data from each condition
are used as training data to predict RUL of other bear-
ings. Based on the raw vibration signals, it is considered
that failure occurs when the magnitude of acceleration
reaches 20 g. All raw data of 14 sets with the threshold
are shown in Appendix 1.

With the experimental information, this article is
organized as follows: in the second section, the method
for degradation feature extraction and its attributes are
explained; in the third section, prognostics is performed
based on the results from the second section; in the
fourth section, generalization of the proposed method
is discussed; and conclusions and future works with
limitations of the proposed method are presented in the
final section.

Degradation feature extraction

As shown in Appendix 1, it is difficult to define com-
mon characteristics as a degradation feature from raw
data. There is no change in signals even just before the
failure in many cases, and the magnitude of the signal
at the end of life (EOL) is often less than the threshold
value. In this section, a new method is proposed to
extract degradation feature from the raw data based on
amplitude change at specific frequencies.

Amplitude change in frequency domain

When the vibration signals are decomposed into vari-
ous frequencies, the amplitudes at some frequencies
increase while others decrease as cycle increases.

Figure 3(a) and (b) show, respectively, the increasing and
decreasing cases of the amplitude at specific frequencies
of Set 1, Condition 1 in Figure 1(a). The amplitude in
the frequency domain more clearly increases than that in
the time domain, which is because the signals in the time
domain are the sum of amplitudes of all frequencies
including both increasing and decreasing amplitudes.
This is more clearly exhibited in the case of Set 2,
Condition 1 in Figure 1(b) with Figure 3(c) and (d).

It is expected that the amplitude increases as damage
in bearings increases. This is true in the time domain
even if it is difficult to observe that at early stages. In
the frequency domain, this may be true only for loca-
lized defects. In practice, vibration characteristics con-
tinue to change as degradation progresses: the natural
frequency changes as the stiffness changes due to the
fault progression, and the periodic nature of localized
defects can diminish since the motion of rolling element
becomes irregular and disturbed as damage pro-
gresses.1 Figure 4 shows the change in vibration charac-
teristics in terms of the natural frequency. When a
signal changes from blue to red curve with respect to
time due to damage, the amplitude at frequency A
decreases, while the one at B increases. This explains
why amplitude of some frequencies can decrease or
increase as cycle increases, as shown in Figure 3.

Based on the vibration characteristics, it seems that
both increasing and decreasing amplitudes can be used
as a degradation feature. However, there is too large
noise to be a degradation feature in the amplitude as
shown in Figure 3. In this study, information entropy is
employed to reduce the noise and amplify the degrada-
tion characteristics (increasing/decreasing trend), which
is introduced in the next section.

Information entropy as a degradation feature

Entropy is a measure of disorder and randomness of
the system. In physical interpretation, entropy change

Table 1. Experimental condition and data usage.

Condition 1 Condition 2

Radial force (N) 4000 4200
Rotating speed (r/min) 1800 1650
Number of data set 7 (Set 1–Set 7) 7 (Set 1–Set 7)

Figure 2. Experimentation platform: PRONOSTIA.13
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is explained using energy flow. When a system absorbs
energy from others, its entropy increases (counterpart
decreases). The total entropy of an isolated system,
however, never decreases. There is also a mathematical
concept of entropy called information entropy or
Shannon entropy, which is the average amount of
information.15 In this concept, increase in entropy
means an increase in uncertainty by missing the infor-
mation contained in data. Many researchers argue that
physical and information entropy are related to each
other,16,17 but the opposite argument also exists.18 For
the bearing problem, the total energy in bearing
increases as the work done by the external force is con-
sumed by damage initiation/propagation,19 which
makes entropy increases.17 However, the information
or data used in this research are the decomposed vibra-
tion signals rather than the total thermodynamic energy
during the degradation process of bearings because the

former fits better. Since it is a debatable topic whether
there is a relation between physical and information
entropy, information entropy is only considered as a
tool to express the changes in vibration signals (Figure
3) rather than to connect physical interpretation with
information entropy in this research.

Information entropy. In the information theory, entropy
is calculated based on the following equation15

H Xð Þ= �
Xn

i = 1

p xið Þlog2p xið Þ ð1Þ

where X is an information source, n is the number of
possible outcomes from X , and p(xi) is the probability
of each outcome. In this research, X of bearing prob-
lem represents bins that acceleration data belong,
which is shown in Figure 5. The range between 0 and 1
is divided into 255 intervals, which are referred to as
bins. There are totally 256 bins initially, and the magni-
tude of data that can be located in each bin is listed at
the bottom. Data whose magnitude are less than 1/500
and in between 1/500 and 3/500 are, respectively,
included in the first and the second bin, and the same
for the last bins (the number of initial bins and the
magnitude of data are based on computer usage). After
data allocation, the number of bins having non-empty
data becomes the number of possible outcomes, n; that
is, 256� n bins are empty. The probability p(xi) is the
number of data in the ith bin divided by the total num-
ber of data; this is the same concept as the probability
mass function in statistics.

Equation (1) denotes that entropy increases as the
number of bins, n, increases, and the probability of
each bin is even, which corresponds to the case when

Figure 3. Instances of amplitude change in frequency domain: (a) Set 1, Condition 1: frequency #1-1, (b) Set 1, Condition 1:
frequency #1-2, (c) Set 2, Condition 1: frequency #2-1, and (d) Set 2, Condition 1: frequency #2-2.

Figure 4. Amplitude change at a specific frequency as vibration
characteristics changes.
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the data within zero to one spread out as illustrated in
Figure 6(a). The entropy at k + 1 cycle is higher than one
at k cycle since the amplitudes of data are allocated in
more bins with even probability. Figure 6(b) shows the
opposite case. The number of bins at k and k + 1 cycles
are the same, but the data at k + 1 cycle are more located
in the middle bins, which makes entropy decrease.

Entropy calculation results. The information entropy of
amplitude at specific frequencies in Figure 3 is calcu-
lated, which is shown in Figure 7. It is shown that
entropy calculation has much less noise and more
apparent degradation feature than amplitudes in
Figure 3. Based on these results, it seems that entropy
change of both increasing and decreasing amplitudes
can be used as a degradation feature. After examining
14 FEMTO data sets, it is found that the trends of
decrease in entropy are consistent for all data sets, and
some important attributes can be found. However, no
common characteristics are found from the increase in
entropy. Even though the entropy clearly increases, its
behavior is unpredictable. This may be because increas-
ing amplitudes can appear in the middle of degradation
process when the level of damage can be detectable at a
specific frequency, whereas the decreasing ones have
existed from the beginning and are gradually affected
by other frequencies. Thus, decreasing amplitudes are
more stable and consistent than increasing ones. In
addition, it is found that the frequencies showing a
decrease in entropy are around 4 kHz for all data sets,
which may depend on the structure of the systems, such
as the bearing types and the number of rolling

elements. Therefore, the entropy decrease in the fre-
quency domain is used as degradation feature. The
detailed procedure to extract the degradation feature
based on entropy change in the frequency domain is
explained in the following section.

Procedure of degradation feature extraction

The procedure of the proposed method of extracting
the degradation feature is illustrated in Figure 8, whose
detailed explanation is as follows:

Step 1. Convert signals in the time domain into the
frequency domain using fast Fourier transform
(FFT)—as mentioned in section ‘‘Introduction’’—one
cycle includes 2560 samples of vibration signals (data
acquisition during 0.1 s with a sampling rate of
25.6 kHz), which is converted into the frequency
domain using FFT.20 There are 1401 different FFT
results from different cycles (0–1400 cycles) for the
example in Figure 8.
Step 2. Reshape FFT results frequency-wise (fre-
quency-wise plot)—the amplitude at a fixed frequency
(e.g. Frq: 1) changes at different cycles. Therefore,
amplitudes at different cycles are collected at a fixed
frequency, which is called a frequency-wise plot here.
Since FFT results are symmetric with 2560 different
frequencies between 0 Hz and 25.6 kHz, there are 1280
frequencies to be considered as candidates for degrada-
tion feature, that is, there are 1280 amplitude cycle
plots.
Step 3. Calculate entropy and select specific frequencies
showing entropy decrease—the graphs of frequency-
wise amplitude versus cycle from Step 2 are used to cal-
culate entropy using equation (1), which ends up 1280
graphs for entropy versus cycle, and different traces of
entropy change in terms of cycles are illustrated in Step
3 in Figure 8. Among them, specific frequencies show-
ing the entropy decrease (like Frq: 1) are selected. If
multiple frequencies are decreased among 1280 fre-
quencies, then a median of these entropies is taken as a
damage feature.

Figure 5. Illustration of information source of the bearing
problem.

Figure 6. Illustration of two cases of entropy change: (a) entropy increase and (b) entropy decrease.
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There are two points to be considered in the calcula-
tion of entropy. First, a starting cycle for entropy calcu-
lation needs to be determined based on the amplitude at

frequency domain, in order to avoid the initial effect
such as the possibly misaligned systems making large
vibration, as shown in Frq: 1 at Step 2 of Figure 8. To

Figure 7. Entropy calculation with amplitude in Figure 3: (a) Set 1, Condition 1: frequency #1-1, (b) Set 1, Condition 1: frequency
#1-2, (c) Set 2, Condition 1: frequency #2-1, and (d) Set 2, Condition 1: frequency #2-2.

Figure 8. Illustration of degradation feature extraction.
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this end, a large amplitude or trend changing point at
an early cycle is selected as the starting cycle. The start-
ing cycle can differ for different sets, but it is usually
located between 12 and 100 cycles. Second, the method
of selecting frequencies is based on a magnitude of the
slope of linear regression using entropy data. If frequen-
cies whose magnitude of the slope is large are selected,
then the degradation feature becomes clear, but at the
same time, instabilities increase. In this study, frequen-
cies whose magnitude of entropy slope is at top 25 are
selected. The starting cycle and selected frequencies
have an effect on calculation results of a particular data
set, but overall attributes (will be discussed in section
‘‘Results of feature extraction and its attributes’’) of
bearing problem from the proposed methods do not
change.

Results of feature extraction and its attributes

Degradation features extracted based on the procedure
in Figure 8 are shown in Figure 9, in which entropy of
all 14 sets decreases as cycle increases. Each curve is
obtained by taking a median of 25 entropy values at
each cycle, which are calculated from selected frequen-
cies, showing a consistent decrease in entropy. From
the entropy curves, the maximum and minimum
entropy and EOL are defined as shown in Figure 10.

There are two main findings when the proposed
method is used. First, EOL is proportional to the maxi-
mum entropy, which is shown in Figure 11(a). It is pos-
sible that the higher energy at the initial stage relates
the longer life. The RUL can be predicted by utilizing
the linear relation between the maximum entropy and
EOL based on training data. Second, when the degra-
dation rate is defined using the maximum and mini-
mum entropy as

dr = 1� min :Entropy

max :Entropy
ð2Þ

the degradation rate is classified into two groups, as
shown in Figure 11(b). It is possible that the two groups

Figure 9. Results of the degradation feature: (a) Condition 1 and (b) Condition 2.

Figure 10. Definition of maximum and minimum entropy and
EOL.

Figure 11. Two important attributes from the extracted
feature: (a) linear relation between maximum entropy and EOL
and (b) two groups of degradation rate.
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are related to different failure mechanisms, but it can-
not be verified with the given data because the cause of
failure is unknown. The two groups of the degradation
rate are distributed around 20% and 40%, which can
be used for a threshold. In the following section, RUL
is predicted in the two ways based on the two findings,
one using the linear relation and the other the degrada-
tion rate with the entropy trend.

Prognosis

Even though the vibration signals until the failure
occurs (true EOL) are given in Appendix 1, it is
assumed that EOL is 90% of the true EOL for the pur-
pose of maintenance scheduling. The procedure illu-
strated in Figure 8 is repeated every 50 cycles to select
featured frequencies. Even though the selected frequen-
cies can be different at each cycle, they gradually
become consistent and converge to around 4 kHz as
cycles increase, as shown in Figure 12. Therefore, RUL
prediction is performed after the cycle that the selected
frequencies are converged, as shown in the red vertical

line in the figure. RUL is predicted in two ways based
on (1) the linear relation between maximum entropy
and EOL and (2) entropy trend with a threshold.

Max.E-EOL method: the relation between maximum
entropy and EOL

As mentioned before, three sets of data (Sets 1, 2, and
3) from each condition are used as the training data.
These sets are utilized to construct the linear relation
between maximum entropy and EOL, which is shown
in Figure 13(a). In the figure, three different colors rep-
resent different sets (red: Set 1, blue: Set 2, and black:
Set 3), and square and triangle markers, respectively,
represent Conditions 1 and 2. The black solid and blue
dashed lines are, respectively, mean of regression
results and 10-percentile lower confidence bound using
three data from each condition, and the latter is used
for a conservative prediction. For example, when the
maximum entropy is obtained as 4 at the current
700 cycles, the EOL and the RUL are predicted as
1000 and 300 cycles, respectively.

E.trend method: entropy trend with threshold

The future behavior of entropy is predicted based on
the following model

Entropy= b1 exp b2Cycle
b3

� �
ð3Þ

whose expression can follow the entropy trend in
Figure 9. Three unknown parameters, b1,b2,b3 in the
equation, are identified based on nonlinear regression
from the data between the maximum entropy and
cycles. The RUL is predicted by extrapolating the
model with identified parameters until it reaches the
threshold that is determined from the degradation rate
from three sets of data (Sets 1, 2, and 3) from each

Figure 12. Selected frequencies plot as cycle increases: (a) Set 1, Condition 1 and (b) Set 1, Condition 2.

Figure 13. Information from three sets of training data:
(a) linear relation between maximum entropy and EOL and
(b) degradation rate (threshold).
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condition, as shown in Figure 13(b). Degradation rates
of total six training data are classified into two groups,
and the mean of each group is considered as a thresh-
old: that is, 21% and 41%.

It can be determined whether the current data
belongs to 21% or 41% based on the linear regression
model, as shown in Figure 13(a). As an illustration, the
prediction result of future entropy trend of Set 3,
Condition 2 is shown in Figure 14. In Figure 14(a),
black solid curve, black circles (looks like thick black
curve), and green dotted horizontal line are, respec-
tively, true trend up to EOL, used data to identify
b1,b2,b3 in equation (3) and the threshold calculated
from 21% degradation rate. The red dashed curve from
the current cycle (700 cycles) is a predicted entropy
trend based on equation (3) with identified parameters
(b1 = 6:153106, b2 = � 12:14, b3 = 0:0244). The inter-
section of the predicted entropy trend and the threshold
is a predicted EOL, which is shown as the red dashed
vertical line. This result shows RUL is 29 cycles using
21% threshold (i.e. a total of 691 lifecycles), which does
not make sense and the result can be changed when the
threshold is estimated using the linear regression in
Figure 13(a). The maximum entropy is 5.08 from
Figure 14, which corresponds to 1780 cycles EOL from
the mean of the regression model (max:Entropy=
1:70 + 0:0019 � EOL; since this is just for threshold clas-
sification, the solid line is used) in Figure 13(a).
Compared to this result, 691 cycles is too short as the
EOL. The new threshold is estimated as 43% by con-
sidering minimum entropy at 1780 cycles, which is
obtained by extrapolating entropy trend (red dashed
curve in Figure 14(a)) to 1780 cycles. Since the newly
estimated threshold is close to the threshold in the
other group (41%) from the training data, the RUL is
re-predicted using 41% threshold, which is shown in
Figure 14(b). With 41% threshold, the RUL is

predicted as 833 cycles whose error with the true RUL
(1059 cycles) is 0.2137, which is calculated by dividing
the true RUL minus the predicted one by the true one.

RUL prediction results

The results of RUL prediction for all prediction sets
are shown in Figure 15, in which black solid lines are
true RUL, the green vertical line indicates the cycles
when the frequencies converge, and blue dotted lines
and red dashed lines are prediction results based on
Max.E-EOL and E.trend methods, respectively. The
results from the Max.E-EOL method of Condition 1
are closer to true RUL than ones from the E.trend
method, while the Max.E-EOL method does not per-
form well for Condition 2 since EOL of Condition 2 is
short and maximum entropy is small, but 10th percen-
tile at small entropy gives very conservative prediction
(see in Figure 13(a)).

It is considered that the RUL results can be reliable
after selected frequencies are converged (the green ver-
tical lines), however, the RUL prediction of some cases
change from negative value to positive; for example,
E.trend result of Set 5 in Figure 15(a) is negative at
1500 cycles, but it becomes positive at 1800 cycles.
Since RUL at future cycles is unknown, it is assumed
that when RUL is less than 50 cycles, maintenance is
ordered. In this case, the used life is calculated at the
cycle when maintenance is ordered. The ratio of used
life to the EOL is listed in Table 2; the higher the value
is, the better the prediction is. However, it is failed to
predict the RUL of Set 7, Condition 2, in which failure
occurs before the selected frequencies are converged.
By considering the EOL of this set is very short, it
seems that there was a significant initial defect in this
bearing. Except for this bearing, the mean of the ratio
from seven results is calculated. The mean of the ratio

Figure 14. Results of degradation prediction: (a) threshold 21% and (b) threshold 41%.
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of used life is 0.56 by considering conservative results
between the Max.E-EOL and the E.trend methods
(0.47, 0.29, 0.45, 0.52 from Condition 1 and 0.67, 0.78,
0.71 from Condition 2). However, when the optimistic
results are selected by ignoring conservative results and
going to next prediction steps, the mean is 0.78 (0.81,
0.32, 0.72, 1.08 from Condition 1 and 1.04, 0.79, 0.71
from Condition 2). That is, bearings can be used 56%
or 78% of their whole life in average. The choice
between the Max.E-EOL and the E.trend methods can
be made depending on the trade-offs between mainte-
nance cost and risk.

Finally, the prediction results from different combi-
nations of three training data sets are provided to vali-
date the proposed method, which is listed in Table 3.
There are totally 10 cases by adding 9 additional cases

among total 35 possible combinations (selecting 3 out
of 7). In each case, three training sets are randomly
selected, but the combinations that three data do not
show a proportional relation between maximum
entropy and EOL are excluded. From the three sets
from each condition, threshold levels and the linear
relation between maximum entropy and EOL (see
Figure 13) are determined and utilized to predict RUL
of remaining four bearings in each condition, which is
repeated for all cases.

The mean of conservative and optimistic results
from each case are listed in Table 3, which is calculated
in the same manner as in Table 2. The statistical results
(three percentiles, minimum and maximum values)
from the 10 cases are also calculated. Based on these
results, 56%–64% and 71%–80% of bearings’ life from

Figure 15. RUL prediction using three training data: (a) Condition 1 and (b) Condition 2.
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the conservative way and optimistic way, respectively,
can be used in average. However, note that there are
several sets that are failed to be predicted by relying on
the optimistic results, and the mean results in Table 3
are obtained by excluding those ones (the numbers in
the parenthesis denote the total number of bearings to
calculate the mean values). It is required to be very
careful when relying on the optimistic results with high
safety systems. Also, the proposed method cannot pre-
dict the RUL for one set in Case 10.

Discussions on generality of the proposed
method

The main findings from the proposed method are that
the entropy gradually decreases to a certain level of
thresholds, and the EOL is proportional to the maxi-
mum entropy. If these attributes are also found in the
other application, the proposed method might be
widely applicable. In addition, if the effect of usage
conditions on these attributes is found, it is expected
that more accurate prediction is possible with less num-
ber of training data. In this section, these three issues
are discussed.

Another bearing application

Additional experimental results from another bearing
application are employed to validate the attributes of
the proposed method, which are provided by the NSF
I/UCR Center for Intelligent Maintenance Systems
(IMS).21 Four double row bearings (16 rollers) are
installed on a shaft, and the rotating speed and radial
load are, respectively, 2000 r/min and 6000 lbs, which
is illustrated in Figure 16. The test stops when the accu-
mulated debris exceeds a certain level, and there are
three sets of experimental data available. A run-and-
stop operation is repeated for experimental Set 1 and
Set 3 (Set 2 is continuously monitored to EOL). Since
the number of data set is too small, the run-and-stop of
the operation has an effect on vibration signal and
entropy calculation, and four bearings on a shaft can
interact with each other in the fault progression; it is
difficult to make any definite conclusions. Therefore, it
is observed how consistent results are obtained com-
pared to the previous case with the same method.

Threshold, EOL, and maximum entropy of the failed
bearings in each set are listed in Table 4. The maximum

Figure 16. Illustration of IMS bearing.21

Table 2. Ratio of used life to EOL using three training data.

Set 4 Set 5 Set 6 Set 7

Condition 1 Max.E-EOL 0.81 0.29 0.72 1.08
E.trend 0.47 0.32 0.45 0.52

Condition 2 Max.E-EOL 0.67 0.79 0.71 fail
E.trend 1.04 0.78 0.71 fail

Conservative mean 0.56
Optimistic mean 0.78

EOL: end of life.

Table 3. Ratio of used life to true EOL using different combinations of three training data.

Case 1 Case 2 Case 3 Case 4 Case 5

Training set # [1 2 3] [3 4 5] [1 3 4] [2 5 7] [1 3 7]
Conservative mean 0.56 (7) 0.67 (7) 0.60 (7) 0.58 (8) 0.54 (8)
Optimistic mean 0.78 (7) 0.71 (5) 0.72 (7) 0.71 (7) 0.68 (8)
Fail to be predicted with the optimistic result two sets one set

Case 6 Case 7 Case 8 Case 9 Case 10a

Training set # [1 2 5] [2 3 5] [1 4 5] [2 6 7] [4 5 6]
Conservative mean 0.63 (7) 0.56 (7) 0.70 (7) 0.45 (8) 0.64 (6)
Optimistic mean 0.87 (7) 0.84 (6) 0.75 (6) 0.55 (6) 0.80 (3)
Fail to be predicted with the optimistic result one set one set two sets three sets

Min. 25th percentile median 75th percentile Max.
Conservative mean 0.45 0.56 0.59 0.64 0.70
Optimistic mean 0.55 0.71 0.74 0.80 0.87

EOL: end of life.
aOne set fails to be predicted with the proposed method.
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entropy of Set 3 is too small compared to its EOL.
However, it is still early to conclude that the EOL is not
proportional to the maximum entropy since three sets
of data are very small, and there were several run-and-
stop during the operation. At least, failure occurs at
bearings having the lowest maximum entropy among
four bearings in each set (see the second and third col-
umns in Table 4). Also, the four thresholds seem to be
grouped into two: 48% is one of them, and 65%, 73%,
and 71% are another one. The difference in magnitude
between the first group and the mean of the second
group is similar to that in FEMTO bearing (20% and
40%). Finally, two of the three failed elements occur at
the outer race in the second threshold group (see the
fourth and fifth columns in Table 4), which is unknown
for the FEMTO bearing. This slightly increases the pos-
sibility that the different groups might be related to dif-
ferent failure mechanisms.

The relation between threshold/Max.E-EOL and
usage conditions

In the previous section, the threshold of the IMS bear-
ing is around 50%–70%, which differs from one of the
FEMTO bearings, 20%–40%. The cycle of the
FEMTO bearing is based on seconds, and the EOL is
around 2–7 hours, while the EOL of IMS bearing is
around 7–30 days. That means, FEMTO bearings are
under the accelerated test conditions, while IMS bear-
ings are under the nominal operating conditions.
Therefore, it seems that there is a relationship between
the degradation rate (threshold) and the applied load,
which cannot be found in the research due to the lack
of test data. However, if this relationship can be estab-
lished, then it can help set a threshold with a small
number of training data.

As another effect of usage conditions, if it is related
to the slope of the relationship between maximum
entropy and EOL, more information can be used. It
seems like the magnitude of the slope is proportional to
the magnitude of the load based on Condition 1 and
Condition 2 in Figure 13(a). If a relation between the
magnitude of slope and usage conditions are found, it
can help decision making to utilize the relation between
maximum entropy and EOL for prediction. However,

two conditions are not enough to validate the relation.
This will be considered in near future with more data
sets under various usage conditions.

Conclusion and future works

A new method is proposed based on entropy changes
at specific frequencies to extract the degradation feature
from vibration signals and to predict the RUL of bear-
ing applications. The main contributions and attributes
of the proposed method are as follows:

� Degradation feature having a generality is found
from vibration signals, which gradually decreases
as cycle increases for all experimental sets.

� Degradation rates of different experimental sets
from the same application are similar each other,
which is used as a threshold.

� EOL is proportional to the maximum entropy,
which can be used as another prediction method
without a threshold.

The proposed method is demonstrated using 14 sets
of bearing experimental data under two different condi-
tions. By considering used life, 59%–74% of bearings’
life can be used based on the proposed method.

The results from the proposed method are noticeable
by considering the current level of study, but there are
still several limitations to be solved. First, the entropy
trend exponentially decreases, which can make a large
difference in life prediction with a small perturbation of
threshold. Second, the proposed method is based on
the accumulated vibration data. Since the bearing sys-
tems under real operating conditions may last very long
time, a tremendous amount of data should be stored.
Finally, the proposed method has been developed based
on the vibration signal. Even if the basis of the found
attributes is tried to be explained based on physical
interpretation, they are not proved yet, such as why the
increasing amplitude is not proper to be a degradation
feature, why the selected frequencies are at around
4 kHz, why EOL is proportional to the maximum
entropy, and why there are different groups of the
degradation rate.

Table 4. Failure summary of three data sets.

Data set Minimum Max.E Failed bearing Failed element Threshold EOL (cycle) Max.E

Set 1 Bearing 4 Bearing 3 Inner race 48% 1940 1.37
Bearing 4 Roller element 65% 1940 1.00

Set 2 Bearing 1, Bearing 4 Bearing 1 Outer race 73% 886 0.81
Set 3 Bearing 3 Bearing 3 Outer race 71% 4003 0.68

EOL: end of life.
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As the future works, the proposed method will be
improved by resolving the aforementioned limitations.
Also, a generality of the method will be demonstrated
by studying the effect of usage conditions on the level
of threshold and the slope of Max.E-EOL. Even though
the proposed method has not been demonstrated using
the other bearing applications yet, the general usage of
this method is promising by judging the results from 14
sets of bearing data, and the results in another bearing
application show the possibility.
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Appendix 1

Figure 17. Raw data from horizontal axis: Condition 1.
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Figure 18. Raw data from horizontal axis: Condition 2.
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