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Abstract
Aircraft panel maintenance is typically based on scheduled inspections during which the panel damage size is compared
to a repair threshold value, set to ensure a desirable reliability for the entire fleet. This policy is very conservative since
it does not consider that damage size evolution can be very different on different panels, due to material variability and
other factors. With the progress of sensor technology, data acquisition and storage techniques, and data processing algo-
rithms, structural health monitoring systems are increasingly being considered by the aviation industry. Aiming at reduc-
ing the conservativeness of the current maintenance approaches, and, thus, at reducing the maintenance cost, we
employ a model-based prognostics method developed in a previous work to predict the future damage growth of each
aircraft panel. This allows deciding whether a given panel should be repaired considering the prediction of the future
evolution of its damage, rather than its current health state. Two predictive maintenance strategies based on the devel-
oped prognostic model are proposed in this work and applied to fatigue damage propagation in fuselage panels. The
parameters of the damage growth model are assumed to be unknown and the information on damage evolution is pro-
vided by noisy structural health monitoring measurements. We propose a numerical case study where the maintenance
process of an entire fleet of aircraft is simulated, considering the variability of damage model parameters among the
panel population as well as the uncertainty of pressure differential during the damage propagation process. The proposed
predictive maintenance strategies are compared to other maintenance strategies using a cost model. The results show
that the proposed predictive maintenance strategies significantly reduce the unnecessary repair interventions, and, thus,
they lead to major cost savings.
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Introduction

Aircraft maintenance represents a major economic cost
for the aviation industry. In 2015, the maintenance,
repair, overhaul (MRO) market value was three-
quarters of the whole aircraft production market value.
Developing efficient maintenance can be an important
way for airlines to allow a new profit growth. Aircraft
maintenance can be classified into airframe mainte-
nance and engine maintenance. Airframe maintenance
that deals with non-structural items is called non-
structural airframe maintenance,1 while the one con-
cerned with fatigue damage in the structural sections,
such as fuselage panels, is called structural airframe
maintenance. In this article, the maintenance is limited

to structural airframe maintenance for fatigue cracks in
fuselage panels.
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Traditional aircraft maintenance is highly regulated
based on a fixed maintenance schedule (thus called
scheduled maintenance) to ensure safety and correct
functionality between maintenance intervals. For exam-
ple, under the Federal Aviation Administration (FAA),
operators are required to prepare a mandatory
Continuous Airworthiness Maintenance Program
(CAMP). CAMP includes both routine and detailed
inspections, which are generally referred to as ‘‘checks’’
by airlines. There are four levels of checks, termed A,
B, C, and D, from lighter to most thorough. A and B
checks are lighter checks, taking from dozens of man-
hours to hundreds of man-hours. C and D checks are
thorough checks, during which the aircraft is partially
disassembled to undergo a series of maintenance activi-
ties including both engine and airframe maintenance.
The inspections are often implemented by techniques
such as non-destructive inspection (NDI), general
visual inspection (GVI), detail visual inspection (DVI),
which lead to significant downtime of up to 1month.

With progress in sensor technology, structural
health monitoring (SHM) systems, which employ a sen-
sor network embedded inside aircraft structures to
monitor damage, are gradually being introduced in the
aviation industry.2–5 Once it is possible to monitor the
structural damage state automatically and continu-
ously, more advanced condition-based maintenance
(CBM) can be implemented.6 CBM is defined by the
maintenance being triggered by an event when some
conditions are satisfied. For structural airframe mainte-
nance, CBM is based on the actual condition of the air-
craft, rather than fixed inspection routines that might
not be necessary, and thereby reduces aircraft down-
time and reduces maintenance cost.

Much attention has been paid to CBM strategies in
the literature7–9 and more recently to predictive mainte-
nance (PdM).10–15 CBM and PdM share some charac-
teristics in common that both rely on damage
assessment data collected by the SHM system. The dif-
ference lies in that CBM makes decisions based on the
current damage level, while PdM makes use of, in addi-
tion to current damage information, a prognostics
index to make the decision. The remaining useful life
(RUL) is the most common prognostics index.16 The
RUL-based PdM decides the next maintenance based
on the estimated RUL.14,17,18 For aircraft maintenance,
however, the standards are set by the International
Civil Aviation Organization (ICAO) and implemented
by national and regional bodies around the world.
Arbitrarily deciding on structural airframe mainte-
nance time only based on the estimated RUL without
considering the scheduled maintenance (during which
the engine and non-structural airframe maintenance
are also performed) can be disruptive to the current
maintenance practice. In addition, RUL-triggered
maintenance is not optimal from an economic point of
view due to less notification in advance, for example,
the absence of maintenance crews or lack of a spare
part. Therefore, for structural airframe maintenance, it

would be more desirable to predict the probability that
an airframe structure would operate normally up to
given future time.19 In other words, use the predicted
reliability as the prognostics index. The PdM policy
that incorporates the predicted reliability information
for supporting decision-making can be found in the
literature.10,13,15

For the application of structural airframe mainte-
nance for a fleet of aircraft, Pattabhiraman et al.1 pro-
posed two CBM strategies, aiming at reducing the
number of traditional scheduled maintenance. One
strategy is purely CBM, that is, triggering maintenance
anytime when needed, based only on the current panel
damage state. The other strategy takes into account the
scheduled maintenance stops. In their approaches, an
SHM system is used to monitor the damage state of the
aircraft as frequently as needed. Using the measured
crack sizes, the maintenance decisions are developed
based on some fixed thresholds. These thresholds are
determined for the entire fleet of aircraft to ensure a
desirable level of reliability. There are two shortcom-
ings in the work of Pattabhiraman et al. First, they
assume that the SHM data are perfect, which may be
impractical since due to the sensor limitations and
harsh working conditions, the data always contain
noise and disturbances. Second, Pattabhiraman et al.
used two different thresholds, corrective threshold and
preventive threshold, to distinguish a corrective repair
and a preventive repair (the preventive threshold is
much smaller than the corrective one). Corrective
repair is carried out when the damage level of the
panels exceeds a corrective threshold. Preventive repair
is carried out at the time of corrective repair to repair
the panels whose damage level exceeds the preventive
threshold but is lower than the corrective threshold.
The objective of predictive repair is economic, for
example, to reduce the number of maintenance stops.
Although Pattabhiraman considered two types of
repair, the corrective threshold and the preventive
threshold are fixed for all the panels in the fleet. This
could be suboptimal since damage growth rate may
vary from panel to panel. Therefore, a conservative
threshold has to be adopted to ensure the safety of the
whole fleet.

This article thus aims to go further in terms of opti-
mizing the maintenance process, by moving from CBM
to PdM with the potential for further cost savings. We
therefore adopt the second type of prognostics index,
that is, the predicted reliability, for reducing the conser-
vativeness caused by the use of fixed thresholds for the
entire fleet. To this end, we use a model-based prognos-
tics method, called EKF-FOP method that couples the
extended Kalman filter (EKF) and first-order perturba-
tion (FOP), developed in our previous work.20 EKF-
FOP allows to make the repair decision taking into
account the future reliability of each individual panel
rather than a fixed threshold for all panels. The EKF-
FOP method has two functions: filtering measurement
noise to give a better estimate of damage level (achieved
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by EKF) and predicting the damage distribution in the
future (achieved by FOP). Once the damage distribu-
tion of a panel is predicted, the reliability of the panel
at a given future time is calculated. This predicted relia-
bility information is used to form the repair policy,
which is the core of the PdM presented in this article.
Similar to Pattabhiraman, we propose two strategies:
PdM considering the aircraft scheduled maintenance
stops and predictive maintenance-skip (PdM-skip) the
other way around. The performance of PdM and PdM-
skip is assessed through a cost model by comparing
with Pattabhiraman’s two CBM strategies and the tra-
ditional scheduled maintenance.

The remainder of this article is organized as follows.
Section ‘‘Model-based prognostics for individual fuselage
panel’’ briefly recalls the model-based prognostics
method proposed in the literature20 for the application of
fatigue crack prognosis. Section ‘‘PdM strategies using
model-based prognostics’’ details the developed PdM
strategies when the model-based prognostics method is
used. Section ‘‘Numerical examples’’ implements numeri-
cal experiments on a fleet of short-range commercial air-
craft. Benefits of the PdM using model-based prognostics
are shown in terms of scheduled and unscheduled repair
as well as in terms of maintenance cost reduction.
Finally, in section ‘Conclusion,’’ we draw conclusions
and suggest potential future research work.

Model-based prognostics for individual
fuselage panel

Prognostic methods can generally be grouped into
data-driven and model-based methods. For the applica-
tion of fatigue crack prognosis, a model-based method
is adopted here since fatigue damage models for metals
have been well studied.21,22 Model-based prognostics
methods involve three issues. (1) A physical model with
unknown model parameters describing the degradation
process is assumed to be available. (2) The damage
state and the model parameters need to be estimated
from the measurement data collected up to the current
time. (3) The distribution of future damage state needs
to be predicted based on the estimated damage state
and estimated model parameters.

For the first issue, the well-known Paris model is
used for fatigue crack propagation, as given in equation
(1), in which a is the half-crack size in meters, k is the
number of load cycles, da/dk is the crack growth rate in
meter/cycle, and m and C are the Paris model para-
meters. Throughout this article, we use the terms ‘‘Paris
model parameters,’’‘‘model parameters,’’ and ‘‘material
parameters’’ interchangeably to refer to m and C. DK is
the range of stress intensity factor, which is given in
equation (2) as a function of the pressure differential p,
fuselage radius r, and panel thickness t. The coefficient
A in the expression for DK is a correction factor
intended to compensate for modeling the fuselage as a
hollow cylinder without stringers and stiffeners.1 The

two parameters m and C are assumed unknown that
need to be estimated from the measurement data

da

dk
=C(DK)m ð1Þ

DK=A
pr

t

ffiffiffiffiffiffi
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p

ð2Þ

The crack growth can be modeled in myriad ways
depending on whether the critical site is subjected to
multiple-site damage, widespread fatigue damage, two-
bay crack or other types of fatigue damage. A study con-
ducted by Molent and Barter23 reviewed fatigue crack
growth data from a significant number of full-scale fati-
gue test (FSFT) on several different military aircraft types.
In the FSFT, the airframe was subjected to loads of vary-
ing amplitude and complexity for a specified period of
testing. They concluded that a simple crack growth model
adequately represents a typical crack growth. Here the
well-known Paris model is employed since it is widely
used for modeling fatigue crack growth.24,25

For the second issue, several techniques can be con-
sidered, for example, EKF, particle filter (PF), and non-
linear least squares (NLS). EKF and PF are based on
recursive Bayesian inference, which estimates the state
and parameters recursively by taking one datum at a
time.26 Therefore, they are able to deal with the real-time
estimation of state and parameters as the data arrive
sequentially. In contrast, NLS processes all data simulta-
neously in a batch, indicating that the computational
complexity increases as time evolves and as more data
are available. In this article, the crack propagation pro-
cess is modeled as a hidden Markov model (HMM, or
general state-space model27) since we assume that the
evolution of crack size is hidden but can be observed
through measurement data that contain noise. HMM is
widely used to model degradation processes.28,29 In this
context, filtering methods are most appropriate. Here
EKF is chosen due to its computational efficiency and
robustness. EKF gives estimates of crack size and model
parameters as well as their uncertainty (represented by
the covariance matrix). Note that identifying the uncer-
tainty structure (covariance matrix) is necessary in order
to be able to estimate the future reliability index.

For the third issue, once the state and parameters are
estimated, the future behavior of degradation can be eas-
ily predicted. A straightforward way is Monte Carlo
(MC) simulation, that is, generating samples based on
the estimated joint distribution of state-parameters given
by EKF and propagating these samples through the
Paris model for a given future time. The idea of using
MC simulation is illustrated in Figure 1. Alternatively,
we propose a linearization method called FOP method
to calculate the evolution of crack size distribution analy-
tically. One advantage of the FOP method over the MC
simulation is reduced computational cost. This advan-
tage might not matter when dealing with one individual
crack growth process in one fuselage panel, but it is sig-
nificant when applied to a fleet of aircraft comprising
hundreds or thousands of aircraft panels.
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The process of how to model the crack propagation
as a Hidden Markov Model as well as the details of the
developed EKF-FOP method were presented in sec-
tions 2, titled ‘state-space method for modeling the
degradation process’, and section 3, titled ‘prognostics
method for individual panel’ in Wang et al.20 For the
sake of completeness, the method is summarized in
Appendix 1. Only the necessary notations for the fol-
lowing narrative are presented here. The crack size and
two Paris model parameters estimated by EKF at cycle
k are denoted as âk, m̂k, and Ĉk, respectively. The pre-
dicted mean and standard deviation of the crack size
given by FOP method after h cycles beyond the current
cycle k are denoted as mk+ h and sk+ h, respectively.
The schematic diagram of EKF-FOP method is illu-
strated in Figure 2.

To verify the accuracy of the proposed FOP method
for future degradation prediction, we compare the pre-
dicted crack size distribution given by FOP method
and the one given by MC simulation for a length of
time beyond the last measurement. The comparison is
detailed in Appendix 2. We find that the predicted
mean and standard deviation with the FOP method are
within a few percent of those predicted by the MC
method; however, the FOP method is about 4800 times
computationally cheaper than MC. Moreover, we eval-
uate the performance of the EKF-FOP method by
comparing with true known RUL using five established
prognostics metrics:30 prognostics horizon (PH), a� l

accuracy, relative accuracy (RA), cumulative relative
accuracy (CRA), and convergence. The results are
reported in Appendix 3. The results show that the pro-
posed prognostics method performs well according to
all five prognostic metrics.

PdM strategies using model-based
prognostics

In this section, two variants of PdM strategies are
developed using the model-based prognostics method
introduced in the previous section. Recall that our
objective is to plan the structural airframe maintenance
considering that the engine and non-structural airframe
maintenance are always performed at the time of sched-
uled maintenance.

Maintenance assumptions

The employment of SHM system allows the possibility
of planning maintenance based on the actual health
state of the aircraft rather than on a fixed schedule.
However, as mentioned before, arbitrarily triggering
maintenance might be a bit disruptive to the traditional
scheduled maintenance, during which the engine and
non-structural airframe maintenance are carried out.
On the other hand, it makes sense to skip some sched-
uled maintenance at the early stage of the aircraft life-
cycle since the frequency of scheduled maintenance for
commercial aircraft is designed very conservatively. It
is highly likely that no panels need to be repaired at the
earlier stage of the aircraft lifecycle.

For the scheduled maintenance, the aircraft under-
goes the routine maintenance according to the schedule
Tb=T1 + (b – 1)DT, where b is the counter of mainte-
nance stops, T1 the flight cycle of the first scheduled
maintenance stop, and DT the interval between two
consecutive scheduled maintenance stops. The sched-
uled maintenance time {Tb} is defined by aircraft man-
ufacturers in concert with certification authorities.
Therefore, it is assumed to be fixed.

The SHM system is assumed to monitor the damage
state of each panel in the fuselage. The frequency of
damage status evaluation, henceforth called damage
assessment, is assumed every 100 flights, which coin-
cides with the A-check. It would make sense to carry
out the SHM-based maintenance at a frequency of 100
cycles if the sensors themselves are embedded in the air-
craft and the monitoring system is ground-based to
reduce flying weight and monitoring system cost.1

Although our application objective is a fuselage that
contains hundreds of panels, panels are treated inde-
pendently and their structural dependency is not con-
sidered. That makes sense because unlike the system
having a k-out-of-n: F structures (i.e. the system fails if
at least k of the n components fail) or the (n –k + 1)-
out-of-n: G structures (the system works if at least
(n – k + 1) of the n components work), the malfunction

Figure 1. Using Monte Carlo method to predict future
degradation.

Figure 2. Schematic diagram of EKF-FOP method.
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of one panel does not affect that of other panels. One
can refer to the literature10,14 for maintenance policy
considering structural dependency.

The critical half-crack size that will cause panel fail-
ure can be calculated by equation (3). Based on linear
elastic fracture mechanics, equating the stress intensity
factor in mode I (cf. equation (2)) to the fracture tough-
ness KIC leads to the critical crack size acr as shown in
equation (3), where pcr is a conservative estimate of the
pressure differential. Since the damage assessment is
done every 100 cycles and no intervention is performed
between 100 cycles, an additional safety threshold,
denoted as amaint, is introduced to maintain a desirable
reliability between 100 cycles. amaint is calculated to
maintain a 1E–7 probability of failure of the aircraft
between two damage assessments, that is, when a crack
size exceeding amaint is present on the aircraft, its prob-
ability to exceed the critical crack size acr in the future
100 cycles is less than 1E–7. A 1Ee-7 probability of fail-
ure is a typical reliability used in aircraft damage toler-
ance design.1,31 By repairing panels having cracks larger
than amaint, one ensures the safety of the aircraft until
the next damage assessment

acr =
KIC

A pcrr
t

ffiffiffiffi
p
p

� �2

ð3Þ

Repair policy for individual crack propagation process

The EKF-FOP method introduced in the previous sec-
tion is used to develop the repair policy. According to
EKF-FOP method, when measurement data are avail-
able up to the kth cycle, the EKF is used to estimate the
crack size and the Paris model parameters at the kth
cycle. Based on the estimated crack size and material
parameters, that is, âk, m̂k, and Ĉk, the FOP method is
used to predict the evolution of the crack size in the
next h cycles. As per EKF-FOP, the distribution of the
crack size is a normal distribution. The mean and stan-
dard deviation of the crack size at k + h, mk+ h and
sk+ h, are calculated by the FOP method. Based on the
predicted crack size distribution, we calculate the 0.95
quantiles, denoted by aq

aq(h)=F�1(0:95jmk+ h,sk+ h) ð4Þ

in which F21 is the inverse cumulative distribution
function of the normal distribution with mean
and standard deviation mk+ h and sk+ h, respectively.
If aq . amaint, the panel is considered in danger and
should be repaired. Otherwise, this panel is left unat-
tended. This repair decision is denoted by d, which has
a binary value

d=
0 if aq4amaint

1 if aq . amaint

�
ð5Þ

The underlying meaning behind the repair policy is
that if a panel has a crack with the size âk, the

probability that this crack grows greater than the
threshold amaint at the next scheduled maintenance is
less than 5%. Note that the level of the quantile (95%
here) controls the conservativeness of the estimation
and can be seen as a tuning parameter of the strategy.
This conservativeness level is not, however, intended to
guarantee the safety of the aircraft. The safety of the
aircraft will be guaranteed by an additional branch of
the maintenance strategy, which will be described later.
Through an empirical study, we found that the cost of
the proposed maintenance strategies is relatively insen-
sitive to the value of the quantile, so in the rest of the
paper it is fixed to 95%. Note also that the forward
prediction interval h varies depending on different stra-
tegies and can be seen as another tuning parameter of
the strategy. This tuning parameter was found to have
more impact on cost, and its tuning will be addressed
in the subsequent sections.

PdM

The objective of PdM is to decide on maintenance
according to the actual condition of an aircraft rather
than based on a fixed maintenance schedule. Figure 3
illustrates the flowchart of PdM. In this strategy, dam-
age assessment is implemented every 100 cycles. At
each damage assessment, the EKF is used to calculate
the estimated crack size of all the panels in an aircraft.
If the largest crack size exceeds amaint, an unscheduled
maintenance is asked immediately and the aircraft is
sent to the maintenance hangar. The panel with the
largest crack size triggering the unscheduled mainte-
nance is called the critical panel. At an unscheduled
maintenance stop, besides repairing the critical panel,
other panels may be also repaired according to the
repair policy presented in the previous subsection to
prevent frequent unscheduled maintenance. More spe-
cifically, for the ith panel, its crack size distribution in
the next h= IPdM cycles is predicted and the 0.95 quan-
tile of the predicted crack size, denoted as aiq(IPdM), is
calculated. The panels whose aiq(IPdM) is greater than
amaint are repaired. The value of forward prediction
interval IPdM can be optimized. Following an empirical
study with different IPdM values, we set IPdM=23,000
cycles which was found to lead to the lowest mainte-
nance costs.

PdM-skip

Despite the advantage of PdM, it also has some draw-
backs. The PdM applies only to structural airframe
maintenance. The engine and non-structural airframe
maintenance are always implemented at scheduled
maintenance. PdM that triggers unscheduled mainte-
nance may disturb the original scheduled maintenance.
In addition, having the structural airframe maintenance
at the same time with the engine and non-structural
maintenance would tend to reduce cost. Therefore, it
would be beneficial that the traditional scheduled

Wang et al. 5



maintenance works in tandem with the unscheduled
maintenance. PdM-skip is developed to meet this goal
that leverages the strength of both scheduled mainte-
nance and PdM.

The PdM-skip process is described in Figure 4. The
damage assessment is carried out at scheduled mainte-
nance time as well as every 100 cycles. At each scheduled
maintenance stop, for an aircraft, there are two decisions
levels. The first level is a maintenance decision that deci-
des to skip or to trigger the current scheduled mainte-
nance for the aircraft. The second level decision is a
repair decision regarding which panels should be repaired
once the current scheduled maintenance is triggered.

Specifically, the maintenance decision is implemen-
ted as follows. At each scheduled maintenance, before
the aircraft goes to the maintenance hangar, for the ith
panel, its crack size distribution after next h=DT

cycles is predicted (i.e. the distribution at the next
scheduled maintenance) and the 0.95 quantile of the
predicted crack size distribution, denoted as aiq(DT), is
calculated. If there is no panel whose aiq(DT) exceeds
amaint, the current scheduled maintenance is skipped.
Otherwise, the current scheduled maintenance is trig-
gered and the aircraft is sent to the maintenance
hangar. The objective of setting the forward prediction
interval h=DT is to avoid unscheduled maintenance
between two consecutive scheduled maintenance stops.

For an aircraft sent to the hanger, the repair deci-
sion is implemented as follows for all the panels. For
the ith panel, its crack size distribution until the end
of life (EOL) of the aircraft is predicted. The forward
prediction interval h equals to the aircraft lifetime
kEOL minus the current cycle k, i.e., h= kEOL – k. The
0.95 quantile of the predicted crack size distribution,

Figure 3. Flowchart of PdM strategy for an aircraft.
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denoted as aiq(kEOL � k), is calculated. All the panels
whose aiq(kEOL � k) exceed amaint are repaired.

If a crack that is missed at the time of scheduled main-
tenance exceeds amaint between two consecutive scheduled
maintenance stops, PdM-skip will recommend mainte-
nance to be performed immediately. This calls for
unscheduled maintenance, which is costlier but guaran-
tees safety. At an unscheduled maintenance stop, we pre-
dict the crack size distribution in the future Ic cycles for
all panels and then decide on the ones that need to be
repaired according to the repair policy. Ic is set to be the
number of cycles from current to the scheduled mainte-
nance after the next one. This is intended to be able to
skip the next scheduled maintenance and not have an
unscheduled maintenance soon after. For example, if the
scheduled maintenance is every 4000 cycle and an
unscheduled maintenance occurs at the 43,000th cycle, Ic
will be set to 5000 in order to have the next maintenance
at 48,000 cycles by skipping the one at 44,000 cycles.

Cost model

The aircraft maintenance cost is composed of engine
maintenance cost and airframe maintenance cost. The
airframe maintenance cost is further divided into

structural airframe and non-structural airframe mainte-
nance. In this article, we focus on structural airframe
maintenance cost. Note that the engine and non-
structural maintenance are always performed at the
time of scheduled maintenance interval. The cost of the
structural airframe maintenance performed by tradi-
tional NDI or DVI technologies at the time of a sched-
uled maintenance stop consists of two parts, the setup
cost c0 and the repair cost. The repair cost equals the
cost of repairing one panel, denoted by cs, multiplied by
the number of repaired panels. c0 is assumed US$1.44
and cs is US$ 0.25 million as per Kundu.32

In the PdM and PdM-skip, the damage inspection is
performed by the on-board SHM system; hence, at the
scheduled maintenance, the setup cost will be only a
fraction of the cost of the traditional scheduled mainte-
nance. This fraction is denoted as KSHM and is set to be
0.7.1 The setup cost at an unscheduled structural air-
frame maintenance trip is higher due to less advance
notice, as well as the fact that the structural airframe
maintenance and the other maintenance (engine, non-
structural) are not done at the same time. A factor Kun

is set to denote the higher setup cost incurred for
unscheduled maintenance and Kun=2 is taken.1 The
cost of structural airframe maintenance is thus given as

Figure 4. Flowchart of PdM-skip strategy.
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Cmain =NsKSHMc0 +NusKunc0 + csNrp ð6Þ

where Ns is the number of triggered scheduled mainte-
nance stops, Nus is the number of unscheduled struc-
tural maintenance trips, and Nrp is the number of
repaired panels during the whole lifetime of an aircraft.

Numerical examples

Our application objective is a typical short-range com-
mercial aircraft with a typical lifetime of 60,000 flight
cycles. We consider a fleet of 100 such airplanes with
500 fuselage panels per aircraft. Each panel is assumed
to have one initial crack, with initial crack size follow-
ing a lognormal distribution. Traditionally for this type
of aircraft, the first maintenance is performed after
20,000 flight cycles and subsequent maintenance is
every 4,000 cycles until the EOL, for a total of 10 sched-
uled maintenance stops in 60,000 cycles, as shown in
Figure 5.

We evaluate the performance of PdM/PdM-skip by
comparing with two other strategies. The first strategy
is the traditional scheduled maintenance, whose sched-
ule is shown in Figure 5. At each scheduled stop, the
aircraft is taken into a hangar and the inspection of all
panels is done using techniques like NDI or DVI.
Cracks detected with a size greater than a threshold are
repaired. The threshold is determined to guarantee a
desirable level of probability of failure between two
scheduled maintenance stops and is fixed for all panels
in the fleet. Therefore, this strategy is threshold based.

The second strategy has two variants due to
Pattabhiraman et al.,1 CBM and CBM-skip, in which
the damage assessment is done every 100 flights using
SHM. Details about CBM and CBM-skip are given in
Appendix 4. In CBM, at each damage assessment, if
the largest crack size in an aircraft exceeds amaint,
unscheduled maintenance is triggered immediately and
all the panels with a crack size larger than a repair
threshold arep-CBM are repaired.

In contrast, CBM-skip takes into account the sched-
uled maintenance but aims at skipping some unneces-
sary early scheduled maintenance stops. Specifically, at
each scheduled maintenance stop, if there is no crack
size exceeding a threshold ath-skip, then the current
scheduled maintenance is skipped. Otherwise, the cur-
rent scheduled maintenance is triggered and the panels
with crack size greater than a repair threshold arep-skip
are repaired. If there is a crack that grows beyond
amaint between two consecutive scheduled maintenance

stops, then an unscheduled maintenance stop is trig-
gered at once, and all panels with crack size greater
than arep-skip are repaired.

CBM and CBM-skip are also threshold-based since
the thresholds are the same for the entire fleet. Since
our work is an extension on the top of the work of
Pattabhiraman’s, we seek to compare the threshold-
based maintenance proposed by Pattabhiraman and
our prognostics-based maintenance. Note that in CBM
and CBM-skip, the reliability is controlled by the safety
threshold amaint, while arep-CBM, arep-skip, and ath-skip are
tuning parameters affecting the cost that can be opti-
mized. The same value of amaint is used in CBM, CBM-
skip, PdM, and PdM-skip, that is to say, all strategies
are compared under the same safety level.

Besides the strategies themselves, another significant
difference between Pattabhiraman’s work and our
work is the treatment of the pressure p. Pattabhiraman
treated it as a constant while we have taken into
account its uncertainty during the crack propagation
and modeled it as a normal random variable. In order
to maintain consistency and to make our work compa-
rable, we introduce the uncertainty of p into
Pattabhiraman’s strategies. Accordingly, the thresholds
used in CBM/CBM-skip are modified to adapt to the
introduction of uncertainty on p.

Input data

The values of the geometry parameters defining the fuse-
lage (i.e. fuselage radius, panel thickness) used here are
typical of short-range commercial aircraft. These values
are time-invariant. Recall that we define a correction
factor A for stress intensity factor, which accounts for
the fact that the fuselage is modeled as a hollow cylinder
without stringers and stiffeners. The numerical values
for the geometry parameters have been chosen from the
literature1 and are reported in Table 1.

The values of thresholds are determined as follows.
The critical crack size acr is calculated by equation (3)
as acr=59.6mm. The safety threshold amaint is calcu-
lated to maintain a 1E–7 probability of panel failure
between two damage assessments (every 100 cycles)
and amaint=47.4mm. To make CBM and CBM-skip
as cost-efficient as possible, it is necessary to find the
optimal value of arep-CBM, and the optimal combination
of arep-skip and ath-skip. For this purpose, we carried out
an empirical trade-off study by considering a grid
within the range [2, 15]mm for arep-CBM, [2, 12]mm for
arep-skip, and [2, 15]mm for ath-skip, all with an incre-
ment of 0.1mm. Based on the evaluations of these grid
points, we found that the values arep-CBM=4.8mm,
arep-skip=4.0mm, and ath-skip=7.0mm lead to the
lowest maintenance cost according to the cost model in
equation (6).

For simulating the maintenance process of a fleet,
we consider two types of uncertainties that are different
in nature, that is, aleatory and epistemic uncertainty.33

Aleatory uncertainty represents the intrinsic variability

Figure 5. Scheduled maintenance, cycles represent the
number of flights.
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among populations that cannot be reduced by further
data. In our context, it can be interpreted as follows.
Even if the panels are made of the same materials, the
material parameters of different panels may not be the
same. In addition, due to the intrinsic variability in
crack initiation, each panel has different initial crack
sizes. In this study, the aleatory uncertainty is modeled
by assuming that the initial crack size a0 and the mate-
rial parameters follow some prescribed distributions.
Specifically, the initial crack size a0 is assumed lognor-
mally distributed while m and log10C are assumed to
follow a multivariate normal distribution with a nega-
tive correlation coefficient, based on the litera-
ture.22,34,35 The prescribed distributions are reported in
Table 2. Before starting the simulation, 100 3 500
samples of initial crack size and the model parameters
are randomly drawn from their respective distributions
and assigned to each panel. Specifically, the initial
crack size is generated from the lognormal distribution
while the two model parameters are generated from the
multivariate normal distribution and denoted as a0(i),
m(i) and log10C(i) (i= 1, 2,., 50,000), respectively.
m(i) and log10C(i) are regarded as the ‘‘true but
unknown’’ material parameters of an individual panel
(here ‘‘unknown’’ means the material parameters con-
tain epistemic uncertainty, which will be discussed
next). The 50,000 generated samples of the materials
parameters are illustrated in Figure 6.

The aleatory uncertainty relates to the variability in
the population of the panels. Now we discuss the crack
growth process in each individual panel. For an individ-
ual panel, its material parameters, m(i) and log10C(i),
are not random in nature but deterministic. However,
due to lack of knowledge, they are unknown or poorly
known. This kind of uncertainty is epistemic uncer-
tainty and can be reduced by collecting more relevant
data. In our case, the material parameters are estimated
from noisy measurements by the EKF algorithm, and
furthermore, the estimation uncertainty reduces as time
evolves due to more data being available.

The measurement data used in this article are simu-
lated as follows: (1) using a0(i), m(i), and log10C(i)
(i= 1, 2,., 50,000) to compute the true crack size
based on the Paris model and (2) adding the following
measurement noise to the true crack size: Gaussian
noise with mean zero and standard deviation
sigma=0.03E–3 (10% coefficient of variation with
respect to the mean of initial true crack size in Table 2,
that is, 0.3E–3). The measurements are collected every
100 cycles, being consistent with the interval of damage
assessment. At each time of damage assessment, the
EKF is applied to estimate the crack size and the Paris
model parameters. We choose Gaussian noise based on
its wide use to simulate a realistic noisy signal. It is a
good assumption for the process or system that is sub-
ject to the central limit theorem.36 In the absence of
information indicating otherwise, Gaussian noise is
thus used to model measurement noise under the

assumption of numerous sources of uncertainty and the
central limit theorem.

It is difficult to get actual data for aircraft fuselage
panels since the widespread deployment of SHM sys-
tems in commercial aircraft is still at the research
stage. Tests have been done during the last decades
by airlines as well as research centers. The major air-
craft operators, regulators, and technology suppliers
have been striving for years to standardize SHM inte-
gration and certification requirements to mature sys-
tem for widespread use. Therefore, at this stage, it is
difficult to get real data to be used directly in our

Table 1. Aircraft geometry parameters.

Description Notation Value

Fuselage radius r 1.95 m
Panel thickness t 2e–3 m
Correction factor A 1.25

Table 2. Uncertainties on a0, [m, C].

Description Notation Type Value

Initial crack
size (m)

a0 Lognormal LnN(0.3e–3,0.08e–3)

Paris model
parameters

[m, C ] Multivariate
normal

N (mm, sm, mC, sC, r)

Mean of m mm – 3.6
Mean of C mC – Log10(2e–10)
CC of m
and C

r – 20.8

SD of m sm – 3% COV
SD of C sC – 3% COV

CC: correlation coefficient; SD: standard deviation; COV: coefficient of

variation.

Figure 6. Illustration of the population of {m C}.
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approach. Nevertheless, our work is built on realistic
assumptions based on existing studies on fatigue
crack propagation and can be used readily when mea-
surements are available.

To summarize, we consider a fleet of 100 airplanes
with each airplane having 500 fuselage panels. The life-
time of each aircraft is assumed to be 60,000 cycles.
Each panel is assumed to have one crack. EKF-FOP
method is employed for each individual crack growth
process in each panel. The developed two PdM strate-
gies, PdM and PdM-skip, as well as the scheduled
maintenance, CBM and CBM-skip are applied to the
fleet until the end of the life of the aircraft. The average
number of repaired panels, the average number of
maintenance stops, and the average structural airframe
maintenance cost of the fleet under each strategy are
obtained and compared.

Results and discussion

We simulate six processes, that is, no maintenance
intervention, scheduled maintenance, CBM, CBM-skip,
PdM, and PdM-skip. It should be noted that in the ‘‘no
maintenance intervention’’ process, the failure of a
panel is defined such that the crack size in that panel
exceeds acr within the lifetime of the aircraft. The com-
parison results are given in Table 3, in which the sec-
ond row gives the number of total failures (for the case
of no maintenance intervention) or the number of
repaired panels (for the five maintenance strategies)
over the entire fleet. The third row presents the number
of ‘‘unnecessarily repaired’’ panels, that is, panels that
would not fail during the whole life but are nevertheless
(unnecessarily) repaired according to the maintenance
strategy. The fourth to sixth rows give the minimal, the
maximal, and the average number of maintenance
stops among the 100 aircraft, respectively. The number
in the parentheses in the sixth row is the average num-
ber of unscheduled maintenance stops in CBM-skip
and PdM-skip. Note that for CBM and PdM, all main-
tenance stops are unscheduled. The seventh to ninth
rows give the minimal, the maximal, and the average

number of repaired panels among the 100 aircraft. The
last row gives the average cost of structural airframe
maintenance over the 100 aircraft in each strategy.

It can be seen that if one lets cracks grow continu-
ously without maintenance intervention, 692 panels
over the whole fleet eventually fail. All of these 692
panels are repaired in each maintenance strategy prior
to their failure. In other words, all maintenance strate-
gies can ensure safety. Each maintenance strategy has a
different extent of ‘‘unnecessary repair.’’ The number of
unscheduled maintenance stops is zero in PdM-skip,
which indicates that all maintenance occurs at the times
of scheduled maintenance stops and no unscheduled
maintenance is requested. This does not mean that there
will never be any, but it is a rare event that we do not
capture with our fleet size.

The results of threshold-based maintenance strate-
gies (i.e. scheduled maintenance, CBM, and CBM-skip)
show that CBM and CBM-skip reduce the number of
maintenance stops as well as the number of repaired
panels compared to the traditional scheduled mainte-
nance, thus reducing the cost significantly. CBM has
fewer maintenance stops than CBM-skip (1.9 vs 2.2).
However, since CBM is designed independently with-
out taking into account the scheduled maintenance
(Figure 5), all CBM stops are unscheduled maintenance
and are more costly. In contrast, most of the mainte-
nance stops of CBM-skip occur at the scheduled main-
tenance. Only very few unscheduled maintenance (0.06
on average) are required. In addition, CBM repairs
slightly more panels than CBM-skip because CBM has
a larger repair threshold (arep-CBM=4.8mm vs arep-
skip=4mm). Therefore, CBM results in a higher main-
tenance cost than that of CBM-skip.

In order to analyze the gains of using prognostics-
based maintenance strategies (PdM and PdM-skip), we
first discuss the conservativeness. There are two differ-
ent contributions to the conservativeness, the inter-
aircraft variability and intra-aircraft variability. The
former is related to the case when the worst aircraft in
the fleet may have a large crack size much sooner than
the average, while the latter is related to the case when

Table 3. Comparison of different strategies.

No maintenance Scheduled CBM CBM-skip PdM PdM-skip

Panels failed/repaired over
the entire fleet

692 Failures 1403 Repaired 1312 Repaired 1238 Repaired 789 Repaired 798 Repaired

Unnecessary repairs – 711 620 546 87 106
Minimal no. of
maintenance stop

– 10 1 1 1 1

Maximal no. of maintenance stop – 10 3 4 2 2
Avg. no. of maintenance stop – 10 1.9 2.2 (0.06) 1.0 1.0 (0)
Minimal no. of repaired panels – 5 2 3 2 2
Maximal no. of repaired panels – 21 26 26 16 16
Avg. no. of repaired panels – 14.03 13.12 12.38 7.89 7.98
Avg. cost of structural
maintenance (MUS$)

17.9 8.92 5.50 4.88 3.05

CBM: condition-based maintenance.
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different panels in one aircraft have different crack sizes
and crack growth rates. The number of unnecessary
repairs allows comparing the conservativeness level of
the various strategies.

Scheduled maintenance is clearly the most conserva-
tive since it needs to cover a very conservative crack size
and crack growth rate both over the fleet and within an
individual aircraft. In order to decrease the cost, it
makes sense to decrease the conservativeness level and
the various maintenance strategies reduce the conserva-
tiveness to a different extent.

CBM and CBM-skip can address the inter-aircraft
variability as well as the intra-aircraft variability related
to different crack sizes, but they do not cover intra-
aircraft variability related to different crack growth
rates. Note that to quantify the conservativeness gains
from CBM over the scheduled maintenance, we need to
have a comparable number of maintenance stops; oth-
erwise, a higher number of maintenance stops would be
traded off for a lower number of repaired panels.
Accordingly, we set two stops for scheduled mainte-
nance (closer to the number of stops in CBM 1.9) with
a 20,000 cycles interval, that is, the first maintenance
stop is at 20,000th and the second is at 40,000th cycle.
In this case, the repair threshold decreases to a very
small value 0.8E23m to maintain a reliability of 1E27
in 20,000 cycles for the entire fleet and the number of
repaired panels goes up to 8990.

The conservativeness is further reduced by perform-
ing prognostics, which is the main point we want to
make in this article. We proposed two prognostics-
based maintenance strategies (PdM and PdM-skip);
both address the two contributions to the overall con-
servativeness, and thus decrease simultaneously the
number of maintenance stops and repaired panels. On
one hand, by setting a long ‘‘forward prediction inter-
val’’h, the average number of maintenance stops of the
fleet in both PdM and PdM-skip reduces to nearly one.
On the other hand, due to forecasting the crack growth
trend, the number of unnecessary repaired panels is also
significantly reduced compared to CBM and CBM-skip
(reduction by more than an order of magnitude over
CBM and CBM-skip). This is because the proposed
PdM considers the crack growth rate for each individ-
ual panel, which could not be done in condition-based
approaches. The reduction of both of these aspects
results in a considerable cost saving over CBM and
CBM-skip, which shows the value of using prognostics
in the maintenance strategy.

Note that here the forward prediction interval is fixed
as 23,000 cycles for PdM and fixed as the number of
cycles until EOL for PdM-skip (as a reference, in PdM-
skip, earliest time an aircraft in the fleet demands main-
tenance is at the 36,000th cycle). Therefore, the predic-
tion interval for this aircraft is 24,000 given that the
lifetime of aircraft is 60,000 flight cycles. On one hand,
a long prediction interval tends to repair more panels at
one stop, thus decreasing the frequency of asking for
maintenance stops. In fact, we see from Table 3 that the

average number of maintenance stops reduces to nearly
one for both PdM and PdM-skip. On the other hand,
the longer the forward prediction interval is, the more
prediction uncertainty will be involved, resulting in an
increase of the number of repaired panels. In summary,
a longer prediction interval will reduce the number of
maintenance stops while increasing the number of
repaired panels, and vice versa. For example, based on
our experience, when the forward prediction interval in
PdM-skip decreases to 4000, the average number of
maintenance stops increases to 3.1 while the average
number of repaired panels decreases to 7.62 (i.e. 762
repaired panels for the whole fleet). Therefore, in reality,
the number of maintenance stops and the number of
repaired panels can be traded off by tuning the predic-
tion interval, depending on the cost of one maintenance
stop and the cost of repairing one panel. If the cost of
one maintenance stop was much higher than that of
repairing one panel, one would tend to repair more
panels once a maintenance stop is triggered. In this case,
it would be cheaper to use a long prediction interval in
the trade off neyween the number of repaired panels
and the number of maintenance stops. In contrast, if the
cost of repairing one panel was more significant than
that of one maintenance stop, then a shorter prediction
interval would make more sense.

We now discuss further the two prognostics-based
strategies. PdM is designed completely independently
without considering the time of scheduled maintenance
(Figure 5). All the stops were unscheduled maintenance
that occurred outside the time of scheduled mainte-
nance. In PdM-skip, all the maintenance stops occurred
during one of the 10 scheduled maintenance stops. The
results indicate that PdM-skip fits well the objective
that it ensures as much as possible that maintenance
activities are carried out during the time of scheduled
maintenance and this turns out indeed to be more eco-
nomical from a maintenance cost point of view.

Figures 7–9 illustrate the statistical character of the
number of failed/repaired panels over the entire fleet,
that is, 100 3 500 panels. The histogram of the failure

Figure 7. Number of panels that fail within the range of each
bin in the case of no maintenance process.
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time in the case of no maintenance intervention is given
in Figure 7. The numbers in the x-axis are the center of
the bin and the bin width is 2000 cycles. For example,
the first bin means that there are two panels whose fail-
ure time are within the range of [36000,38000]. We see
that most failures occur in the second half of the life-
time and the number of failed panels gradually
increases toward the EOL.

Figure 8 compares the scheduled maintenance,
CBM-skip, and PdM-skip strategies in terms of the
number of repaired panels at scheduled stops (recall
that there are 10 scheduled stops, see Figure 5). The
first three scheduled stops are not plotted because no
panels were repaired at the first three stops in all strate-
gies. This shows that PdM-skip reduced by nearly 80%
the ‘‘unnecessary repair’’ compared to CBM-skip, since
PdM-skip decreases the conservativeness level by doing
prognostics for each panel. The panels that are repaired
in CBM-skip may not be necessary to be repaired in
PdM-skip due to their slow growth rates, thus not
threatening safety. One may note that PdM-skip
repaired more panels than CBM-skip in the earlier
stage of the aircraft lifetime. It is because once the
maintenance is requested, PdM-skip performs a long
horizon prediction. Therefore, the panels that might
exceed the threshold in the later stage are repaired in
advance. Once a panel is repaired, the crack is assumed
to re-grow from a small initial crack size. The probabil-
ity that this panel is repaired again during the aircraft
lifetime is negligible.

Figure 9 compares CBM and PdM in terms of the
number of repaired panels within the time range of each
bin. The figure shows that PdM significantly reduces
the number of repaired panels, and most of the panels
are repaired at an earlier period of the aircraft lifetime
due to a long forward prediction interval. CBM repairs
many cracks slightly larger than the repair threshold
near the EOL, but actually these panels do not affect
safety. In contrast, PdM reduces this ‘‘unnecessary
repair’’ by considering the future reliability.

In order to give more insight of the dynamics of the
six processes, i.e., no maintenance, scheduled mainte-
nance, PdM-skip, CBM-skip, PdM, and CBM, we take
the simulation results of aircraft no.30 as an example.
The results are illustrated in Figure 10. The specific
cycle at which one or more specific panels are repaired
are shown in Figure 10. The symbol ‘‘#’’ represents the
panel index. The numbers in parentheses along the x-
axis in subplots 1, 5, and 6 are the cycles corresponding
to the failure/repair in the process of no maintenance
intervention, CBM, and PdM, respectively. For exam-
ple, in subplot 1, Panel 487 fails at 49,600th cycle. The
red solid dots and the green solid squares along the y-
axis represent the ‘‘actually failed’’ panels and the
‘‘unnecessarily repaired’’ panels, respectively. It can be
seen that all the ‘‘actually failed’’ panels shown in the
first subplot are repaired in all other maintenance pro-
cesses prior to their failure, that is to say, all mainte-
nance strategies ensure safety. CBM wastes many

Figure 8. Comparison of maintenance strategies in terms of
the number of repaired panels at scheduled maintenance stops.
The first three scheduled stops are not plotted.

Figure 9. Comparison of CBM and PdM in terms of number of
repaired panels within the time range of each bin.

Figure 10. Different processes for aircraft #30.
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panels near the EOL while PdM-skip and PdM have
the least unnecessary repair.

In order to further assess the effectiveness of
prognostics-based maintenance over threshold-based
maintenance in different situations, we also studied the
six maintenance strategies while considering a smaller
panel-to-panel uncertainty, that is, a smaller uncer-
tainty in material properties {m, C} and in the pressure
differential p. This was implemented by reducing the
coefficient of variance of {m, C} and p in Table 2 to
0.5% while keeping other values unchanged. We found
that prognostics-based strategies (PdM and PdM-skip)
gain slightly over the threshold-based ones (CBM and
CBM-skip) in terms of repaired panels in the small
uncertainty case, while they more significantly outper-
form the threshold-based strategies when larger uncer-
tainties are present. This is caused by the different
philosophies of these two types of strategies. The
prognostics-based strategies repair a panel based on its
individual crack growth behavior while the threshold-
based ones have the same repair threshold for all
panels. Specifically, when the uncertainties in material
property parameters {m, C} and in pressure p are small,
both the panel-to-panel variability and the variability
present in the crack propagation process are small,
leading the cracks in the panels to have similar propa-
gation behavior. In this situation, the two types of stra-
tegies have similar performance. In contrast, when large
uncertainties are present in {m, C} and p, the cracks
have large variability in propagation rate among the
panel population. In the threshold-based strategies, due
to the constant repair threshold, all panels with a crack
size greater than the repair threshold are repaired, even
if some of them have a very low growth rate and are
not likely to fail until the aircraft’s EOL. Prognostics-
based strategies have an advantage in this situation
since they treat the panels individually. Combined with
the crack size and the material property parameters of
each panel at the current time, PdM/PdM-skip predicts
its crack growth trajectory in a future period and makes
the decision of whether to replace this panel based on
this predicted behavior.

Conclusion

In the context of fatigue crack growth in fuselage
panels, where material properties and initial crack sizes
are unknown, and the cabin pressure differential is ran-
dom, we considered a newly developed model-based
prognostics method. Based on that, we proposed two
prognostics-based strategies for the maintenance of air-
craft fuselage panels, PdM and PdM-skip. PdM and
PdM-skip are compared with the traditional scheduled
maintenance and two other threshold-based strategies,
that is, CBM/CBM-skip proposed in Pattabhiraman et
al.,1 through simulated application to a fleet of short-
range commercial aircraft. A cost model is used to
quantify and compare the cost-effectiveness of different

strategies. It is found that PdM/PdM-skip gained signif-
icantly over scheduled maintenance and CBM/CBM-
skip because future reliability is calculated individually
for each panel, and incorporated into maintenance deci-
sion-making. In comparing the two prognostics-based
strategies, all PdM maintenance stops occurred as
unscheduled maintenance, which is more expensive due
to less advance notice, while almost all PdM-skip main-
tenance stops happened at scheduled maintenance.

Note that due to the Gaussian assumption of the
EKF, the crack size is assumed normally distributed
throughout all the stages, which may not always be
accurate. This assumption could be relaxed by choosing
some non-Gaussian filter methods instead of the EKF.
The FOP method could also be extended to adapt to
the non-Gaussian assumption on crack size distribution.

Further note that the proposed maintenance strate-
gies involve some user-defined parameters that affect
their final cost-effectiveness. We carried out basic
trade-off studies to decide on the values of these para-
meters but more comprehensive approaches could be
considered as part of future work: (1) within the current
framework, all these parameters could be optimized
simultaneously for minimum average maintenance cost
over the entire fleet and (2) the framework could be
reformulated to consider only parameters that have
objectively set values. For example, the maintenance
approaches could be reformulated such as to only
depend on the costs of scheduled and unscheduled
maintenance. The cost ratio of scheduled over unsched-
uled maintenance turns out to be a major driver of the
maintenance decisions. A first study aimed at defining
optimal prognostics-based strategies for a given cost
ratio has been considered in Wang et al.20 using simpler
maintenance models. Extending such strategies to the
more complex maintenance models considered here
would also represent an interesting line of future work.
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Appendix 1

Model the degradation process as a hidden Markov
model

The Euler method is used to solve the differential equa-
tion of equation (1) with a discrete step size of one. The
discrete Paris model is written in a recursive form given
in equation (7)

ak = ak�1 +C A
pk�1r

t

ffiffiffiffiffiffiffiffiffiffiffiffi
pak�1
p� �m

= g(ak�1, pk�1)

ð7Þ

We model the pressure differential p as a random
variable that varies at every flight cycle. At cycle k, p is
modeled as

pk = �p+Dpk ð8Þ

where �p is the average pressure differential and Dpk is
the pressure disturbance. The disturbance around the
average pressure is modeled as a normally distributed
random variable with zero mean and variance sp

2.
Since uncertainty in the pressure differential is gener-
ally small, a mean-value first-order second moment
(MVFOSM) approach37 is used here. Then equation
(7) can be written as

ak = g(ak�1, �p)+
∂g(ak�1, �p)

∂p
Dpk�1 ð9Þ

in which (∂g(ak�1, �p)=∂p)Dpk�1 is seen as the additive
process noise. By considering that �p is a constant, equa-
tion (9) becomes

ak = f(ak�1)+wk�1 ð10Þ

where f(ak�1)= g(ak�1, �p) and

wk�1 = (∂f(ak�1)=∂p)Dpk�1 ð11Þ

Given that Dpk�1 is normally distributed and
∂f(ak�1)=∂p is constant, the additive process noise wk

follows a normal distribution with mean zero and var-
iance Qk, which is calculated analytically by equation
(12)

Qk =
∂g(ak, �p)

∂p
sp

� �2

= Cm(Ar=t)m(�p)m�1(pak)
m=2sp

� �2
ð12Þ

The noisy measurement data are simulated using
equation (13), in which ak is the crack size at kth cycle
and vk the measurement noise

zk = ak + vk ð13Þ

Equations (10) and (13) are the state equation and
the measurement equation of the hidden Markov
model, respectively. In terms of state-parameter estima-
tion using extended Kalman filter (EKF), it defines the
parameter vector as an additional state variable and
artificially appends it onto the true state vector to form
a single joint state vector and estimate the state and
parameters simultaneously. In the aforementioned
crack growth model, m and C are the unknown para-
meters that need to be estimated. Therefore, a two-
dimensional parameter vector is defined as

Y= m,C½ �T ð14Þ

Appending Y to the state variable, the augmented
state vector is then defined in equation (15)

xau = a m C½ �T ð15Þ

EKF is used as a black box and the details of the
algorithm will not be presented here. Readers could
refer to the literature38,39 for a general introduction and
to Wang et al.40 for its implementation to fatigue dam-
age state estimation. By applying EKF, at cycle k, the a
posteriori estimation of the augmented state vector,
denoted by xau, k, and the corresponding covariance
matrix Pk can be obtained.

Details of first-order perturbation method

Suppose the current flight cycle is S. According to the
EKF, the state vector xau,S is multivariate normally dis-
tributed with mean x̂au,S and covariance PS, presented as

xau,S;N(x̂au,S,PS) ð16Þ

Let us define

fL(a,m,C, p)=C A
pr

t

ffiffiffiffiffiffi
pa
p� �m

ð17Þ

The Paris model is then written as

ak = ak�1 + fL(ak�1,m,C, pk�1) ð18Þ

Note that the time index k starts from S + 1 and
goes up to S + h, where h is the number of flight cycles
forward one wants to predict. In the stochastic process,
the ‘‘expected trajectory’’ is the particular solution
when the involved random variables are taken as their
expected values. For the problem discussed at hand, the
‘‘expected trajectory’’ of the crack size is the sequence
f�akjk=S+1,S+2, . . . ,S+ hg obtained as a solu-
tion of equation (19), with zero process noise and with
the expected value �aS, �m, �C, and �p as the initial values
of the corresponding random variables. Note that the
symbol ‘‘�’’ denotes the expected value of a random
variable

�ak = �ak�1 + fL(�ak�1, �m, �C, �p) ð19Þ
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Due to the presence of uncertainties and the random
noise, ak, m, C, and pk are modeled by adding a pertur-
bation to their expected values. Let the symbol ‘‘D’’
denotes the perturbation; then ak, m, C, and pk can be
written as

ak = �ak +Dak ð20Þ
m= �m+Dm ð21Þ
C= �C+DC ð22Þ
pk = �p+Dpk ð23Þ

Dpk is related to the cabin pressure differential that
varies from cycle to cycle while Dm and DC are uncer-
tainties related to panel materials and thus do not vary
with time. The available information at k=S, as given
in equations (24) and (25), will be used as the initial
condition in the following derivation

�aS, �m, �C½ �T = âS, m̂S, ĈS

� 	T ð24Þ
DaS,Dm,DC½ �T;N(033 1,PS) ð25Þ

By subtracting equation (19) from equation (18), the
perturbation of ak is obtained as

Dak =Dak�1 + fL(ak�1,m,C, pk�1)� fL(�ak�1, �m, �C, �p)

ð26Þ

The first-order approximation is used. Defining
lk�1 = ½�ak�1, �m, �C, �p�, which is a known vector, equa-
tion (26) reduces to

Dak =Dak�1 +
∂fL(lk�1)

∂a
Dak�1 +

∂fL(lk�1)

∂m

+
∂fL(lk�1)

∂C
DC+

∂fL(lk�1)

∂p
Dpk�1 ð27Þ

The following substitution is done to simplify equa-
tion (27)

Lk�1 =1+
∂fL(lk�1)

∂a
ð28Þ

Mk�1 =
∂fL(lk�1)

∂m
ð29Þ

Nk�1 =
∂fL(lk�1)

∂C
ð30Þ

wL
k�1 =

∂fL(lk�1)

∂p
Dpk�1 ð31Þ

in which wL
k�1 is the random noise with mean zero and

standard deviation sk–1, which can be calculated by
equation (32). Here, wL

i and wL
j (i 6¼ j) are considered

independent

sk�1 =
∂f(lk�1)

∂p
sp ð32Þ

Then equation (27) becomes

Dak =Lk�1Dak�1 +Mk�1Dm+Nk�1DC+wL
k�1 ð33Þ

The following derivation is for calculating the uncer-
tainty structure of Dak. Rewrite equation (33) as the

function of the initial value, that is, [DaS Dm, DC], then
after k time iterations, Dak can be written as equation
(34), in which we use Ak, Bk, and Dk to represent the
coefficient of DaS, Dm, and DC, respectively, and Ek to
denote the noise term

Dak =AkDaS +BkDm+DkDC+Ek ð34Þ

In equation (34), DaS, Dm, and DC are stationary
random variables whose probability distributions do
not change when shifted in time. Ak, Bk, and Dk are
deterministic and evolve with time and are calculated
recursively with their initial values AS, BS, CS, as shown
in equations (35)–(37). Ek is a non-stationary random
variable whose distribution varies with time and is
derived recursively by equation (38). Since Ek is a linear
combination of independent and identically distributed
random variables, it is itself a normal variable such that
Ek;N(0, Fk). Fk is calculated by the recursive expres-
sion given in equation (39). Note that wL

k and sk in
equations (38) and (39) refer to equations (31) and (32),
respectively

Ak =LkAk�1 ð35Þ

Bk =LkBk�1 +Mk ð36Þ

Dk =LkDk�1 +Nk ð37Þ

Ek =LkEk�1 +wL
k ð38Þ

Fk =L2
kFk�1 +s2

k ð39Þ

Provided that DaS, Dm, DC, and Ek are random
variables, and that Ak Bk Dk are deterministic, equation
(34) is rewritten as matrix form such that Dak =Bkbk,
in which Bk = ½Ak,Bk,Dk, 1� and bk = ½DaS,Dm,DC,
Ek�T. Considering that ½DaS,Dm,DC�T;N(033 1,PS)
and Ek;N(0,Fk), bk is a multivariate normal vector
such that bk;N(m,S), in which m= ½043 1� and
S=diag(PS,Fk). According to the theory of affine
transformation of multivariate Gaussian random vari-
ables, Dak is normally distributed such that
Dak;N(Bkm,BkSBT

k ), in which

Bkm=0 ð40Þ

BkSBk
T = ½Ak,Bk,Dk�PS½Ak,Bk,Dk�T +Fk ð41Þ

Given that ak= �ak+Dak and �ak is deterministic, ak
is a normal variable that ak;N(mak,sak), in which

mF
ak = �ak ð42Þ

sF
ak=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BkSBk

T

q
ð43Þ

The superscript ‘‘F’’ stands for first-order perturbation
(FOP) method in order to distinguish the Monte Carlo
(MC) simulation that will be presented in Appendix 2.
Equations (42) and (43) enable to compute analytically
the crack size distribution from cycle S + 1 to cycle
S + h.
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Appendix 2

Performance comparison between FOP method and
MC simulation

We verify the accuracy of the proposed FOP method
by comparing it with MC simulation. According to sec-
tion ‘‘Results and discussion,’’ if no maintenance is car-
ried out, there are 692 failed panels, that is, the crack
sizes on these 692 panels exceed the critical threshold
acr before the end of the aircraft lifetime (60,000 cycles).
Failed panels imply faster crack growth rates and
strongly nonlinear crack growth curves. In contrast,
the non-failed panels indicate that the cracks maintain
a moderate or very low growth rate, and thus, the crack
growth curves show modest nonlinearity during the
whole lifetime of the aircraft. If the FOP method per-
forms well in the strongly nonlinear crack growth pro-
cess (corresponding to the failed panels), then it should
also maintain reasonably good efficacy for the minor
nonlinear cases (non-failed panels). Therefore, we
investigate only the accuracy of the FOP method on
the failed panels. Due to limitations of space, we chose
randomly 10 panels from the 692 failed panels to pres-
ent the results quantitatively.

The initial conditions of these 10 panels, i.e., the ini-
tial crack size a0, the true m and C are reported in Table
4. The last column is the service life of each panel. It is
noted that that the service life of one panel is the accu-
mulated flight cycles of the panel right before the crack
size exceeds the critical threshold acr=59.6mm. The
service life of the ith panel is denoted by Li.

For each of the critical panels, we predict the evolu-
tion of the crack size distribution using FOP method
and MC simulation in the last J cycles prior to the end
of the service life of each panel. This validates the FOP
method since we deal with the most nonlinear part of
the crack growth curve. The evolution of the distribu-
tion given by FOP is compared with that given by MC
simulation to investigate the performance of FOP
method. The details for implementing the comparison
are elaborated as follows:

1. For the ith panel (i=1, 2,., 10), apply the EKF
to carry out the state-parameter estimation from
cycle k=1 until k=Li – J. The estimated state

vector and the covariance matrix at k=Li – J are
denoted as x̂au,Li�J and PLi�J.

2. From k=Li – J + 1 to k=Li (i.e. the last J
cycles), predict the mean makF (see equation (42))
and standard deviation sak

F (see equation (43)) of
the crack size using FOP method (see Appendix 1
for details).

3. From k=Li – J + 1 to k=Li (i.e. the last J
cycles), predict the mean and the standard devia-
tion of the crack size using MC simulation.
Specifically, generate Ns samples at k=Li –J based
on x̂au,Li�J and PLi�J, that is, sample xj

au,Li�J;
N(x̂au,Li�J,PLi�J) (j=1, 2,., Ns). Propagate for-
ward each sample from k=Li –J + 1 to k=Li
through equation (10) and then at cycle k, the mean
and standard deviation, denoted by mak

M and sak
M,

can be calculated from the Ns samples.

According to the nature of the EKF-FOP method,
the crack size is normally distributed characterized by
mean and standard deviation. Therefore, comparing
the crack size distribution predicted by FOP and MC
methods is equivalent to comparing mak

F and mak
M,

sak
F and sak

M (k=Li – J + 1, Li – J + 2,., Li).
The relative error between mak

F and mak
M, sak

F and
sak

M are calculated as follows, emk=|mak
F –mak

M|/
mak

M, esk= |sak
F –sak

M|/sak
M (k=Li – J + 1, Li –

J + 2,., Li). The relative error increases as cycles
increase. We present in Table 5 the maximum value of
emk and esk, which are obtained at the end of the service
life (k=Li) of each panel. The first column is the index
of the panel whose initial condition and the correspond-
ing service life have been presented in Table 4. One may
note that the true crack size at the end of the service life
of each panel is smaller than the critical threshold acr=
59.6mm. That is because the crack size grows very fast
in the stage near the threshold and exceeds acr in the
next maintenance assessment interval (100 cycles).

We draw the following conclusions based on the
results. (1) The FOP method gives very close results to
that of MC with maximal relative error 1.26% for the
mean (Panel 1) and 3.51% for the standard deviation
(Panel 1). (2) For Panels 8, 9, and 10, the mean of the
crack size estimated by FOP is a bit underestimated
(i.e. smaller than the true crack size). However, when

Table 4. Initial conditions for the 10 picked panels.

No. a0 (mm) m C Corresponding service life (cycles)

1 0.45 3.8 1.87E–10 52,700
2 0.61 3.7 1.95E–10 51,300
3 0.58 3.8 1.86E–10 45,000
4 0.44 3.7 1.98E–10 59,300
5 0.61 3.7 1.92E–10 46,700
6 0.59 3.6 2.03E–10 58,700
7 0.46 3.8 1.86E–10 58,800
8 0.54 3.7 1.98E–10 57,600
9 0.47 3.7 1.90E–10 59,400
10 0.50 3.7 1.96E–10 57,300
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considering the 95% confidence interval, the prediction
remains conservative. The last column presents all the
95% confidence interval of the predicted mean. (3) The
processing time of predicting one crack growth in one
panel is 0.006 s (FOP) versus 29 s (MC) on a laptop

with a processor Intel(R) Core(TM) i5-3337U CPU
1.8GHz. This computational saving is significantly
meaningful to the predictive maintenance since the
maintenance strategies are applied to an aircraft fleet
containing thousands of panels.

Table 5. Comparison of the mean and standard deviation of the crack size given by FOP and MC simulation at the end of the
service life (k=Li) of each panel.

No. mak
F (mm) mak

M (mm) emk (%) sak
F (mm) sak

M (mm) esk (%) True crack size (mm) 95% CI based on mak
F andsak

F (mm)

1 58.08 58.83 1.26 7.75 8.03 3.51 55.94 [42.89, 73.28]
2 60.00 60.19 0.31 4.42 4.55 2.76 58.50 [51.33, 68.67]
3 62.68 63.29 0.96 7.88 8.13 3.14 56.65 [47.25, 78.12]
4 56.02 56.30 0.49 5.29 5.30 0.11 54.78 [45.65, 66.39]
5 54.96 55.20 0.42 4.66 4.81 3.01 53.91 [45.83, 64.10]
6 59.26 59.39 0.22 3.37 3.44 2.05 59.18 [52.66, 65.86]
7 60.13 60.55 0.69 6.08 6.27 3.01 59.57 [48.22, 72.04]
8 55.68 55.78 0.18 3.71 3.74 0.78 55.74 [48.41, 62.95]
9 54.09 54.23 0.26 4.59 4.65 1.17 54.19 [45.09, 63.08]
10 56.48 56.57 0.16 4.77 4.85 1.66 56.62 [47.12, 65.83]

Table 6. The five metrics for the 10 panels.

Panel no. PH (a = 0:1) a� l accuracy (a = 0:1, l = 0:5) RA CRA Convergence

1 52,500 True 0.93 0.97 21,248
2 47,500 False 0.99 0.98 9445
3 38,100 True 0.94 0.94 11,096
4 49,900 True 0.96 0.93 13,936
5 37,800 True 0.99 0.93 12,618
6 50,700 False 0.95 0.86 8894
7 51,900 False 0.95 0.92 10,703
8 43,400 False 0.98 0.93 14,592
9 48,700 False 0.97 0.91 11,355
10 46,500 False 0.93 0.86 11,388

PH: prognostics horizon; RA: relative accuracy; CRA: cumulative relative accuracy.

Figure 11. PH with a = 0:1 of Panels 1–4.
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Appendix 3

Evaluating the prognostics method by prognostics
metrics

The proposed prognostics method is further evaluated
by comparing with true known remaining useful life
(RUL) using five established prognostics metrics:30 prog-
nostics horizon (PH), a� l accuracy, relative accuracy

(RA), cumulative relative accuracy (CRA), and conver-
gence. Readers refer to the literature30,33 for detailed
information about the five metrics. It is noted that these
metrics are possible only when the true RUL is available.

We continue to use the 10 panels that were randomly
picked from the 692 failed panels in Appendix 2 to ver-
ify the proposed prognostics method. The service life of
each panel is listed in Table 4, which is used to obtain
the true RUL. The predicted RUL is computed each
time when a new measurement arrives and the state-
parameter is carried out by the EKF until the end of
the service life of the panel.

The PH, a� l accuracy, RA, CRA, and conver-
gence of the 10 panels are reported in Table 6. For PH
and a� l accuracy, a=0:1, l=0:5 are used. A larger
PH indicates a better performance, which allows earlier
prediction for the end of service life with more reliabil-
ity. RA equals to one minus the relative error between
the true RUL and the predicted RUL at a specific cycle.
CRA is the mean of RA values accumulated at every
cycle from the first cycle of RUL prediction to the last
cycle. Therefore, the closer RA and CRA to 1, the
higher the prediction accuracy is. As for convergence,
the smaller the value, the faster is the convergence.
From Table 6, we see that for all the 10 panels, the pro-
posed prognostics method gives a large PH, high value
of RA and CRA, and a relatively small value of conver-
gence compared to their service lives. Therefore, the
proposed prognostics method performs satisfactorily.

For illustration purposes, we provide the plots of
the PH and a� l accuracy for Panels 1–4, as shown in
Figures 11 and 12, respectively.

Figure 12. a� l accuracy with a = 0:1 and l = 0:5 of Panels 1–4.

Figure 13. Flowchart of CBM.
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Appendix 4

Details of condition-based maintenance and
condition-based maintenance-skip strategies

The structural health monitoring system is assumed to
be used in condition-based maintenance (CBM) and
CBM-skip, and damage assessment is done every 100
flights. In CBM, at each damage assessment, if the larg-
est crack size in an aircraft exceeds amaint, unscheduled
maintenance is trigged immediately without considering
the scheduled maintenance (Figure 5), that is, the main-
tenance could occur anytime unexpectedly, outside of
the 10 scheduled maintenance stops. Once unscheduled
maintenance is requested, all the panels with a crack
size larger than a repair threshold arep-CBM are repaired.
Figure 13 illustrates a flowchart of CBM.

In contrast, CBM-skip takes into account the sched-
uled maintenance but aims at skipping some unneces-
sary early scheduled maintenance. The flowchart of
CBM-skip is shown in Figure 14. At each scheduled
maintenance stop, if there is no crack exceeding a
threshold ath-skip, then the current scheduled mainte-
nance is skipped. Note that ath-skip can be much less
conservative than the repair threshold of scheduled
maintenance since damage assessment in CBM-skip is
carried out very frequently outside of the scheduled
maintenance stops. If there is a crack, which grows
beyond amaint between two consecutive scheduled main-
tenance stops, then an unscheduled maintenance is trig-
gered at once and all panels with crack size greater
than arep-skip are repaired.

Figure 14. Flowchart of CBM-skip.
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