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Multifidelity surrogates (MFS) combine low-fidelity models with few high-fidelity samples to infer the response of

the high-fidelity model for design optimization or uncertainty quantification. Most publications in MFS focus on

Bayesian frameworks basedonGaussianprocess.Other types of surrogatesmight be preferred for someapplications.

In this paper, a simple and yet powerfulMFSbased on single linear regression is proposed, termed as linear regression

multifidelity surrogate (LR-MFS), especially for fitting high-fidelity data with noise. The LR-MFS considers the low-

fidelity model as a basis function and identifies unknown coefficients of both the low-fidelity model and the

discrepancy function using a single linear regression. Because the proposedLR-MFS is obtained fromstandard linear

regression, it can take advantage of established regression techniques such as prediction variance, D-optimal design,

and inference. The LR-MFS is first compared with three Bayesian frameworks using a benchmark dataset from

the simulations of a fluidized-bed process. The LR-MFS showed a comparable accuracy with the best Bayesian

frameworks. The effect of combiningmultiple low-fidelity models was also discussed. Then the LR-MFS is evaluated

using an algebraic functionwith different sampling plans. The LR-MFSbested co-kriging for 55 ∼ 63% caseswith an

increasing number of high-fidelity (HF) samples. The sources of uncertainty with an increasing number of samples

were also discussed. For both examples, the LR-MFS proved to be better than fitting only HF samples and robust

with noisy data.

Nomenclature

B = parameter vector for multifidelity surrogate
bi = coefficient of Xi�x�
e = residual error vector between prediction and the value

of high-fidelity samples
fH�x� = high-fidelity model

f̂H�x� = multifidelity surrogate prediction

fL�x� = low-fidelity model

f̂L�x� = low-fidelity surrogate prediction

M�x� = design vector at a point x
X = design matrix for multifidelity surrogate at samples
Xi�x� = ith polynomial term for the discrepancy function with

p terms
XH = input matrix of n high-fidelity samples

x�j�H
= the input of the jth high-fidelity sample (j � 1 to n)

Y = response vector for linear regression
yH = the vector for response of high-fidelity samples

y�j�H
= the response value of the jth high-fidelity sample

(j � 1 to n)
ρ = scale factor for multifidelity surrogate

δ̂�x� = surrogate fitting to the discrepancy between low- and
high-fidelity samples

I. Introduction

S URROGATE models have been applied for various engineering
design optimization and uncertainty quantification problems,

which require many physical tests or simulations [1,2]. Because
physical tests and high-fidelity simulations are usually time-

consuming or expensive, surrogate models can be developed based
on a small number of samples to infer the system response [3,4].
However, performing a number of tests or simulations needed for
fitting an accurate surrogate is often too expensive. Multifidelity
surrogates (MFS) can provide a solution for this problem by
combining a small number of high-fidelity simulations or tests
with lower accuracy models. Multifidelity models are commonly
encountered for engineering analysis, such as finite element sim-
ulations with different resolutions and numerical simulations
combined with physical tests.
Various frameworks have been proposed to predict mechanical

system responses by combining data from different fidelities for
design optimization (e.g., see reviews by Fernández-Godino et al. [5]
and Peherstorfer et al. [6]). Efforts are emerging to extend MFS for
various engineering analysis. Ng and Eldred [7] extended MFS with
polynomial chaos expansion for uncertainty quantification (UQ).
The multifidelity UQ process could converge more rapidly than a
single-fidelity UQ. Aside from MFS for black-box dataset, other
schemes have been proposed for error compensation to incorporate
prior information from the dataset. Drohmann and Carlberg [8]
proposed the reduced order modeling (ROM) error surrogates to
map the physics-based error indicator of ROM to the true output
errors using surrogate. The developed error surrogate is based on
a single input (i.e., error indicator) and serves to compensate for the
additive error.
MFS usually introduces a discrepancy surrogate to model the

difference between low- and high-fidelity samples [9]. The popular
Bayesian discrepancy-based MFS was introduced in [10–13] and
demonstrated its effectiveness for the approximation of multifidelity
datasets. Part of its success compared with earlier MFS was because
of scaling the low-fidelity model in addition to introducing the
discrepancy [14]. Model calibration associated with surrogate is
another approach to combine multifidelity datasets. The physical
parameters required by the low-fidelity model are first optimized
and fitted by a surrogate in the design space. Then the approximated
parameters are used to improve agreement between low-fidelity
predictions and high-fidelity samples [15–17]. A comprehensive
Bayesian MFS model that uses both calibration and discrepancy
was proposed in [15], offering greater flexibility, although this is
the most complex framework. However, the Bayesian framework
requires a model for the uncertainty structure, and has been applied
almost exclusively for Gaussian process (GP). As demonstrated
by Viana et al. [18], there are situations where GP is not the most
accurate surrogate, and so there is a merit to having an MFS arsenal
that includes other surrogates.
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Wepropose a simple and yet powerfulMFSbased on regression, or
least-squares fit, which is called linear regression multifidelity
surrogate (LR-MFS). The high-fidelity behavior is approximated by
a linear combination of low-fidelity predictions and a discrepancy
function. In this paper, the discrepancy function is represented by a
linear combination of monomial basis functions, but the approach is
also applicable to other basis functions such as radial basis functions.
The key idea is to consider the low-fidelity model as one additional
basis function in the multifidelity model with the scale factor as a
regression coefficient. Because a low-fidelity model is considered as
a basis, including multiple low-fidelity models is straightforward in
this approach. The design matrix in the regress equation consists of
both the low-fidelity models and discrepancy basis functions. Then
the scale factors and coefficients of the basis functions are obtained
simultaneously by solving the regression set of linear equations.
LR-MFS is expected to easily use various tools available for
regression fits, such as prediction variance and D-optimal designs.
An effective LR-MFS could serve as the basis for uncertainty
propagation [19,20] and design optimization [21]. Compared with
the Bayesian frameworks, LR-MFS has a closed-form solution for
the optimum surrogate parameters and the training cost is essentially
a few matrix multiplications. The Bayesian framework relies on
expensive global optimization to find the surrogate parameters and
the cost increases exponentiallywith sample size and dimensionality.
The training of LR-MFS could be faster than the Bayesian frame-
work by several orders of magnitude especially for large sample size
in high-dimensional space.
The proposed LR-MFS assumes that the discrepancy could be

captured by the scale factor and the polynomial form of additive
discrepancy. This assumption has been also used by co-kriging and
proved to be effective for various engineering analysis [5,22]. With
a small number of high-fidelity samples, it would make sense to
use a simple functional form for the discrepancy. Model validation
schemes, such as cross-validation, could be used to evaluate the
effectiveness of the MFS predictions and avoid potential misusage.
The paper is organized as follows. Section II briefs the Bayesian

MFS and presents the proposed LR-MFS using single linear
regression. Section III evaluates the proposed LR-MFS using a
benchmark dataset from a fluidized-bed process. The LR-MFS is
compared with three Bayesian frameworks. In Sec. IV, the LR-MFS
is further evaluated using an algebraic test function with different
levels of noise and different sampling plans. Section V concludes the
technical contributions and major observations of this paper.

II. Linear Regression Multifidelity Surrogate

The basics of Bayesian MFS is discussed first to understand the
major components of an MFS and potential limitations. Then the
LR-MFS is proposed, which also includes a scale factor and a
discrepancy function as with the Bayesian MFS.

A. Bayesian Multifidelity Surrogate Frameworks

Kriging [23] or Gaussian process is one of the most popular
surrogate models for design optimization. The kriging is a stochastic
process (a collection of random variables), such that every finite
collection of those random variables has a multivariate normal
distribution; that is, every finite linear combination of the variables is
normally distributed. Kriging naturally provides the prediction
variance at an unsampled point. The Bayesianmultifidelity surrogate
developed by Kennedy and O’Hagan [10] introduces the correlation
between multifidelity dataset. The low-fidelity dataset is denoted

asXL � fx�1�L ; : : : ; x�nL�L g from the low-fidelitymodel fL�x�, and the
high-fidelity dataset is denoted as XH � fx�1�H ; : : : ; x�nH�H g from
the high-fidelity model fH�x�. The corresponding function values

are yL � fy�1�L ; : : : ; y�nL�L g and yH � fy�1�H ; : : : ; y�nh�H g, respectively.
The Bayesian multifidelity is made of two sets of correlated kriging

models. The kriging surrogate f̂L�x� is first constructed based on

(XL, yL). The second kriging δ̂�x� is then built based on the

discrepancies yH − ρf̂L�XH� as the discrepancy function. The scale

factor ρ is estimated from maximum likelihood estimation as part of

δ̂�x�. Variations of theBayesianmultifidelity surrogate are developed

to improve accuracy and computational efficiency [11,24].
Since Kennedy and O’Hagan [10] introduced the GP-based

Bayesian multifidelity surrogate, it has become popular and was

found to do well [22]. However, the use of GP model also embraces

technical difficulties regarding hyper parameter estimation. Finding

the hyperparameters of the GPmodel is equivalent to finding a global

optimum solution for a highly nonlinear likelihood function [25,26].

In addition to the computational burden of likelihood function

evaluations, likelihood functions are often plagued with numerical

instability due to covariance matrix inverse operation. Forrester et al.

introduced co-kriging that is featured with better computational

efficiency [27]. Qian andWu proposed the use ofMarko chainMonte

Carlo (MCMC) and sample average approximation algorithm for

hyperparameter estimation [11]. Le Gratiet proposed an approach to

reduce the computational burden by simplifying the covariance

matrix inversion operation [24]. For data with noise, GP-based

surrogates tend to underestimate the noise by overly smoothing the

prediction [28].

B. Proposed Linear Regression Multifidelity Surrogate

Because linear regression surrogates are sometimes more accurate

than GP surrogates [16], it makes sense to have in our toolbox MFS

based on linear regression surrogates. Similar to the comprehensive

Bayesian framework; in this paper the following formofMFS is used:

f̂H�x� � ρfL�x� � δ̂�x� (1)

where ρ is the scale factor for the low-fidelity model, and δ̂�x� is the
discrepancy function. Different from the Bayesian frameworks, we

do not use any approximation on the low-fidelity model. It will be

shown later that it is unnecessary to have an explicit expression of the

low-fidelitymodel. It should be enough thatfL�x� can be evaluated at
high-fidelity samples XH and at prediction points.
Without loss of generality, in this paper, we assume that the

discrepancy function is represented in the form of polynomial

response surface (PRS) as

δ̂�x� �
Xp
j�1

ξj�x�bj (2)

where ξj�x� denotes the jth monomial basis, and bj is the unknown
coefficient of ξj�x�. Although we explain our approach using a

PRS, the proposed approachwill work for any surrogates that can use

linear regression. Because the number of high-fidelity samples is

often limited, the number of terms in Eq. (2) is limited. We often

use a constant or low-order polynomials for approximating the

discrepancy function.
Because the model forms in Eqs. (1) and (2) are fixed, the only

remaining task is to determine the unknown coefficients. The main

observation in this paper is that we view the low-fidelity model as

another basis function with the scale factor ρ as an unknown

coefficient. Then, all unknown coefficients, ρ and bj, j � 1; : : : ; p
can be determined using linear regression. Such seemingly natural

observation turns out to be extremely simple MFS framework that

can be easily applicable with single linear regression. Because we

view the low-fidelity model as a basis, it is also possible to include

multiple low-fidelity models together with different scale factors.
As with the standard least-squares method, the errors between

MFS predictions and high-fidelity samples are defined as

e�i� � y�i�H − f̂H�x�i�H �

� y�i�H − ρfL�x�i�H � −
Xp
j�1

ξj�x�i�H �bj; i � 1; : : : ; nH (3)

Or, in the vector form, the vector of errors at high-fidelity samples

can be written as
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e � Y −XB (4)

where

e�

8>>><
>>>:

e�1�

..

.

e�nH�

9>>>=
>>>;
; Y�

8>>><
>>>:

y�1�H

..

.

y�nH�H

9>>>=
>>>;
;

X�

2
6664

fL�x�1�H � ξ1�x�1�H � ··· ξp�x�1�H �
..
. ..

. . .
. ..

.

fL�x�nH�H � ξ1�x�nH�H � ··· ξp�x�nH�H �

3
7775; B�

8>>>>><
>>>>>:

ρ

b1

..

.

bp

9>>>>>=
>>>>>;

(5)

In the above equation, e is the vector of residual errors, Y is the
vector of high-fidelity samples, X is the augmented design matrix,
and B is the vector of unknown coefficients. By augmenting the
design matrix, the scale parameter and unknown coefficients of the
discrepancy functions are estimated simultaneously. It is clear from
Eq. (5) that the low-fidelity model is included in the design matrixX
with other basis functions of the discrepancy function.
The unknown coefficients in LR-MFS are obtained byminimizing

the square sum of errors as

minimize
B

eTe � �Y −XB�T�Y −XB� (6)

where the standard regression technique can yield the following form
of unknown coefficients:

B � �XTX�−1XTY (7)

Linear regression assumes that the residual errors are normal,
independent, and identically distributed. The standard error is
estimated by

σ̂ �
����������������������������

eTe

nH − �p� 1�

s
(8)

and the prediction variance at a point x is obtained as

Var
h
f̂H�x�

i
� σ̂2M�x�T�XTX�−1M�x� (9)

where M�x� � f fL�x� ξ1�x� · · · ξp�x� gT denotes the design
vector of linear regression at prediction point x.
The scale factor ρ implies the level of trend similarity between

f̂H�x� and fL�x�, and plays a critical role to approximate
multifidelity data. Negative values or extremely large values of ρ
indicate a risky prediction, which is likely to be associated with
undesirable low-fidelity models, inappropriate surrogate forms, or
inadequate samples. The discrepancy function δ̂�x� is likely to be
modeled well by a low-order PRS when fL�x� had a similar trend
as fH�x�.

There are nice properties of LR-MFS. First, the LR-MFS could
be easily applied to more than two-fidelity models by augmenting
the design matrix with multiple low-fidelity models with multiple
scale factors as

f̂H�x� �
Xk
j�1

ρjfLj�x� �
Xp
j�1

ξj�x�bj (10)

where k is the number of low-fidelitymodels. Second, it is possible to
use other basis functions beyond monomials to approximate the
discrepancy function. Third, the established LR-MFS can have
several advantages, such as 1) handling noise from different
distributions; 2) estimating confidence intervals, prediction intervals,
and tolerance limits; 3) reducing model-form uncertainty via
stepwise regression; and 4) obtaining optimal design of experiments
(e.g., D-optimal designs).

III. Approximation of the Fluidized-Bed Process
Using LR-MFS

In this section, the proposed LR-MFS was compared with three
Bayesianmultifidelity surrogates from the literature using the dataset
from fluidized-bed process. The effect of different low-fidelity models
was also discussed.

A. Benchmark Dataset: Fluidized-Bed Process

A comparison is made between the proposed LR-MFS and three
Bayesian multifidelity surrogates developed by Kennedy and
O’Hagan [10], Qian andWu [11], and Le Gratiet [24]. This case was
selected because the results for the Bayesian implementation
are given in Le Gratiet [24]. Using these results from the literature
removes possible implementation bias in comparison. The multi-
fidelity surrogates are used to approximate the simulation of a
fluidized-bed process [29]. The quantity of interest is the temperature
of the steady-state thermodynamic operation point for a fluidized-bed
process. There are six variables affecting the quantity of interest:
humidity (Hr), room temperature (Tr), temperature of the air from the
pump (Ta), flow rate of the coating solution (Rf), pressure of
atomized air (Pa), and fluid velocity of the fluidization air (Vf).
Twenty-eight different process conditions were considered with
coating solution used for distilled water at room temperature. Four-
fidelity outputs are available: Texp, T3, T2, and T1, with decreasing
fidelity. Texp is the experimental response denoted as high-fidelity
data, T3 is the most accurate simulation considering the adjustments
for heat losses and inlet airflow. T2 provides medium accuracy
considering adjustment for heat losses. T1 has lowest accuracy
without adjustment for either heat losses or inlet airflow.

B. Comparison with the Bayesian MFS Using Two-Fidelity Dataset

We focus on the prediction of Texp (high-fidelity) assisted by T2

(low-fidelity) using two-levelmultifidelity surrogates as in LeGratiet
[24]. The dataset is collected at 28 points with 6 design variables
for both Texp and T2 as visualized in Fig. 1. T2 is highly correlated
with Texp having the correlation coefficient 0.99 and T2 overpredicts
the value of Texp.

0 5 10 15 20 25 30
Index of samples

30

40

50

60

70

F
un

ct
io

n 
va

lu
es

High-fidelity

Low-fidelity

Fig. 1 Function values of the Texp (high-fidelity) and T2 (low-fidelity) from fluidized-bed process [29].
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The evaluation is performed according to the plan proposed by
Le Gratiet [24,30] as shown in Table 1. Twenty samples were

randomly selected fromT2 as LF samples as shown in Fig. 2. Then 10

high-fidelity (HF) samples were randomly selected such that the HF
samples were nested into the LF samples. The 18 points left out from

Texp were used as the test set (xT ,yT). Rootmean square error (RMSE)

with the test set was adopted to evaluate prediction accuracy as

RMSE �
���������������������������������������������������
1

18

X18
j�1

�
f̂H�x�j�T � − y�j�T

�
2

vuut (11)

For comparison, 100 different combinations of training samples

and test sets were produced. The model from Kennedy and O’Hagan

[10] (KO) was implemented using R CRAN package “approx-
imator”; the model from Qian and Wu [11] (QW) was implemented

using the WinBugs software; and the model from Le Gratiet [24]

(LG)was implemented using theRCRANpackage “MuFiCokriging.”
Note that KO and LG are based on the same GP models and

their theoretical characteristics are identical. However, they may

give different results for the same problem because of the way of
implementations and the performance of their optimizers to estimate

hyper parameters.
It is noted that we have not produced any of the results reported

below besides the LR-MFS, and instead took them from Le

Gratiet [21].
The median RMSEs for the three Bayesian approaches are taken

from Le Gratiet [24,30] as shown in Fig. 3. The comparison was

based on 100 combinations of training samples and test sets. The

compared approacheswere PRSbased on onlyHF samples, LR-MFS
(LR), the model from LG, the model from KO, and the model from

QW. For the construction of LR-MFS, a linear PRS was fitted to

the LF samples and the LR-MFS was developed with a constant

discrepancy. A single-fidelity linear PRS was developed based on
only HF samples to study the effect of introducing LF models. The

LR-MFS was more accurate than the PRS by introducing the LF
samples. From Fig. 3, it is clear that LR-MFS and LG were the most

accurate and were significantly better than the KO and QW models.
The results for LR-MFS and PRS were both produced by the authors
and highlighted in red. The results of the three Bayesian schemes

(LG, KO, QW) were cited directly from Le Gratiet [24,30] for a
fair comparison. The small difference between LG and LR-MFS is
partially from the uncertainty from resampling. The scale factor ρ of
LR-MFS is shown inFig. 3b and varied between 0.73 and 1.15,which
implied the similar trend between HF samples and LF samples. The
median of ρ was 0.9, which was consistent with the observation

that LF model overpredicted HF model.

C. Effect of Noise for High-Fidelity Dataset

High-fidelity samples might be obtained from noisy physical tests

or simulations with noise from numerical errors. Therefore, LR-MFS
was further evaluated by perturbing HF samples with synthetic noise
from a normal distribution N�0; 22�. The noise level is comparable

with the difference between HF and LF samples. The evaluation was
repeated based on Table 1 with the perturbed HF samples. One
realization of the HF samples with noise is shown in Fig. 4. RMSE of

LR-MFS to approximate HF samples with noise is shown in Fig. 5
(based on 100 sets of samples). The noise level was estimated from
Eq. (8). It is seen that LR-MFS was robust with respect to noise. The

median RMSE only increased from 2.07 to 2.24 while the standard
deviation of the noise was 2.

D. LR-MFS with Multiple Low-Fidelity Datasets

Wecompared the effect of different low-fidelity datasets usingLR-

MFS.Texp was the high-fidelity dataset for prediction.T3,T2, andT1

were used as the low-fidelity datasets to build single-LF LR-MFS

prediction, and then, all theT3,T2, andT1 were used to build a three-
LF LR-MFS prediction. The evaluation was performed according to
Table 1 using 100 sets of design of experiments. TheRMSEs of all the

LR-MFS’s are shown in Fig. 6 based on 100 combinations of training
samples and test sets. All the single-LF LR-MFS had similar
accuracy around 2. The accuracy of LR-MFS improved along with

the accuracy of low-fidelity model. One interesting observation is
that the three-LF LR-MFS using all the Ti had worst accuracy and
largest variation. The scale factors ρ are shown in Fig. 7 for further

investigation of the results. For the two-fidelity LR-MFS, ρwas about

Table 1 Evaluation plan for the approximation of multifidelity
dataset from fluidized-bed process following Le Gratiet [24]

Steps Procedures

1 Randomly select 20 out of 28 LF samples and then select 10 out
of 20 HF samples as training points.

2 Use the other 18 HF samples as test set.
3 Generate 100 different combinations of training and test sets.
4 Use RMSE as prediction metric.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

20 LF samples 10 HF samples

100 sets

Fig. 2 Illustration of the resampling procedure to generate training and test data for fluidized bed process.
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Fig. 3 Performance of the surrogate models. a) Median RMSE from surrogates. b) Scale factors ρ of LR-MFS.
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Fig. 4 Function values of the Texp (high-fidelity) with one realization of synthetic noise from normal distribution, fluidized bed problem.
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Fig. 5 RMSE of LR-MFS to approximate HF samples with noise, fluidized bed problem. a) RMSE of LR-MFS. b) Estimated noise level from LR-MFS.
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Fig. 6 RMSE of LR-MFS with different low-fidelity data sets and all the low-fidelity data sets together, fluidized bed problem.
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Fig. 7 Scale factors ρ of LR-MFS with different low-fidelity data sets and all the low-fidelity data sets together, fluidized bed problem.
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0.9 with small variability. While for the three-LF LR-MFS, all the ρ
were associated with significant variability and sometime negative.

The undesirable behavior of ρ was due to the increasing number of

parameters for surrogate training and possible correlation between

low-fidelity models. Considering the limited number of high-fidelity

samples, more parameters would suffer higher risk of overfitting.

Regarding the median value,T3 had the highest fidelity and largest ρ,
which implied significant contribution to the LR-MFS prediction.

For T2 and T1, the ρ was close to 0 and LR-MFS assigned larger

weighs to the dataset with higher fidelity.

Introducing more samples or adding a regularization term are

effective techniques for handling overfitting. The prediction of

the three-LF LR-MFS is likely to be improved after reducing the

potential overfitting. The improved three-LF LR-MFS could be very

close to the single-LF LR-MFS based on T3 considering that the

trends between the multifidelity dataset are highly correlated. The

discrepancy regression is a low-order PRS and could be estimated

reasonably with introducing one set of low-fidelity dataset.

IV. Approximation of the Modified Currin Function
Using LR-MFS

In this section, the proposed LR-MFS was evaluated using the

modified Currin function that has a known expression. The effect of

different level of noise and sampling plans were discussed.

A. Modified Currin Function

The Currin function [31,32] with two variables was adopted for

further investigation of the proposed LR-MFS approach. The high-

fidelity model fH�x� is given in Eq. (12). We modified the original

low-fidelity model [33] with a larger scale factor and added a

quadratic function as shown in Eq. (13). These variations make the

multifidelity modeling more challenging. Major settings of the test

function are summarized in Table 2. The function values of fH�x�
vary between 1.2 and 13.8 with a range of 12.6, whereas the range of

low-fidelity function is less than half of that of the high-fidelity

function. However, the fH�x� and fL�x� are highly correlated with

a correlation coefficient 0.99. The responses of fH�x� without

noise and fL�x� are shown in Fig. 8.

fH�x� �
�
1 − exp

�
−

1

2x2

��
2300x31 � 1900x21 � 2092x1 � 60

100x31 � 500x21 � 4x1 � 20

(12)

fL�x��
1

8

h
fH�x1�0.05;x2�0.05��fH�x1�0.05;max�0;x2−0.05��

i
�1

8

h
fH�x1−0.05;x2�0.05��fH�x1−0.05;max�0;x2−0.05��

i
�1

8

�
−5x1−7x22

�
(13)

Wehave evaluatedmultiple aspects of the LR-MFS as summarized
in Table 3. A PRS was fitted to only high-fidelity samples as the
baseline and compared with LR-MFS in order to check on the
usefulness of the low-fidelity samples. Then the LR-MFS was
compared with the co-kriging from Kennedy and O'Hagan [10]. The
co-kriging model was implemented through the ooDACE Toolbox
[34]. The effect of sample size was analyzed by comparing the
surrogates from 3 and 10 HF samples. Low-fidelity samples were
produced at the same location as HF samples to build LR-MFS. To
study the effect of noise, synthetic noise was added to HF samples
with levels of noise N�0; 0.12�, N�0; 0.22�, and N�0; 0.32�. The
prediction accuracywas evaluated fromRMSE at 100 × 100 test grid
from fH�x�, and 100 sets of training samples was generated using
Latin hypercube sampling (LHS). For the MFS models, the LF
samples were obtained directly from fL�x� instead of a surrogate to
avoid approximation error in building the low-fidelity surrogate.
LF samples were generated at the same location of HF samples and

test grid. It is also possible to build an f̂L�x� based on only low-
fidelity data for repeated calls of LR-MFS in practical applications.

B. Effect of Introducing Low-Fidelity Dataset

We first investigated the effect of introducing low-fidelity samples
without noise.With 3 HF samples, a constant PRS and LR-MFSwith
a constant discrepancy were fitted. With 10 HF samples, a quadratic
PRS andLR-MFSwith a quadratic discrepancywere fitted.Accuracy
of the PRS and LR-MFS is shown in Fig. 9 based on 100 sets of
samples; 3 and 10 are the number of HF samples. The median RMSE
of the 100 repetitions was used to represent the overall performance.
LR-MFS was more accurate than PRS by the order of magnitude,
and both LR-MFS and PRS improved noticeably from 3 to 10 HF
samples. Themedian scale factors of LR-MFS increased from 1.74 to
1.95 with more samples. The high values reflect the fact that the
low-fidelity function is less than half of the high-fidelity function.

C. Comparison with Co-Kriging

Then the LR-MFS was compared with co-kriging without noise
based on 100 sets of samples. It is seen in Fig. 10 that LR-MFS was

Table 2 Major settings for the modified Currin test function

Input variables Range of fH�x� Range of fL�x�

Correlation
coefficient

between fH�x�
and fL�x�

x1, x2 ∈ �0; 1� [1.1804, 13.7692] [−0.1867, 4.9498] 0.99

Fig. 8 High-fidelity and low-fidelity versions of the modified Currin
function.

Table 3 Key factors of the evaluation plan for modified
Currin function

Key factors Plan

Effect of low-fidelity samples Compare LR-MFSwith PRS fitted to only
high-fidelity samples.

ComparisonwithBayesianMFS Compare LR-MFS with co-kriging from
Kennedy and O’Hagan [10].

Effect of noise for HF Add synthetic noise to HF samples from
N�0; 0.12�, N�0; 0.22�, N�0; 0.32�.

Effect of sample size Investigate surrogates for 3 HF samples
and 10 HF samples.

Prediction metric RMSE
Fitting error to only LF samples Low-fidelity sample was from fL�x�,

instead of a surrogate.
Sampling plan Latin hypercube sampling, repeated

100 times with different samples.
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slightly better than co-kriging for the median RMSE and has smaller

variation. Co-kriging had larger scale factors for the approximation

of 3 HF samples and similar scale factors for the approximation of

10 HF samples with LR-MFS. The relative performance between

LR-MFS and co-kriging was summarized in Table 4. Among the 100

sets of HF samples, LR-MFS bested co-kriging for 55 cases and 63

cases while having 3 HF samples and 10 HF samples, respectively.

CK3 LR-MFS3 CK10 LR-MFS10

a) RMSE of surrogates b) Scale factors for MFS

0.2

0.4

0.6

0.8

1

1.2

R
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S
E

0.59
0.55

0.29
0.23

CK3 LR-MFS3 CK10 LR-MFS10

1

1.5

2

2.5

R
ho

2.21

1.74

1.92 1.95

Fig. 10 Comparison of co-kriging (CK) with LR-MFS, for 3 and 10 HF samples, modified Currin function. a) Median RMSE of MFS. b) Median scale
factors of MFS.
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1.5
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2.5

R
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1.74 1.74 1.75 1.75

1.95 1.96 1.95 1.92
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a)

b)
Fig. 11 Effect of noise on LR-MFS with 3 and 10 HF samples, modified Currin function. a) RMSE of the LR-MFS predictions. b) ρ of the LR-MFS
predictions.

PRS3 LR-MFS3 PRS10

a) RMSE of surrogates b) Scale factors of LR-MFS

LR-MFS10
0

1

2

3

4

R
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S
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3.18

0.55

2.01

0.23

LR-MFS3 LR-MFS10
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R
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Fig. 9 Effect of introducing low-fidelity samples forpredictionofmodifiedCurrin functionwithoutnoise. a)RMSEof surrogates. b)Scale factorsofLR-MFS.

Table 4 Relative performance of LR-MFS and co-kriging
for the approximation of the modified Currin function using

100 sets of HF samples

Number of HF samples 3 HF samples 10 HF samples

Cases better by LR-MFS 55 63
Cases better by co-kriging 45 37
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D. Fitting High-Fidelity Dataset with Different Level of Noise Using

LR-MFS

HF samples might be associated with experimental variation. The
HF samples were perturbed with synthetic noise from normal
distributions N�0; 0.12�, N�0; 0.22�, N�0; 0.32�. The accuracy of
LR-MFS for HF samples with noise is shown in Fig. 11. The com-
puted RMSE in Fig. 11 is based on 100 sets of samples. The LR-MFS
provided reasonable predictions for all the cases. The LR-MFS was
expected to be robust with noise as inherited from PRS. LR-MFS
with 3 high-fidelity samples (LR-MFS3) did not change much with
increasing noise due to the largemodel-form uncertainty. In Fig. 11b,
we can see that the low-fidelity samples contributedmore on LR-MFS
with 10 high-fidelity samples (LR-MFS10) than that on LR-MFS3.
The estimated noise was computed according to Eq. (8) and sum-
marized in Fig. 12. The estimated noise of modified Currin function is
based on 100 sets of samples, with 3 and 10 HF samples, respectively.
For LR-MFS3, the estimated noise level was significantly
contaminated by model-form uncertainty. For LR-MFS10, the
estimated noise level was close to the true value. The sources of
epistemic uncertainty for LR-MFS prediction were conceptually
illustrated in Fig. 13. The contribution of uncertainties varied
with conditions (e.g., number of samples). The hazard of model
form and noise effect decreased while introducing more samples.
The effect of model form was minuscule for LR-MFS10 and
therefore the estimated noise level was close to the true noise.

V. Conclusions

In this paper, the linear regression multifidelity surrogate (LR-
MFS) was proposed to combine datasets with different fidelities,
especially for high-fidelity with noise. The linear regression is
commonly used, balanced between accuracy, cost, and simplicity.
The LR-MFS is less likely to overfit noise by limiting the number of
parameters. LR-MFS is derived from standard linear regression and

therefore can use available tools, such as prediction variance and
optimal DoE. The LR-MFS was demonstrated using polynomial
response surface in this paper. The proposed LR-MFS was first
compared with three Bayesian frameworks using a benchmark
dataset from the simulations of a fluidized-bed process. The accuracy
of Bayesian frameworks varied significantly, and the LR-MFS was
comparable to the best GP-based approach. The effect of multiple
low-fidelity dataset was also examined. For the case examined, it
appears that introducing multiple low-fidelity models runs a higher
risk of overfitting for limited number of high-fidelity data. Then the
LR-MFS was evaluated to approximate a nonlinear numerical test
function with different sampling plans. The LR-MFS was more
accurate than co-kriging for 55–63%of caseswith increasing number
of HF samples. For both examples, the LR-MFS proved to be robust
for HF samples with different levels of noise.
One major challenge for polynomial-based linear regression is the

selection of basis terms. Various schemes exist, such as stepwise
regression, to select the basis terms. For full-order PRS, the number
of basis terms increases exponentially with dimensionality. Schemes
to select the basis function or reduce dimension might be used for the
approximation of sparse dataset in high-dimensional space. In
general, multifidelity surrogates are used when the low-fidelity
function is much cheaper than the high-fidelity function. In such a
case, it is natural to assume that only a small number of high-fidelity
samples, and thus discrepancy samples, are available. Therefore, it
would not make sense to use a complex functional form for the
discrepancy surrogate with many unknown parameters. Therefore, a
lower-order polynomial or even a constant function can often be used
as a discrepancy surrogate.
Compared with the Bayesian frameworks, LR-MFS has a closed-

form solution for the optimum surrogate parameters and the training
cost is essentially a few matrix multiplications. The Bayesian frame-
work relies on expensive global optimization to find the surrogate
parameters and the cost increases exponentially with sample size
and dimensionality. The training of LR-MFS could be faster than
the Bayesian framework by several orders of magnitude especially
for large sample size in high-dimensional space.
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