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System Reliability-Based Design
Optimization Under Tradeoff
Between Reduction of Sampling
Uncertainty and Design Shift
This paper presents a tradeoff between shifting design and controlling sampling uncer-
tainty in system reliability-based design optimization (RBDO) using the Bayesian net-
work. The sampling uncertainty is caused by a finite number of samples used in
calculating the reliability of a component, and it propagates to the system reliability. A
conservative failure probability is utilized to consider sampling uncertainty. In this
paper, the sensitivity of a conservative system failure probability is derived with respect
to the design change and the number of samples in a component using Bayesian network
along with global sensitivity analysis (GSA). In the sensitivity analysis, GSA is used for
local sensitivity calculation. The numerical results show that sampling uncertainty can
significantly affect the conservative system reliability and needs to be controlled to
achieve the desired level of system reliability. Numerical examples show that both shift-
ing design and reducing sampling uncertainty are crucial in the system RBDO.
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1 Introduction

In the reliability analysis or reliability-based design optimiza-
tion (RBDO), the probability of failure is used to determine the
reliability of a design. Due to the complexity of calculation, often
an approximation is used. For example, sampling-based methods,
such as Monte Carlo simulation (MCS), use a large number of
samples to estimate the probability of failure. Unless an infinite
number of samples is used, the estimated probability of failure has
sampling uncertainty; that is, different sets of samples yield differ-
ent probabilities of failure [1–3].

In general, different types of uncertainties in the mathematical
calculation can be categorized into either aleatory uncertainty or
epistemic uncertainty [4]. The aleatory uncertainty represents var-
iability that exists inherently in nature. It is generally considered
irreducible, Therefore, it is necessary to take its effect into
account in the design. Traditional RBDO expresses aleatory
uncertainty using a probability density function (PDF) and calcu-
lates the probability of failure due to the uncertainty. On the other
hand, epistemic uncertainty represents the uncertainty due to the
lack of knowledge or information. Therefore, epistemic uncer-
tainty may not be random but uncertain. In general, the epistemic
uncertainty is reducible if additional information or data is avail-
able. Sampling uncertainty belongs to this group because the
probability calculation becomes more accurate as more samples
are provided. Even if there are different opinions on how to repre-
sent epistemic uncertainty, it is generally accepted that sampling
uncertainty can also be represented using a PDF [5].

There have been approaches to include epistemic uncertainty in
reliability analysis [6,7]. When both aleatory and epistemic uncer-
tainties exist, reliability analysis is often performed in a double-
loop algorithm, where the inner loop calculates the probability of
failure for given aleatory uncertainty, while the outer loop

calculates the distribution of failure probability due to the episte-
mic uncertainty. These methods successfully reflect the effect of
uncertainty on the reliability calculation, and a conservative fail-
ure probability is used for RBDO. Likewise, the conservative esti-
mate of failure probability with a specific target conservativeness
will be used as a design criterion in this paper.

Once the effect of epistemic uncertainty is quantified, the next
question is how to control such uncertainty. Note that the tradi-
tional RBDO approach changes design to satisfy the reliability
constraints under all uncertainties. However, the traditional
RBDO with epistemic uncertainty often yields too conservative
designs due to an excessive amount of uncertainty. Instead of
compensating for epistemic uncertainty using conservatism, it
would be necessary to quantify and reduce the epistemic uncer-
tainty to achieve a meaningful design out of RBDO.

In this paper, among many sources of epistemic uncertainty,
only sampling uncertainty is considered, where a normal distribu-
tion can approximate the distribution of failure probability. In our
previous work, the effect of design perturbation and change in the
number of samples is shown on the conservative estimate of a sin-
gle probability of failure [8,9]. In this paper, the goal is to identify
the effect of sampling uncertainty and design change of a compo-
nent on the system probability of failure (SPF). A system in this
paper refers to a group of many components connected. Unlike a
typical multidisciplinary system with feedback coupling, this
paper assumes that the system is acyclic and can be dissected into
a group of independent components, which do not share any input
variables with another.

There are numerous methods to estimate the probability of fail-
ure. For example, it is possible to approximate the limit state func-
tion to a linear or quadratic form (FORM, SORM) [10]. Bayesian
reliability approach can also be applied to estimate a small proba-
bility of failure [11]. To approximate the distribution of the proba-
bility of failure, a kernel density estimation is available [12].
However, limit state function approximation is essentially not
accurate enough for probability estimation, and the other methods
require additional epistemic uncertainty source to quantify the
probability of failure such as bandwidth selection in kernel density
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estimation. In this paper, it is foreseen that MCS may require a
large number of samples for a small probability of failure. How-
ever, it is one way to eliminate other sources of uncertainty but
the sampling uncertainty.

There are two major mechanisms for propagating uncertainty:
(a) the propagation of component probability of failures (CPF) to
the system probability of failure and (b) the propagation of episte-
mic uncertainty in components to the system. The former is equiv-
alent to expressing the system probability of failure in terms of
CPFs. There are many methods to calculate the system probability
of failure, but a Bayesian network [13,14] is utilized in this paper.
The Bayesian network is an intuitive way to understand the rela-
tionship among the components because it visualizes the relation-
ship of the component through a directed acyclic graph.
Therefore, it is possible to evaluate the contribution of individual
components to the system. For the latter, global sensitivity analy-
sis (GSA) will be utilized to show the propagation of the episte-
mic uncertainties in the components to a system. GSA calculates
the effect of the uncertainty in each component failure probability
on the uncertainty in the system probability of failure. Details will
be explained in Sec. 3.

A Bayesian network has been utilized in design optimization to
construct the probabilistic relationship between the input variables
and the output response. Such model is exploited as a surrogate
model, replacing an expensive computational one [15,16]. Unlike
these approaches, this paper shows the tradeoff between the uncer-
tainty reduction and the design perturbation in a Bayesian network.

In this paper, the design sensitivities of a conservative estimate
of system probability of failure concerning component design var-
iables and the number of samples in components are presented
using the Bayesian network and GSA. Previously, GSA has been
used for screening important variables [17]. This paper shows
how the global sensitivity analysis can be explicitly incorporated
into the design sensitivity.

The paper is composed of seven sections including the conclu-
sions. Section 2 shows two different methods to deal with episte-
mic uncertainty. Section 3 is a general explanation of Bayesian
network and GSA. Section 4 explains how the epistemic sampling
uncertainty is reflected in the design sensitivity at the system
level. Section 5 exhibits the contribution of this paper by quantify-
ing the effect of sampling uncertainty on the design sensitivity of
system failure probability. Section 6 demonstrates how the
derived sensitivity can be utilized in RBDO using pyrotechnical
mechanical device example.

2 Dealing With Sampling Uncertainty

As stated before, the probability calculation using sampling
methods can be affected by the number of samples. When a finite
number of samples are used, there is an uncertainty of calculation,
which leads to a distribution of probability. In general, there are
two ways of considering sampling uncertainty: “living with
uncertainty” and “shaping uncertainty.” In this section, these two
concepts are explained in the RBDO framework.

Let hðd;XÞ be a limit state function (i.e., constraint function)
with the vector of design variables d and the vector of aleatory
random variables X. The event of failure is determined when
hðd;XÞ � 0. When MCS with N samples is used, the probability
of failure can be estimated as

PF dð Þ ¼ 1

N

XN

i¼1

IF h d; xið Þ � 0ð Þ (1)

where IFð � Þ is the indicator function, which becomes one if its
argument is true; otherwise zero. In Eq. (1), xi is the ith sample of
random variable X. Therefore, the aleatory randomness in the
variable results in a single value of probability of failure.

However, the estimated probability of failure in Eq. (1) may
change if different sets of samples are used. That is, due to

sampling uncertainty, the probability of failure has uncertainty,
which can be modeled as a normal distribution P̂F � NðlF;r

2
FÞ,

where the mean is lF ¼ PF and the variance is
r2

F ¼ PFð1� PFÞ=N[8]. The sum of the indicator function NPFðdÞ,
approximately follows a normal distribution �NðNPF;NPFð1�
PFÞÞ when the normality condition is satisfied, such that NPF > 10
and Nð1� PFÞ > 10 [18]. If the condition is not satisfied, then we
cannot assume that the distribution is Gaussian. In such a case,
other methods such as the bootstrap method [19] can be used to
estimate the variance. Note that the standard deviation rF repre-
sents sampling uncertainty. When the probability of failure
approaches zero, the coefficient of variation considerably increases
[9]. In other words, sampling uncertainty becomes significant when
the probability of failure becomes small.

One method to deal with such sampling uncertainty for achiev-
ing the target probability of failure is to use a conservative esti-
mate of failure probability. Therefore, the reliability constraint
can be defined as

PF;cons � PF þ z1�arF � PT (2)

where PF;cons is the conservative estimate of failure probability,
z1�a is the z-score with the confidence level of 1� a, and PT is
the target probability of failure.

Figure 1 illustrates how the reliability constraint can be satisfied
when the probability of failure is distributed. Note that the sampling
uncertainty causes the distribution. As seen in Fig. 1, there are two
ways to obtain a satisfactory design when the reliability constraint in
Eq. (2) is violated. The first one is to shift the mean of the distribu-
tion, and the second is to reduce the standard deviation, rF. Figure
1(a) shows the case when the entire distribution of P̂F is shifted by
perturbing the design variables. The design will satisfy the reliability
constraint under both aleatory and epistemic uncertainties. This
approach yields a more conservative design to reduce the probability
of failure. Since this approach does not reduce but compensates for
the epistemic uncertainty by making design conservative, the
approach is referred to as “living with uncertainty” in this paper.

On the other hand, instead of shifting the distribution, it is also
possible to reduce the epistemic uncertainty to achieve the target
reliability. In Eq. (2), the reliability constraint can be satisfied by
reducing the standard deviation, as shown in Fig. 1(b). In this
case, the design does not change, but only the epistemic uncer-
tainty is reduced, which can be achieved by providing more sam-
ples. Because this approach compensates for the epistemic
uncertainty by changing uncertainty, it is referred to as “shaping
uncertainty” in this paper.

Traditional RBDO focuses on living with uncertainty. How-
ever, it often yields too conservative design due to large uncer-
tainty. Therefore, it would be necessary to control the uncertainty
to reduce the cost further. For engineering systems, having a con-
servative design can be safe, but it will cost more during opera-
tion. On the other hand, shaping uncertainty can save operation
cost, but it will be more expensive in the development stage due
to extra samples or tests. Therefore, it should be possible to com-
pare the tradeoff between the two approaches.

3 Global Sensitivity Analysis in Bayesian Network

3.1 System Probability Using Bayesian Network. When a
system consists of many components, the SPF, Psys

F , can be deter-
mined as a function of the CPF. From CPFs, the SPF can be calcu-
lated using the relationships among the components. In this paper,
a Bayesian network is used to quantify such relationship. The net-
work uses Bayes’ theorem to calculate the SPF along with condi-
tional probabilities [13,20]. An example of a simple Bayesian
network is given in Fig. 2, where P(A|B) is the probability of hav-
ing event A conditioned on event B. An event can be either suc-
cess “S” or failure “F.”

The Bayesian network consists of a graphical model called
directed acyclic graph and conditional probability tables
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associated with it. The circles in Fig. 2 are called “nodes” and rep-
resent each component in the system. The arrows, or the so-called
causal edges, show the dependence of the components. For exam-
ple, if the arrow starts from node B and reaches node A as in the
figure, then it represents that the probability of node A depends on
that of node B. In this case, node B is called “parent node and
node A is called “child node.”

The table on the side of a node shows the probabilities of failure
of the node conditioned on the parent nodes. For node C in the fig-
ure, for example, there are four possible failure cases: node C fails
when both A and B succeed, node A succeeds but B fails, node A
fails but B succeeds, and both A and B fail. In the table, the condi-
tional probability of failure corresponding to each case is
calculated.

Based on this configuration, the SPF can be expressed as a
function of CPFs using Bayes’ theorem. The definition of the SPF
depends on what the system is, but let us assume that the SPF is
defined here as the probability of failing node C, which is the last
node in the system. Then, the SPF is calculated based on the
Bayesian network as

Psys
F ¼ PðC ¼ FÞ ¼ PC

1 ð1� PA
1 Þð1� PB

1 Þ þ PC
2 ð1� PA

2 ÞPB
1

þ PC
3 PA

1 ð1� PB
1 Þ þ PC

4 PA
2 PB

1 (3)

It is noted that the calculation of SPF does not require any com-
putational cost in addition to calculating CPFs. As shown in Eq.
(3), a node can have multiple failure scenarios, such as PA

1 and PA
2 ,

which causes a notational difficulty in the following derivations.
Therefore, we will use the following notation to represent CPFs:
fPA

1 ;P
A
2 ;P

B
1 ;…;PC

4 g ¼ fP1
F;P

2
F;…;Pm

Fg; that is, there are m
CPFs. Equation (3) can be generalized to the relationship between
SPF and CPFs as

Psys
F ¼ Psys

F ðP1
F;P

2
F;…;Pm

F Þ (4)

3.2 Uncertainty in Failure Probability Estimation. There
are many methods available in calculating the CPFs, such as
surrogate-based methods [21] and sampling-based methods [19].
Different methods have their own advantages, but it is out of the
scope of this paper to discuss them. In this paper, it is assumed
that CPFs are calculated using a sampling-based method. The
unique characteristic of sampling-based methods is that the calcu-
lated CPFs have sampling uncertainty. That is, the CPF Pi

F is ran-
dom because different sets of samples may yield different values
of CPF. When MCS is used to calculate the CPF as in Eq. (1), the
variance in CPF can be calculated as

Vi
F � V Pi

F

� �
¼ Pi

F 1� Pi
F

� �
Ni

(5)

where Ni is the number of samples used to calculate Pi
F. It means

that the CPF has uncertainty due to sampling uncertainty, which
can be represented as P̂

i

F � NðPi
F;V

i
FÞ. An important observation

in Eq. (5) is that the uncertainty is a function of the level of proba-
bility and the number of samples. Note that Vi

F is inversely pro-
portional to the number of samples used. Therefore, it can be
controlled by changing the number of samples.

Since the SPF is a function of CPFs as shown in Eq. (4), its var-
iance can be calculated using the definition of variance [8]

Vsys
F � V½Psys

F � ¼ E½ðPsys
F Þ

2� � E½Psys
F �

2
(6)

When the SPF is expressed as a polynomial form of CPFs as in
Eq. (3), the variance can be analytically expressed in terms of

Fig. 1 Options to satisfy reliability constraint with conserva-
tive probability of failure: (a) living with uncertainty and (b)
shaping uncertainty

Fig. 2 Example of three-node Bayesian network
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CPFs and their variances. When SPF is not in the form of polyno-
mials of CPFs, a bootstrap method can be used to estimate the var-
iance in SPF. For example, the source of failure might be of
interest rather than the failure itself. In Fig. 2, it might be of inter-
est to minimize the probability of component A to fail when com-
ponent C fails. In this case, the conditional probability
PðA ¼ FjC ¼ FÞ becomes SPF, which is not a polynomial. In the
bootstrap method, the distribution of CPF is estimated by resam-
pling of function outputs, which results in some samples of CPFs,
and then, they are randomly sampled and used in Eq. (4) to calcu-
late samples of SPF from which the variance can be estimated.
The detailed explanation of bootstrap method for estimating
uncertainty can be found in Bae et al. [8].

As shown before, aleatory randomness in input parameters
causes the probability of failure, while sampling uncertainty
causes the uncertainty in the failure probability. Similar to CPFs,
when the SPF has sampling uncertainty, the reliability constraint
can be defined using a conservative estimate of the SPF as

Psys
F;cons � Psys

F þ z1�ar
sys
F � PT (7)

where the standard deviation of the SPF can be obtained by the
square root of the variance in Eq. (6).

3.3 Global Sensitivity Analysis. A major contribution of this
paper is to reduce the variance of the SPF in Eq. (6) by consider-
ing the number of samples as an input parameter. Since the input
parameters such as the number of samples are all defined at the
component level, the relationship between the variance of the SPF
and the variance in component input parameters needs to be iden-
tified. To develop such a relationship, the GSA is utilized in this
paper [22,23]. GSA decomposes the variance of a function output
into the variance of input variables. If it is applied to the Bayesian
network, the SPF can be regarded as the output and the CPF as the
input. Therefore, GSA shows the contribution of the variance of
CPF to the variance of the SPF. Based on this property, GSA will
be used to calculate the sensitivity of the variance of SPF with
respect to the variance of CPFs in this paper. The variance-based
GSA requires the random input variables to be independent of
each other. The components in a BN do not share any aleatory
random variables. Therefore, they are all independent of each
other. Note that the nodes in a BN are only conditionally inde-
pendent of its non-descendants given its parents, while CPFs are
all independent. Therefore, the variance decomposition-based
GSA method can apply to a BN. The CPFs can be the same where
the probabilities are evaluated using the same model as in a paral-
lel system.

From a Bayesian network, the SPF in Eq. (4) can be decom-
posed into subfunctions as

Psys
F ¼ g0 þ

X
i2U

gi þ
X

i;j2U;i<j

gij þ � � � þ gij…m (8)

where the set of all m indices is denoted as U ¼ fi; j;…;mg, and
g’s are subfunctions. The subscripts in a subfunction represent the
CPFs involved in the function. The subfunctions are defined as

g0 ¼
ð1

0

Psys
F

Y
i2U

f ðPi
FÞ dPi

F (9)

gij::r ¼
ð1

0

Psys
F

Y
k 62Uij::r

f ðPk
FÞdPk

F�
X

k2Uij::r

gk�
Xr

k;l2Uij::r ;k<l

gkl�…�g0

(10)

where the set of indices corresponding to the sub-function is
denoted as Uij::r ¼ fi; j;…; rg 	 U. For example, g0 of Eq. (8) for
Eq. (3) is obtained simply by replacing each CPF by its mean, and
the first-order terms are also calculated by replacing all other

CPFs than the CPF with the corresponding subscript by their
means

g0 ¼ E½P4ð1� P2Þð1� P1Þ þ P5ð1� P3ÞP1 þ P6P2ð1� P1Þ
þ P7P3P1� (11)

gi ¼ Psys
F ðE½P1�; ::;E½Pi�1�;Pi;E½Piþ1�;…;E½P7�Þ � g0 8i (12)

Based on the normality assumption, the probability density func-
tion f ðPk

FÞ of a CPF is a normal distribution in this paper.
The advantage of the decomposition in Eq. (8) is that the var-

iance of SPF can be calculated as the sum of the variance of indi-
vidual subfunctions as below. Such calculation is possible
because the subfunctions are orthogonal to each other. Also, the
variance of a subfunction is called partial variance [24]

Vsys
F ¼

X
i2U

V½gi� þ
X

i;j2U;i<j

V½gij� þ � � � þ V½g12…m� (13)

Each term in Eq. (13) can be calculated as

Vsys
F ¼

ð1

0

ðPsys
F Þ

2
Y
k2U

f ðPk
FÞ dPk

F � g2
0 (14)

V½gij…r� ¼
ð1

0

g2
ij…r

Y
k2Uij::r

f ðPk
FÞ dPk

F � g2
0 (15)

It is noted that the subfunction gi is a function of the ith CPF,
giðPi

FÞ, while gij is that of the ith and jth CPFs, gijðPi
F;P

j
FÞ. Since

a subfunction is a function of CPFs, the variance of a subfunction
in Eq. (10) can be expressed in terms of the variances of CPFs as

V½gij::r� ¼
X

k2Uij::r

akVk
F þ

X
k;l2Uij::r ;k<l

bklV
k
FVl

F þ � � � (16)

where Vk
F is the variance of kth CPF. Therefore, from Eq. (13), the

variance of SPF can also be expressed in terms of the variances of
CPFs as

Vsys
F ¼

X
k2U

akVk
F þ

X
k;l2U;k<l

bklV
k
FVl

F þ � � � þ cV1
FV2

F � � �Vm
F (17)

where am is the sum of all linear terms of the variances of sub-
functions, while bmn is that of quadratic terms and so on.

Then, it is possible to define a sensitivity index. A sensitivity
index with one subscript is referred to as the main sensitivity
index because it shows the effect of the corresponding variable
alone, and a sensitivity index with more than one subscript is
referred to as an interaction sensitivity index because it shows the
interaction effect among the corresponding variables. The sensi-
tivity index is defined as

Sij…r ¼
V gij…r½ �

Vsys
F

(18)

Using the sensitivity indices, the total sensitivity index is defined
as the sum of the main sensitivity index and the interaction sensi-
tivity indices. The total sensitivity index shows the total effect of
the variance of a CPF on the variance of the SPF as

STi ¼ Si þ
X

Si;int (19)

where Si;int represents any interaction sensitivity index of which
subscript possesses i.
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4 Design Sensitivity Under Epistemic Uncertainty

The conservative SPF in Eq. (7) depends on design variables in
the component as well as the number of samples used to calculate
CPFs. Therefore, to control the reliability constraint, it would be
necessary to establish the relationship between the conservative
SPF and component design variables and the number of samples.
Such relationship can be addressed in terms of design sensitivity
in this section.

The sensitivity of an SPF can be derived using the chain rule of
differentiation. Let dij be the jth design variable of the ith CPF.
Then, the conservative SPF can be differentiated as

@Psys
F;cons

@dij
¼ @ Psys

F þ z1�ar
sys
F

� �
@dij

¼ @Psys
F

@Pi
F

@Pi
F

@dij
þ z1�a

@rsys
F

@Vsys
F

@Vsys
F

@Vi
F

@Vi
F

@Pi
F

@Pi
F

@dij

(20)

Each term on the right-hand side of Eq. (20) can be calculated as
follows. The first term, @Psys

F =@Pi
F, can be obtained by differenti-

ating the SPF from the Bayesian network model in Eq. (4). Since
dij is only involved in the ith component, it is enough to consider
the ith component only. Assuming that Ni samples are used to
evaluate Pi

F, the derivative of CPF @Pi
F=@dij can be obtained by

differentiating the MCS approximation in Eq. (1) using Leibniz’s
rule as

@Pi
F dð Þ
@dij

¼ 1

Ni

XNi

k¼1

IF h d; xkð Þ � 0ð Þs xk; dð Þ (21)

where sðxk; dÞ is the partial derivative of the log-likelihood func-
tion with respect to its argument. The function is referred to as a
score function [25]. The derivative of rsys

F with respect to Vsys
F can

be calculated from the relationship between the standard deviation
and variance as

@rsys
F

@Vsys
F

¼ 1

2rsys
F

(22)

Using the relationship in Eq. (5), the component variance can be
differentiated with respect to the CPF as

@Vi
F

@Pi
F

¼ 1� 2Pi
F

Ni
(23)

Therefore, all terms in Eq. (20) can be calculated except for the
term, @Vsys

F =@Vi
F, which requires the relationship between the sys-

tem variance and component variances. This term will be derived
using GSA. The derivative of the variance of the SPF with respect
to the variance of a CPF is calculated from Eq. (17) as

@Vsys
F

@Vi
F

¼ ai þ
X

k2U�Uij::r ;

bkiV
k
F …

X
k2U�U12::i;

bikVk
F…

þ cV1
F � � �Vi�1

F Viþ1
F � � �Vm

F � ji

(24)

Using Eqs. (21)–(24), the sensitivity in Eq. (20) can be rewritten
as

@Psys
F;cons

@dij
¼ @Pi

F dð Þ
@dij

@Psys
F

@Pi
F

þ z1�a
ji 1� 2Pi

F

� �
2Nir

sys
F

 !
(25)

Because ji is the sum of ai and high order terms, Eq. (24) is not
simple enough to calculate. In other words, both the main effect
and the interaction effect must be considered to calculate the sen-
sitivity. From Eq. (17), however, it is possible to formulate the
total sensitivity index as

STi ¼
V gið Þ þ V gijð Þ þ � � � þ V gij…klð Þ

Vsys
F

¼ jiV
i
F

Vsys
F

(26)

Therefore, the derivative can be simply expressed as

@Vsys
F

@Vi
F

¼ STiV
sys
F

Vi
F

(27)

Substituting Eq. (25) with Eq. (27), the sensitivity of a conserva-
tive estimate of the SPF with respect to the jth design variable of
the ith component can be obtained as

@Psys
F;cons

@dij
¼ @Pi

F dð Þ
@dij

@Psys
F

@Pi
F

þ z1�a
STir

sys
F 1� 2Pi

F

� �
2NiV

i
F

 !
(28)

Likewise, the sensitivity of the conservative estimate with respect
to the number of samples in the ith component can be assessed
using the chain rule of differentiation as

@Psys
F;cons

@Ni
¼ �z1�a

STir
sys
F

4Niri
F

(29)

Note that the sensitivity is always negative because the increasing
number of samples will reduce the sampling uncertainty.

5 Effect of Sampling Uncertainty on System-Level

Design Sensitivity

To demonstrate the effect of sampling uncertainty on sensitivity
and to show in what situation the approximation of the sensitivity
given as Eq. (28) can be used, the following two-node Bayesian
network is considered. In the network, node B depends on node
A, and the probability table corresponding to each marginal and
conditional probability of failure is provided on the left side of the
directed acyclic graph. “S” and “F” denote “Success” and
“Failure,” respectively.

From the Bayesian network provided in Fig. 3, the SPF, which
is defined as the probability of component B to fail, can be calcu-
lated as

Psys
F ¼ P1

FP2
F þ ð1� P1

FÞP3
F (30)

The confidence level is set to 90%, which corresponds to
z0:9 ¼ 1:28. Using the variance decomposition, the subfunctions
and partial variances are calculated. Note that the subfunction g23

that represents the interaction between P2
F and P3

F as well as g123

that shows the interaction of all the CPFs is equal to zero because
no term involves P2

F and P3
F together. Using the decomposition

result, the coefficients in Eq. (17) are calculated. The probability
of failure is calculated through the sampling method.

To show the accuracy of the sensitivity calculation, it is
assumed that the conditional probabilities of failure in Fig. 3 are
obtained using 1000 samples, where individual CPFs are P1

F ¼
7:2%; P2

F ¼ 5:8%; and P3
F ¼ 1:0%. Thus, the first component is

the least safe among the three.
Table 1 verifies the design sensitivity in Eq. (27), while com-

paring it with the result when the main sensitivity index is used
instead of the total sensitivity index. As shown in the table, Eq.
(27) holds for all the CPFs. On the other hand, the result is also
satisfactory when the main sensitivity index is used to approxi-
mate the design sensitivity. The difference is less than 3% in this
study when compared to ji, which is the true design sensitivity
from Eq. (24). Still, the total sensitivity index will be used since it
does not require any approximation.

The effect of sampling uncertainty on the sensitivity analysis is
found in Eq. (28). In Table 2, the effect of design change on the
probability calculation, f 0 ¼ @Psys

F =@Pi
F, is compared with the
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effect of uncertainty, r0 ¼ z1�aSTir
sys
F ð1� 2Pi

FÞ=2NiV
i
F. f 0 repre-

sents the effect of design change on conservative SPF, while r0

represents the effect of sampling uncertainty.
Table 2 displays the consequence of incorporating the epistemic

uncertainty with sensitivity analysis. In the case of P3
F, the sensi-

tivity ratio is about 19%. Furthermore, r0 is linearly proportional
to the confidence level. Therefore, the effect of uncertainty
becomes considerable as the confidence level becomes high.

r0 relies on Eq. (27). Since the GSA is performed before the
design sensitivity analysis, it is possible to compare the relative
magnitude of r0 of each component as seen in Table 2. Table 3
compares the total sensitivity index of three CPFs. As seen in the
table, ST3 is the largest, while ST1 is only 0.0171. In this regard,
the sensitivity analysis corresponding to P3

F demonstrates that it is
necessary to include the sampling uncertainty as in Table 2, while
the total sensitivity index must be used for the sensitivity calcula-
tion as the authors pointed out in Table 1.

Table 4 shows the sensitivity results of the conservative esti-
mate of the SPF with respect to the number of samples in each
component. In the table, it is confirmed that @Psys

F;cons=@N3 pos-
sesses the largest value, whose corresponding total sensitivity
index is also the largest.

6 Reliability-Based Design Optimization Under Sam-

pling Uncertainty

To demonstrate the optimization procedure of a system under
sampling epistemic uncertainty, a pyro-mechanical device (PMD)
example is considered in this section. Based on the mathematical
models described in Appendix, a Bayesian network is built first,
as shown in Fig. 4. The probability table corresponding to each
marginal and conditional probability of failure is provided next to
the directed acyclic graph. “S” and “F” denote “Success” and
“Failure,” respectively. There are two initiators connected in par-
allel to ensure a high reliability, and thus, the Bayesian network
consists of three nodes. However, one of the initiators has a
shorter heating element due to geometrical restriction in the
device, therefore, the probabilities of failure are different for the
two initiators. The probabilities are estimated by MCS using ran-
dom input variables shown in Table 5. All the random variables
follow a normal distribution. The standard deviations are fixed
during the optimization. Note that the design variable is the mean

of a random variable, and Table 5 specifies the bounds of the
design variables.

Since the piston moves if and only if the initiator works, the
probability of failure of the piston when both of the initiators fail
PðY ¼ FjI1 ¼ F; I2 ¼ FÞ is one. Also, the performance of Pyro-
lock will be the same if one of the two initiators is successful or
both of them are successful. Therefore, the three conditional prob-
abilities PðY ¼ FjI1 ¼ S; I2 ¼ SÞ, PðY ¼ FjI1 ¼ S; I2 ¼ FÞ, and
PðY ¼ FjI1 ¼ F; I2 ¼ SÞ are the same.

From the Bayesian network provided in Fig. 4, the system prob-
ability of failure, which is defined as the probability of failure of
the Pyrolock, can be calculated as

Psys
F ¼ PY þ PI1PI2 � PI1PI2PY (31)

The confidence level is set to 95%, which corresponds to
z0:95 ¼ 1:645.

Before carrying out optimization, the accuracy of SPF in the
Bayesian network is verified by comparing it with all-in-one
MCS. First, a design point d ¼ f6; 1; 13; 1:5; 8:4E� 06g is
selected, which will not yield a zero probability of failure. Then,
20,000 samples are generated from the distribution of random
input variables. For the Bayesian network, these 20,000 input
samples are applied for each component model in Appendix to
calculate the CPF first, and the SPF is obtained by using Eq. (31).
The same 20,000 input samples are then recycled to calculate the
SPF without using the Bayesian network. That is, the same 20,000
samples are applied to the mathematical models in Appendix to
calculate 20,000 samples of moving distances of the piston from
which the number of samples whose moving distance is less than
3 mm is counted. With the Bayesian network, the CPFs are esti-
mated as PI1 ¼ 52:11%; PI2 ¼ 51:53%, and PY ¼ 17:30%. The
corresponding SPF is equal to Psys

F ¼ 40:27%. Without the Bayes-
ian network, the SPF is estimated as Psys

F ¼ 40:25%. The small
difference is due to the numerical error in calculation.

The calculation is repeated for 10,000 times to verify that Eq.
(31) estimates the SPF correctly without bias. The result shows
that the mean of SPF from the Bayesian network and the MCS is
exactly same as E½Psys

F � ¼ 40:99%. Thus, Eq. (31) predicts SPF
quite correctly. However, there is a small difference in the stand-
ard deviation of the SPF. The Bayesian network results in
E½rðPsys

F Þ� ¼ 0:0032, while the MCS gives E½rðPsys
F Þ� ¼ 0:0035.

There is a difference even though very small. This is because

Fig. 3 Two-node Bayesian network

Table 1 Comparison of design sensitivity

CPF P1
F P2

F P3
F

(1) SiVtot=Vi 2.3040
 10�3 5.1840
 10�3 8.6118
 10�1

(2) STiVtot=Vi 2.3685
 10�3 5.2508
 10�3 8.6125
 10�1

(3) ji 2.3685
 10�3 5.2508
 10�3 8.6125
 10�1

ð1Þ=ð3Þ 
 100 97.27% 98.72% 99.99%
ð2Þ=ð3Þ 
 100 100% 100% 100%

Table 2 Effect of sampling uncertainty on sensitivity analysis

CPF P1
F P2

F P3
F

f
0

0.048 0.072 0.928
r
0

4.697
 10�4 9.932
 10�4 0.1814
r
0
=f
0

0.97% 1.37% 19.54%

Table 3 Sensitivity index of CPF

Main sensitivity index S1 S2 S3

0.0171 0.0316 0.951
Interaction sensitivity index S12 S13 S23 S123

4.071
 10�4 7.377
 10�5 0 0
Total sensitivity index ST1 ST2 ST3

0.0176 0.0320 0.951

Table 4 Sensitivity analysis results with respect to number of
samples

@Psys
F;cons=@N1 @Psys

F;cons=@N2 @Psys
F;cons=@N3

Sensitivity �2.071
 10�6 �4.153
 10�6 �2.899
 10�4
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when the Bayesian network is built up, it is assumed that PðY ¼
FjI1 ¼ S; I2 ¼ SÞ is equal to PðY ¼ FjI1 ¼ F; I2 ¼ SÞ and
PðY ¼ FjI1 ¼ S; I2 ¼ FÞ. Therefore, when using a sample for PY ,
the sample adds information to three individual CPFs in the
Bayesian network. However, it is concluded that the Bayesian net-
work accurately estimates the system probability of failure with
its uncertainty.

The optimization problem is formulated using a cost model to
consider the effect of both the design variables and the number of
samples. The cost model is composed of the operation cost and
the design cost. The operation cost of the initiator is proportional
to the volume of the heating element. There are two initiators,
therefore, the operation cost is the sum of the two. Also, the oper-
ation cost of the piston model increases if the mass or density of
the charge increase. The design cost is a multilinear function of
the number of samples.

In general, the reliability constraint can be defined for both the
components and the system. Although the system probability of
failure is the target, still it is necessary to set the limit for each
component probability of failure. Otherwise, the algorithm makes
some of the component probabilities extremely high or low, which
is undesirable. The sensitivity of the conservative estimate of CPF
can be found in the paper by Bae et al. [9]. The optimization prob-
lem can then be formulated using the operation and the design
costs as

min cos t dð Þ ¼ operation costþ design cost

¼ C1

d1� 6ð Þ2

10
þ d2� 1ð Þ2

5

� �
þC2

d3� 18ð Þ2

7
þ d4� 1ð Þ2

3

� �� 	
þC3d5þC4 n1þ n2ð ÞþC5n3

s:t: P hi xð Þ> 0½ � þ z0:95rPi
< PT;i; i¼ 1� 3

Psys
F þ z0:95r

sys
F < PT;sys;

dL � d� dU; d 2R6 and X2R6

(32)

where C1 ¼ 10; C2 ¼ 5; C3 ¼ 1; C4 ¼ 0:1, and C5 ¼ 0:2 are
used in the objective function. A scaled variable ni ¼ Ni=10; 000
is used for normalization. The target probability of each compo-
nent PT;i ð i ¼ 1 � 3Þ is set to 5%. Also, the system level target

probability PT;sys is 5%. The three component-level constraint
functions are given as

h1ðxÞ ¼ 350½8C� � TI1ðx; t ¼ 0:005Þ > 0

h2ðxÞ ¼ 350½8C� � TI2ðx; t ¼ 0:005Þ > 0

h3ðxÞ ¼ 0:003� dP½m� > 0

(33)

The first two constraints are the failure of two initiators, while the
last constraint defines the failure of the piston. The maximum
number of available samples per each iteration is 10,000. Table 6
shows the information of the initial design variables, and Tables 7
and 8 summarize the RBDO results.

The result using 10,000 samples is shown in Table 8. At the
optimum point, the probabilities of failure of all three compo-
nents, as well as that of the system, are calculated. As expected,
the conservative estimate of the CPF and SPF attains the target
probability of failure. All the probabilities are conservative, mean-
ing the CPFs at the optimum are lower than the target probability.
The cost of the initial design is 8.4943, and at the optimum, it is
slightly increased to 12.4374. It is because the initial design is in
the infeasible region. As more samples are provided, the optimum
design will be closer to that of the traditional RBDO because the
sampling uncertainty will diminish as shown in Eqs. (28) and
(29).

Note that more samples are provided to the first initiator than
the second initiator although the design cost is same for both. This
is because the optimum design is found on the design limit. In
other words, the algorithm tries to attain the target probability of
failure by reducing the uncertainty of the design. Also, the least
number of samples is given to evaluate the CPF of the piston since
the relative cost of the sample is expensive and the cost function
corresponding to the sampling of the piston is linear.

Fig. 4 Bayesian network of PMD system

Table 5 Random variables in PMD system

Component Variable Lower limit Upper limit Standard deviation

Initiator ðI1Þ Heating element length ðd1Þ 2.0 (mm) 10.0 (mm) 1 (mm)
Heating element diameter ðd2Þ 0.1 (mm) 2.0 (mm) 0.2 (mm)

Initiator ðI2Þ Heating element length ðd3Þ 15.0 (mm) 20.0 (mm) 1 (mm)
Heating element diameter ðd4Þ 0.1 (mm) 2.0 (mm) 0.2 (mm)

Piston ðYÞ ZPP mass ðd5Þ 5
 10�6 (kg) 15.5
 10�6 (kg) 2.5
 10�7 (kg)

Table 6 Initial design of Pyrolock

Component Variable Value Variable Value Variable Value

I1 d1 5.00 (mm) d2 0.30 (mm) n1 0.5
I2 d3 17.00 (mm) d4 0.40 (mm) n2 0.5
Y d5 5
 10�6 (kg) n3 0.5

Journal of Mechanical Design APRIL 2019, Vol. 141 / 041403-7

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 01/22/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



The optimization shows that the number of samples also can be
adjusted during the iteration to satisfy the target probability. This
is an important issue when the cost of model evaluation, which is
expressed as design cost in this problem, is high. Moreover, the
number of samples at the optimum can be used for model valida-
tion. Note that the constraints used in the algorithm are mathemat-
ical models that mimic the physical behavior of the component.
Therefore, the validation should be carried out with the experi-
ments. For that purpose, it is only required to do the same number
of experiments as the samples to validate the result according to
the optimization rather than carrying out the same number of
experiments on all the components, which significantly reduces
the cost.

Conclusions

This paper presented how to include sampling uncertainty in
the RBDO of a system using the Bayesian network. The design
sensitivity of the conservative estimate of probability with respect
to the design variables and the number of samples is derived using
global sensitivity analysis along with the Bayesian network. This
paper shows how the global sensitivity analysis can be applied to
design sensitivity analysis, rather than using it only for screening
insignificant variables. The result shows that both changing design
and changing the number of samples can be used to satisfy the tar-
get probability of failure in RBDO under sampling uncertainty.
Moreover, the paper demonstrates that it is necessary to compare
the total sensitivity index to decide when to include the sampling
uncertainty in the design sensitivity analysis. If small, sensitivity
calculation may ignore the sampling uncertainty.

In this paper, MCS is applied to explain the methodology.
Although sampling methods are expensive, a lot of industry still
rely on a sampling method because of errors in approximate meth-
ods. Because sampling methods are expensive, the paper makes
more sense as we consider sampling uncertainty. Having said that,
other methods can also be utilized as long as CPFs, and their
uncertainty can be estimated. Once the CPFs are estimated, the
rest of the procedure does not require much computational cost.
Besides, computational resource problem can be solved by replac-
ing the model with a surrogate model such as Kriging with which
reliability-based design optimization is often performed. Once a
surrogate model with enough accuracy is available, there is not
much difference in computational effort for different methods.
The effect of the accuracy of surrogate model (i.e., surrogate
model uncertainty) on the proposed method will be addressed in
the future research.
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Nomenclature

Ac;tot ¼ total particle surface area
Aps ¼ cross-sectional area of piston

Asurf
e ¼ surface area
Cp ¼ heat capacity

d ¼ design variable
de ¼ diameter of heating element
dij ¼ jth design variable in ith component-level probability of

failure
f ¼ probability density function

Fba ¼ ball friction
For ¼ o-ring friction
Fsh ¼ shear pin force

g ¼ subfunction
h ¼ limit state function
I ¼ input current

IF ¼ indicator function
le ¼ length of heating element

lpin ¼ pin length
mba ¼ ball mass
mc ¼ charge mass

mps ¼ piston mass
Ni ¼ number of samples to calculate Pi

F
PF ¼ probability of failure

PF;cons ¼ conservative estimate of probability of failure
Pps ¼ chamber pressure
PT ¼ target probability of failure

Psys
F ¼ system probability of failure
Pi

F ¼ the ith component-level probability of failure
Qloss ¼ heat transfer

R ¼ resistance of heating element
rb ¼ burning rate
Rg ¼ universal gas constant
rw ¼ resistivity

s ¼ score function
Si ¼ sensitivity index

Sint ¼ interaction sensitivity index
STi ¼ total sensitivity index

T ¼ temperature
Tg ¼ gas flame temperature

Tpin ¼ temperature at the end of pin
T0 ¼ ambient temperature
V ¼ variance

Vps ¼ chamber volume
X ¼ random variable

yth ¼ threshold value of y
z1�a ¼ 1� a level z-score

c ¼ specific heat ratio
e ¼ emissivity
e ¼ burning distance

gp ¼ correction factor
j ¼ conductivity

qc ¼ charge density
r ¼ standard deviation
rs ¼ Stefan–Boltzmann constant
vps ¼ piston velocity

Appendix

Overview of Pyro-Mechanical Device

Pyro-mechanical device represents a group of mechanical devi-
ces, which obtain the required energy from chemical reactions. It
is widely used in the field of aeronautics such as launching, initiat-
ing, controlling, and separating the missiles, space shuttle bodies,

Table 7 Optimization results of Pyrolock

Component Variable Value Variable Value Variable Value

I1 d1 6.18 (mm) d2 0.10 (mm) n1 0.4255
I2 d3 18.06 (mm) d4 0.31 (mm) n2 0.2378
Y d5 9.92
 10�6 (kg) n3 0.1012

Table 8 Probability of failure at optimum

Component Probability of failure Conservative estimate

I1 4.25% 4.76%
I2 4.25% 4.93%
Y 3.56% 4.52%
System 3.73% 4.69%
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and satellites [26]. Because the device is initiated by chemical
reactions, it is normally disposable. Thus, it is not possible to test
a PMD that is already assembled into a system. Moreover, this
one-shot device is usually stored for a long period in nominal con-
dition and then initiated. For this reason, the target probability of
failure must be low.

Figure 5 shows an example of PMD, a so-called Pyrolock. The
device holds two structures through the bolt at the end, and it
releases the outer structure by dropping the balls once it receives
an electric signal through the initiator. During the initiation, a cop-
per heating element undergoes Joule heating. When the tempera-
ture of the bridge is sufficiently elevated, an explosive charge is
detonated. The rapidly expanding explosive pushes the piston for-
ward. When the piston is sufficiently advanced, the metal balls
drop into awaiting slots in the piston. The bolt may then separate
from the Pyrolock.

There are multiple failure modes possible for this device due to
the many part dependencies. In this example, the model is simpli-
fied to consider only two failure modes: the failure of the copper
bridge and the failure of the piston. The failure of the copper
bridge is defined as the temperature being less than 350 �C when
3.5 A current is applied for 5 ms. The failure of the piston is
defined as the moving distance of the piston is less than the diame-
ter of the ball, which is 6 mm when the piston stops. Figure 6 dem-
onstrates possible failures in each component. On the left of Fig. 6,
the temperature of the copper bridge in the initiator does not reach
350 �C within 5 ms, and on the right side, the piston proceeds no
more than 1900 lm when it stops while at least 3000 lm of dis-
placement is required in order to successfully operate the PMD
system. Although the example is simple, it is still enough to dem-
onstrate the effect of epistemic uncertainty on the optimization.

Pyro-Mechanical Device Model Description

Each component of the PMD system is modeled as a system of
differential equations to describe the physical behavior of the
component. First, the temperature rate of the heating element can
be modeled as an ordinary differential equation as

dT

dt
¼ 1

Cp
I2R Tð Þ � pjd2

e T � Tpinð Þ
2lpin

� ersA
surf
e T4 � T4

0

� �" #
(A1)

where the resistance and resistivity are, respectively, defined as

R Tð Þ ¼ 0:0005
le

d2
e

rw Tð Þ (A2)

rwðTÞ ¼ 40:604þ 0:06984T (A3)

As the temperature rises by Joule heating, heat is transferred to
the surface of the element through conduction and radiation. The
second and third terms of Eq. (A1) represent such transfer. Note
that the resistivity also increases as the temperature rises. Other
variables in the equations are explained in Nomenclature.

The motion of the piston is staged in three steps. During stage
1, chemical reactions in the initiator generate energy in the form
of pressure in the chamber, which is the main driving force to the
piston. Initially, the location of the piston is fixed by a shear pin.
When the pressure in the chamber is large enough to break the
shear pin, the piston starts its motion. A possible failure occurs
when the pressure is insufficient so that the pin remains secure.

While the piston is moving, there exist resistive forces from the
O-ring and the ball bearing. Stage 2 simulates the motion of the
piston under the pressure in the chamber, O-ring force, and ball

Fig. 5 Pyrolock device

Fig. 6 Failure modes in Pyrolock

Fig. 7 Motion of piston in each stage
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friction until the ball bearings are dropped to the hollow space in
the piston. In this system, it is considered that the ball bearings are
dropped if the piston moves more than the diameter of the ball
bearings, which is 3 mm. Stage 3 simulates the motion of piston
after the ball bearings are dropped, where the ball friction no
more applies to the motion of the piston. The model calculates the
motion of the piston and the change of the pressure as a function
of time. The following system of differential equations describes
the chemical reactions and the motion of piston:

dqc

dt
¼ 1

Vps

dmc

dt
� qc Ac;totrb þ Apsvpsð Þ

� 	
(A4)

dPps

dt
¼ 1

Vps
gp

dmc

dt
RgcTg� c�1ð Þ PpsApsvpsþ

dQloss

dt

� �
�Pps

dVps

dt

� 	
(A5)

dVps

dt
¼ Ac;totrb þ Apsvps (A6)

de

dt
¼ rb (A7)

dvps

dt
¼

0 Stage 1ð Þ
PpsAps � For � Fbað Þ=mps Stage 2ð Þ
PpsAps � Forð Þ=mps Stage 3ð Þ

8<
: (A8)

Fsh ¼
234 ðStage 1Þ
0 ðStage 2; 3Þ



(A9)

For ¼
0 ðStage 1Þ
�2:64E� 14P2

ps þ 1:67E� 06Pps þ 14:04 ðStage 2; 3Þ



(A10)

Fba ¼
0 ðStage 1Þ
3000 ðStage 2; 3Þ



(A11)

Equations (A4) and (A5), respectively, represent the rate of charge
density and the pressure. The pressure rate also considers the pres-
sure loss by air resistance and volume change. Equation (A6)
shows the volume rate as the piston moves forward and Eq. (A7)
calculates the burning rate. Equation (A8) is the equation of
motion of the piston under the shear pin force in Eq. (A9), O-ring
force in Eq. (A10), and the friction force in Eq. (A11). Note that
the forces are defined differently from a stage to another. This is
because the piston undergoes different conditions when the stage
changes. Equations (A4)–(A11) are solved simultaneously [19].
Figure 7 illustrates each stage.
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