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In this paper, an interesting observation on the noise-dependent performance of prognostics algorithms is presented. A method of evaluating the accuracy of prog- 
nostics algorithms without having the true degradation model is proposed. This paper compares the four most widely used model-based prognostics algorithms, 
i.e., Bayesian method, particle filter, Extended Kalman filter, and nonlinear least squares, to illustrate the effect of random noise in data on the performance of 
prediction. The mean squared error (MSE) that measures the difference between the true damage size and the predicted one is used to rank the four algorithms for 
each dataset. We found that the randomness in the noise leads to a very different ranking of the algorithms for different datasets, even though they are all from 

the same damage model. In particular, even for the algorithm that has the best performance on average, poor results can be obtained for some datasets. In absence 
of true damage information, we propose another metric, mean squared discrepancy (MSD), which measures the difference between the prediction and the data. A 

correlation study between MSE and MSD indicates that MSD can be used to estimate the ranking of the four prognostics algorithms without having the true damage 
information. Moreover, the best algorithm selected by MSD has a high probability of also having the smallest prediction error when used for predicting beyond the 
last measurement. MSD can thus be particularly useful for selecting the best algorithm for predicting into the near future for a given set of measurements. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Model-based prognostics approaches can provide a better perfor-
ance than data-driven approaches when a degradation model is avail-

ble [1,2] . The most widely used model-based prognostics methods in
he literature include Extended Kalman filter [3-4] , particle filter [5,6] ,
ayesian method [7,8] and nonlinear least squares [9] . Some review
rticles [10,11] introduce and evaluate these algorithms (or part of
hem) in terms of a general descriptive explanation of their respective
dvantages and disadvantages. Some publications quantitatively com-
are different model-based prognostic methods through specific exam-
les [1,9,12] . However, we have not found studies of the effect of ran-
omness in the measurement data on the ranking of algorithms, which
s the objective of the present paper since measurement noise is one of
he most important uncertainty sources. 

One of the major challenges in prognostics and health management
PHM) is dealing with prediction uncertainty. Long-term prediction of
emaining useful life (RUL) or probability of failure in a certain time
orizon increases the bound of prediction uncertainty due to various
ources, such as measurement noise, future load, and usage uncertainty,
odel assumptions and inaccuracies, etc. [13]. An important issue en-

ountered in making meaningful predictions is to treat these uncertain-
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ies properly as they directly affect the prognostics results, thus affecting
he associated decision-making process [14] . Uncertainty leads to sig-
ificant deviation of prognostics results from the actual situation. For
xample, in the application of fatigue crack growth, the Paris model
s often used. Among the two Paris model parameters, the exponent,
 , of aluminum alloy is known to be in the range of 3.6 and 4.2. This

orresponds to 16% variability. But the life cycle can differ by 500%
15] . Sankararaman discussed a series of issues regarding uncertainties
n PHM including the causes of uncertainty, the ways of how to inter-
ret uncertainty, how to facilitate effective treatment of uncertainty and
ow to accurately quantify the uncertainty [16] . 

Measurement noise is one of the most significant uncertainty sources,
hich must be represented and managed properly. In model-based prog-
ostics techniques, the estimation of model parameters depends on the
easurement data. Using a different set of data will result in different

stimations of model parameters, i.e., the uncertainty in measurement
ata propagates into the uncertainty in model parameters, which sig-
ificantly affects the performance of the prognostics. In addition, even
mall errors at the initial state caused by measurement noise can accu-
ulate and grow over time, and consequently, severely distort the pre-
icted probability distribution over a long time period. It is necessary
o account for measurement uncertainty right from the initial stages of
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ystem-level design. Therefore, well representing, propagating, quanti-
ying and managing measurement uncertainty is very important. In this
esearch, we seek to compare the most commonly used model-based
rognostics techniques among themselves for their suitability in vari-
us datasets. 

An observation from this study is that the performance of the algo-
ithms depends on the particular realization of random noise. Therefore,
here may not be a significant meaning to rank the generic performance
f algorithms. In this sense, it would be more desirable to use the best
lgorithm for the given noisy data. The selection of the best algorithm
s challenging when the true damage information is not available. Most
egradation metrics in the literature are based on the knowledge of true
egradation information [17] . Therefore, they are useful for evaluating
he generic performance of an algorithm. A useful conclusion from this
tudy is that the mean squared discrepancy is a good representative of
he mean squared error. The former one can be used instead of the lat-
er in the absence of true degradation. In addition, we observe that the
est algorithm selected based on the past measurement data is highly
ikely to be among the best for future prediction. Therefore, the pro-
osed method of selecting the best algorithm for the specific noisy data
et can be practical for future prognostics. 

Existing metrics such as the prognostic horizon, 𝛼 − 𝜆 accuracy, (cu-
ulative) relative accuracy and convergence have been proposed for

ffline assessment of the performance of a prognostic model from ac-
uracy, precision or robustness aspects. Typically, computation of these
etrics requires the “true” degradation information, e.g., the true End

f Life (EOL), the true remaining useful life (RUL), the availability of
istorical run-to-fail data, etc. However, in practice, the entire degrada-
ion process from the beginning of operation until the equipment failure
ay not yet be observed. Therefore, this makes it challenging to assess

he performance of prognostic methods and difficult for users to suitably
hoose the appropriate method for their problems. The main objective
f this paper is to propose a method for online assessment of the per-
ormance of model-based prognostics algorithms based on past degra-
ation measurement data. Hu et al. [18] proposed a metric that enables
ssessing the performance of a model-based prognostic approach from
ast measurement data in three cases characterized by different levels
f knowledge on the degradation process. In [18] , the PF is chosen as
he prognostics method to test the proposed metric. 

In this paper, we focus on four of the most commonly used model-
ased algorithms, Bayesian method, particle filter, Non-linear least
quares and Extended Kalman filter, and verify their performance
hrough a simple degradation model with multiple simulated measure-
ent data sets. Random multiple datasets are generated using the same
oise level. This makes sense since for a particular engineering applica-
ion (e.g., the sensors are embedded into the aircraft structures such as
uselage panels, wings, bulkheads to monitor the fatigue cracks), once
he sensor is installed, the level of measurement uncertainty is deter-
inistic since it mainly stems from the sensor limitations, which is an

ntrinsic attribute of the sensor. 
The conventional metric, the mean squared error (MSE) measuring

he difference between predicted and the true crack size, is firstly uti-
ized to rank the four algorithms in terms of accuracy assuming the true
nformation on crack growth is available. We examine how much the
anking changes from one dataset to another due to randomness in the
oise. We assume that difference in performance from one dataset to
nother is caused by specific realizations of the noise, which may be
riendly to one algorithm and unfriendly to another. Then a new metric
ased on measurement data, called mean squared discrepancy (MSD),
hich measures the difference between predicted crack sizes and mea-

ured data, is proposed to be a performance indicator in the absence
f true crack size. This metric is used to rank the four methods when
ifferent datasets are employed. Based on our numerical tests, it shows
hat even using a simple degradation model, when dealing with multi-
le measurement data sets among which the inner difference only stems
rom random noise with even the same noise level, the performance of
87 
ne algorithm varies from one data set to another. No method can per-
orm consistently well and always be the best for handling all datasets.
he ranking based on the mean squared error (MSE) can be mostly pre-
erved when the ranking based on the mean squared discrepancy (MSD)
s used. The former requires the true model while the latter does not.
his indicates that MSD can be considered to rank the algorithms when
he true crack size is not available. 

The paper is organized as follows. Section 2 briefly reviews the ba-
ic concepts and some key issues of the four algorithms. The degrada-
ion model used for testing the algorithms is also presented in this sec-
ion. Two forms of the model, recursive and non-recursive, are given
or adapting the characteristics of different algorithms. Section 3 states
he strategy for implementing the performance comparison and the met-
ics for performance evaluation. A numerical study is implemented in
ection 4 where the four algorithms are tested based on 100 datasets
ith randomly generated noise. The proposed metric is used to rank the
rognostic performance of the four algorithms. Section 5 summarizes
nd concludes the paper. 

. Model-based prognostic and four most commonly used 

lgorithms 

In a model-based prognostics method, it is assumed that the dam-
ge state propagates over time, which is an unobserved process gov-
rned by some physical damage model, and the damage related quanti-
ies are measured at successive time-points. The physical damage model
escribing the degradation process is assumed to be known. However,
he model parameters are generally unknown and need to be identified
long with the damage state from noisy measurements. This process usu-
lly resorts to estimation algorithms. Once the model parameters are
dentified, they are substituted into the damage model to predict future
ehavior of damage and thereby to obtain prognostics information such
s the evolution of damage distribution or the distribution of remaining
seful life. This process can be implemented either through Monte Carlo
ampling method or derived in an analytical form [19,20] . 

In this paper, we investigate four of the most commonly used model-
ased prognostics algorithms: Bayesian method (BM), particle filter
PF), Extended Kalman filter (EKF) and nonlinear least square (NLS).
e illustrate their performance through a simple degradation model
ith multiple measurement datasets, which differ in random noise with

he same noise level. 
The first three methods are based on Bayesian inference, which uses

easurements to update the prior knowledge on unobserved damage
s well as model parameters, while the last one is a conventional re-
ression method. The estimation methods can also be classified in terms
f estimation criteria. The Bayesian estimate criterion includes maxi-
um a posteriori and minimum mean squared error criterion while the
on-Bayesian criterion involves the least squares criterion and maxi-
um likelihood criterion. BM and PF employ the maximum a posteriori

riterion while EKF is a minimum mean squared error estimator. The ad-
antages of these four algorithms over point estimation methods such
s maximum likelihood estimate lie in their capability of estimating the
ncertainty at the same time while giving the expected value of the
dentified parameters. 

The following subsections rapidly present some basic concepts and
ey issues of the four algorithms followed by the damage model used
n this paper. The details of the four algorithms are elaborated in
ppendix A , for interested readers. 

.1. Bayesian method (BM) 

Among different ways of applying Bayesian inference, the Bayesian
ethod here processes all measurement data simultaneously. The joint
osterior distribution of parameters at current time step is expressed as
 single equation, in which all the likelihood function prior to current
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ime are multiplied together along with the prior distribution of param-
ters. Once the expression of the posterior distribution is obtained, a
ampling method can be used to draw samples from this distribution.
he Markov Chain Monte Carlo (MCMC) method [21] is usually used.
t starts from an arbitrary initial sample (old sample) and a new sam-
le is drawn from a proposal distribution centered at the old sample.
he two samples are compared with each other based on an acceptance
riterion to decide either the new sample is accepted or the old one
s reselected. This process is repeated as many times as necessary un-
il a sufficient number of samples are obtained. The MCMC sampling
esults are affected by the proposal distribution and the initial sample.
he more similar the proposal distribution is to the posterior distribu-
ion, the better the samples characterize the target distribution. Also,
f the location of the initial sample is far from the mean of the poste-
ior distribution, then many iterations (samples) would be required to
onverge to the posterior distribution. 

.2. Particle filter (PF) 

Particle filter-based prognostics approaches have been applied in
any engineering problems such as fatigue crack growth [5,22] , Li-

on batteries [23–25] , PEM fuel cells [26,27] , and machine tools [6] .
F is a numerical solution of Bayesian inference with the advantage for
ealing with the nonlinear non-Gaussian systems. The key idea is to
epresent the required joint posterior distribution of state and parame-
ers by a set of random particles (or samples) and their weights. Note
hat technically, the parameters are seen as additional state variables
nd appended onto the true state vector to form an augmented state-
arameter vector so that particles of state-parameter are processed by
F simultaneously. As a new measurement arrives, the weight of each
article is adjusted by comparing the particles and the newly arrived
easurement, i.e., the particles having a higher similarity with the mea-

urement will be assigned a higher weight. PF is composed of two steps
t each iteration process: (1) prediction - the particles at the previous
ime step propagate through the damage model to form particles at the
urrent time, which is seen as the prior distribution at the current step
2) update – adjust each particle’s weight according to how close the
article is to the current measurement, which is quantified by the like-
ihood function. After many iterations of prediction-update steps, only
 few particles will have a non-negligible weight, known as the degen-
racy phenomenon, which implies that a large computational effort is
evoted to updating particles whose contribution to the approximated
osterior distribution is negligible. The degeneracy problem typically
esorts to resampling methods, whose basic idea is to duplicate the high
eighted particles while eliminating the low ones. Conventional resam-
ling algorithms include multinomial, residual, stratified and systematic
esampling. Guo et al. [28] compares PF prognostics results with the
bove four resampling approaches and concludes that systematic and
tratified resampling show the best results with a slight advantage to
ystemic resampling which is proven theoretically superior. Some novel
esampling methods involve support vector regression-based resampling
29] and monotonic resampling [30] . Note that resampling is not nec-
ssary to be implemented at each iteration since it can easily cause the
roblem of particle impoverishment, i.e., loss of diversity among the
articles. This arises due to the fact that in the resampling stage, sam-
les are drawn from a discrete distribution rather than a continuous one.
he particles with a high weight are duplicated too often while the ones
ith a small weight are discarded. After several iterations, the posterior
istribution is approximated by only a few high-weight particles. If this
roblem is not addressed properly, it may lead to “particle collapse”, a
evere case of sample impoverishment that all particles occupy the same
oint, giving a poor representation of the posterior distribution. Many
fforts have been made to address the particle impoverishment [31,32] ,
ccording to which, possible ways to address impoverishment include
ernel smoothing method, MCMC move method, and regularized parti-
le filter. 
88 
.3. Extended Kalman filter (EKF) 

EKF assumes the state-parameter distribution at each time step to be
 multivariate normal distribution, which is characterized by its mean
ector and covariance matrix, and enables to recursively compute the
ean and covariance from measurements. Therefore, EKF can be re-

arded as the explicit solution for recursive Bayesian inference given the
aussian assumption. To deal with the nonlinear system, EKF does the

inearity approximation that the damage model is expanded as the first-
rder Taylor series around the prior mean of the state variable. By ignor-
ng the higher order terms, the state prediction propagates through the
onlinear system equation whilst the state error covariance propagates
hrough a separate first-order linearization of the nonlinear system [33] .
imilar to PF, EKF is also composed of two steps: prediction and update.
owever, instead of processing a large collection of particles, EKF only
eeds to calculate the mean and covariance matrix, leading to a signif-
cant computation cost saving. Therefore, despite Gaussian assumption
nd linear approximations, from a practical application perspective, EKF
as been proven to be a powerful tool and has been successfully applied
n various engineering state-parameter identification problems [34–36] .
n terms of state-parameter estimation, EKF is typically implemented
hrough joint filtering [37] that defines the parameter vector of interest
s an additional state variable and appends it onto the true state vector.
he appended portion of augmented state vector does not change be-
ond the effects of process noise during the time-update process while
he augmented error covariance matrix is propagated as a whole (i.e.,
he parameters inherently do not depend on time evolution and remain
onstant). 

.4. Nonlinear least squares (NLS) 

The nonlinear least squares method is the form of least squares anal-
sis used to fit a set of observations with a model that is nonlinear with
nknown parameters. In prognostics context, when the damage model
s a nonlinear combination of unknown model parameters, NLS can be
sed to estimate the parameters such that the damage model which fits
est the given measurement data in the least squares sense, that is, the
um of the squares of the residuals, defined as the difference between
he measurement data and the model prediction, is minimized. This pro-
ess can be implemented using an iterative process based on optimiza-
ion techniques such as Levenberg-Marquardt algorithm that combines
he gradient descent and the Gauss-Newton method. NLS proceeds the
easurement data in a batch way, i.e., all measurement data up to the

urrent time are used to identify the model parameters. In prognosis, the
stimated parameters depend on noisy measurement data, and the opti-
ized parameters can be changed when a different set of measurement

re used, meaning that the uncertainty in measurements is propagated
nto the uncertainty in parameters. Assuming Gaussian white noise, NLS
s able to yield the uncertainty in the estimated parameters in the form
f covariance. Once the model parameters, as well as the covariance,
re estimated, the damage growth behavior can be predicted based on
he samples of estimated parameters. 

.5. Crack growth model 

The Paris model is adopted here as the crack growth model. The
imple Paris model is used to illustrate the effect of noise. We will show
hat even with the same model, the randomness in the noise leads to a
ifferent ranking of the algorithms. We expect that if that happens for
 simple model, there is a reasonable chance that noise will affect even
ore strongly on a complex model that requires estimation of a larger
umber of parameters. The Paris model is given in the form of crack
rowth rate as 

d 𝑎 
d 𝑘 

= 𝐶 (Δ𝜎
√
𝜋𝑎 ) 𝑚 (1)
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Fig. 1. Schematic illustration of moving time window strategy. 
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here a is the half crack size, k the loading cycles, Δ𝜎 the range of
tress loading, and m and C the model parameters governing the behav-
or of crack growth, which has epistemic uncertainty due to the lack of
nowledge and needs to be identified through measurements on crack
ize a . 

Eq. (1) can be rewritten in the recursive or non-recursive form where
he crack size a is a function of the number of loading cycles k , and pa-
ameters m and C . The non-recursive form can be obtained by integrat-
ng the differential equation of Eq. (1) and solving for a . The analytical
xpression of crack size a after k cycles is given as 

 𝑘 = 

[
𝑘𝐶 

(
1 − 

𝑚 

2 

)(
Δ𝜎

√
𝜋
)𝑚 

+ 𝑎 0 
1− 𝑚 2 

] 2 
2− 𝑚 

(2) 

here a 0 is the initial crack size. 
Alternatively, for some algorithms such as PF and EKF, the crack

ize at the current cycle depends on the previous step that needs to be
omputed progressively over time. In such cases, it is more desirable to
se the recursive form of Paris ’ model. Euler method is employed here
o discretize Eq. (2) . The discrete Paris model is written in a recursive
orm at each cycle k as: 

 𝑘 = 𝑎 𝑘 −Δ𝑘 + 𝐶 

(
Δ𝜎

√
𝜋𝑎 𝑘 −Δ𝑘 

)𝑚 Δ𝑘 (3)

The two forms (recursive and non-recursive) should be equiva-
ent theoretically but might be different in numerical implementation.
pecifically, the prediction accuracy of the recursive form depends on
he size of discrete time step; the smaller the step is the more precise
he crack size would be. When the discrete step is small enough, the
wo forms should yield the identical results. Here we set the step Δk = 1,
hich is a minimal possible value from the physical and practical point
f view, to minimize the discrete error. However, the measurement data
o not need to be collected at every time step. Therefore, the time step
or integrating the recursive damage model is different from measure-
ent time step. The two parameters, m and C , are regarded as the model
arameters in this example. 

As discussed before, in BM, at time step k , all the measurements up
o time step k are used simultaneously to construct the posterior distri-
ution of the parameters. Similarly, in NLS, the measurements proceed
n a batch way. Therefore, in these two methods, the non-recursive form
f Paris model is used. While in PF and EKF, the joint posterior distri-
ution of crack size and parameter are updated progressively over time,
herefore, the recursive form is used. 

The techniques of applying the four algorithms on this specific ap-
lication to implement prognostics are detailed in Appendix A rather
han here since (1) it is difficult to elaborate the prognostics process
ith only a few basic concepts and notations, and (2) it might be dis-

uptive to our main contribution of showing the effect of random noise
n ranking algorithms. 

. Strategy for comparison and metrics for performance 

When multiple predictions are available from different algorithms,
t is important for the users to evaluate their performance. Some works
ompared the performance of several model-based prognostics algo-
ithms using one specific data set and concluded that one method out-
erforms others, trying to provide users the guidance of selecting the
est method. However, comparing multiple algorithms with only one
ata set may lead to a wrong conclusion since the conclusion may not
old when different datasets are used. In fact, as illustrated in this pa-
er, the performance of an algorithm varies with different datasets with
he same level of noise. Due to the randomness in data, there is no one
ethod that performs consistently well for all data sets. 

In this paper, we assess the performances of algorithms based on
ultiple randomly simulated datasets. The datasets are generated with

he same noise level. This makes sense, since for a particular engineering
pplication (e.g., the sensors are embedded into the aircraft structures
uch as fuselage panels, wings, bulkheads to monitor the fatigue cracks),
89 
nce the sensor is installed, the level of measurement uncertainty is de-
erministic since it mainly stems from the sensor limitations, which is
n intrinsic attribute of the sensor. 

One common way of dealing with randomness in the data is to as-
ess the average performance over a large number of realizations and
nd out which algorithm performs best on average. While we perform
uch comparison here, we are also interested in gauging the effect of
andomness on the ranking for individual datasets. We will show that
his effect is large so that selecting an algorithm based on average per-
ormance may lead to poor performance. 

In this section, the strategy for implementing performance compar-
son taking into account the randomness in data is introduced firstly,
ollowed by the metrics used for performance evaluation. 

.1. Strategy for implementing performance comparison 

We use a moving time window as an experiment strategy, as shown in
ig. 1 , to examine how well a given algorithm predicts future crack prop-
gation with increasing number of measurement data. Suppose that the
ata are collected every ΔT cycles and currently N m 

measurement data
re available. These N m 

data are divided into two sequential parts. The
rst N f data, called fitting data, are used for estimating the distribution
f model parameters. The rest N v data, called validation data, are used
or verifying the performance of the algorithms. Note that N m 

= N f + N v .
he time range during which the rest N v data are collected is referred
o as a time window. 

In Fig. 1 , the solid blue curve represents the true crack size, (denoted
y a in the following text and equations), red dash line the median crack
ize predicted by the algorithm (denoted by �̂� ) based on the first N f data
oints, black solid dots the fitting data, and red asterisks the validation
ata (denoted by a v ). Three different time windows for three different
atasets are shown. It should be noted that the true crack size is a simu-
ated one under the assumption that the true model parameters for crack
rowth are known. We simulated the measured crack size by adding
andom noise to the true crack size. Once the measured crack sizes at
ifferent cycles are generated, neither the true parameters nor the true
rack sizes are used in the estimation process. For a given current cycle,
he simulated measured crack sizes up to the current cycle are used for
stimating model parameters, while the data beyond the current cycle
re used for the purpose of validation. 

In the fitting strategy, we provide each algorithm with the first N f 
ata for estimating the model parameters. Then based on the estimated
arameters, we predict the distribution of crack growth trajectory within
he time window, i.e., from cycle ( N f + 1) ΔT to ( N f + N v ) ΔT. Since the
odel parameters are estimated in the form of a probability distribution,
onte Carlo simulation is utilized to obtain the distribution of crack

rajectory, from which the median and 90% confidence intervals can be
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stimated. By gradually increasing the number of fitting data, multiple
ime windows can be obtained to predict the performance at different
tages of crack growth. 

For the purpose of verifying the prediction performance, it is good
o compare the true crack size with the predicted ones. However, in
ractice, the true crack size is unknown. A straightforward way is to
ompare the predicted crack size with data. In the following sections,
e will show the feasibility of using the difference between validation
ata and predicted crack size to evaluate the prediction accuracy of the
lgorithms in the absence of true crack size. 

.2. Dealing with randomness in data 

The strategy in Section 3.1 is developed for one algorithm using one
ata set. We randomly generate N d datasets with the same noise level
o assess the algorithms ’ performance in different realizations of noise.
hese N d datasets act as a database shared by all algorithms. For each
ataset, the moving time window strategy is used, i.e., the previous N m 

ata are used to identify the parameters while the following N v data are
sed for validation. There could be multiple time windows when using
ne data set to test one algorithm. 

.3. Metrics for performance evaluation 

.3.1. Mean squared error (MSE) 

The mean squared error (MSE) integrated over the time window is
sed to measure the accuracy of an algorithm. MSE is defined as 

𝑆𝐸 = 

1 
𝑁 v 

𝑁 v ∑
𝑖 =1 

( 𝑎 ( 𝑁 f + 𝑖 )Δ𝑇 − �̂� ( 𝑁 f + 𝑖 )Δ𝑇 ) 
2 (4)

here a is the true crack size, �̂� the predicted crack size, and subscript
he time step (refer to Fig. 1 for illustration). Notice that MSE can only
e calculated when the true crack size is available. Recall that there
re multiple time windows for testing an algorithm. MSE is calculated
very time when we test one algorithm by one data set in the one-time
indow. Therefore, for each algorithm, there are N d MSEs in one time
indow. 

.3.2. Mean squared discrepancy (MSD) 

In practice, the MSE is unavailable since the true crack size cannot be
vailable. We attempt to use another metric to assess the performance
f an algorithm. A straightforward way is to compare the predictions
ith data. The difference between prediction and data is referred to
s discrepancy . We consider the mean squared discrepancy (MSD) as a
ossible candidate for performance metric, as 

𝑆𝐷 = 

1 
𝑁 v 

𝑁 v ∑
𝑖 =1 

( 𝑎 v , ( 𝑁 f + 𝑖 )Δ𝑇 − �̂� ( 𝑁 f + 𝑖 )Δ𝑇 ) 
2 (5)

here a v is the validation data, and �̂� the predicted crack size by the
lgorithm. In the numerical case study, we will show the feasibility of
sing MSD as the performance indicator to rank the algorithms for an
ndividual data set. Similar to MSE, MSD is calculated every time when
est one algorithm by one data set in the one-time window, thus adding
p to N d MSDs for one method in one time window. 

.3.3. Evaluation index taking into account the confidence interval of the 

rediction 

For the decision makers, in addition to using MSE to evaluate the
ccuracy of the algorithms, it is also important to know how well one
an trust the prediction. A good prognostics not only provides accurate
nd precise prediction but also specifies the level of confidence associ-
ted with such predictions. In this sense, the confidence interval (C.I.) is
onsidered as an important factor to assess the prognostics quality from
 conservative decision-making point of view. To this end, we develop
 synthetic index comprising of two component indexes to evaluate the
erformance of the algorithms taking into account the C.I. of prediction.
90 
The first component E 1 measures the relative width of the 90% C.I.
ith respect to the true crack size for each prediction point and then
verages over the validation domain, as given in Eq. (6) , where �̂� 𝑢 and �̂� 𝑙 

re the upper and lower bounds of the 90% C.I.. The true crack size in the
enominator acts as a normalizing constant to facilitate the comparison
mong the algorithms since the true crack size is independent of the
rediction results given by different algorithms. A smaller E 1 indicates
 narrower 90% C.I., thus a smaller prediction variation. 

 1 = 

1 
𝑁 𝑣 

𝑁 𝑣 ∑
𝑖 =1 

�̂� 𝑢 ( 𝑁 f+ 𝑖 )Δ𝑇 
− �̂� 𝑙 ( 𝑁 f+ 𝑖 )Δ𝑇 

) 

𝑎 ( 𝑁 f+ 𝑖 )Δ𝑇 
(6)

The second component E 2 tells whether the C.I. covers the true crack
ize. In one time window, instead of using a fixed C.I. for all N v predic-
ion points, we calculate how wide the C.I. needs to be at the minimum
o cover the true crack size at each prediction point and accordingly as-
ign that point a different mark. E 2 is then taken as the average of these
 v marks. Specifically, at time step k + i, i = 1,2,…, N v , the minimal 𝛼%
.I. such that this 𝛼% C.I. can cover the true crack size is calculated. A
maller 𝛼 indicates a more reliable prediction, thus a higher mark should
e assigned. A series of discrete values increased from 90 to 99 with one
ncrement are taken for 𝛼 and the mark is computed from a mapping de-
ned as m = − 0.01 𝛼+ 1. For example, to the prediction points from step
 + 1 to k + 10, if the smallest C.I. needed to cover the true crack size
re successively 95%, 94%, 92%, 91% and 90% for the remaining six,
hen the marks 0.5, 0.6, 0.8, 0.9 and 1 for the remaining six are assigned
o these ten prediction points and E 2 = 0.88. A larger E 2 means a more
eliable prediction, thus a better performance of the algorithm. 

The above two indexes evaluate the prognostics quality and disper-
ion in different ways. It would be beneficial to combine them together
o give a more comprehensive index. A linear combination of the two
ndices is calculated as a synthetic index, denoted as EI. Based on their
mportance, a weight of − 0.7, 0.3 are assigned to E 1 and E 2 , respectively,
nd accordingly, EI = − 0.7E 1 + 0.3E 2 . Note that the weight for E 1 is neg-
tive since for E 1 , the smaller the better. In this sense, the higher EI is,
he better the prediction would be. Note that we use the coefficient of
 0.7 and 0.3 for illustrative purpose and the users may assign different
alues based on their experience or preference. Based on the strategy
n Section 3.1 , EI is calculated every time when we test one algorithm
y one data set in the one-time window. Therefore, for each algorithm,
here are N d EIs in one time window. 

The calculation of E 1 and E 2 depends on the true crack size, which is
ot available in practice. Therefore, instead of using the true crack size,
e recalculate the indices based on the validation data, denoted as Ê 1 
nd Ê 2 for the components and ÊI for synthetic index. In this sense, Ê 1 
alculates the relative width of the 90% C.I. with respect to the data for
ach prediction point. Ê 2 measures how wide a C.I. is at least needed
o cover the data. In the following study, we will show the feasibility
f using ÊI as the indicator to rank the algorithms in the absence of the
rue crack size. 

. Numerical case study 

In this section, we investigate the four algorithms by assessing their
rognostics performance to N d = 100 randomly generated measurement
ata sets. All datasets are generated using the same crack growth model,
ut different because of the randomly generated noise. The strategy for
mplementing performance comparison and the metrics for performance
valuation presented in Section 3 are employed. For each dataset, we
est the prognostics behavior of each algorithm and rank them in terms
f metrics. 

The crack size is assumed initially to grow from a 0 = 8 mm. The
rue values of Paris ’ model parameters are assumed as m true = 3.8 and
 true = 1.5e − 10. In Paris ’ law, the exponent, m , is the slope of the fatigue
rack curve in log-log scale (i.e., log(d a /d N ) vs log( ΔK )), while the pa-
ameter C corresponds to y-intercept at ΔK = 1 of the fatigue curve. The
alues of m and C are normally calculated by fitting fatigue test data
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Table 1 

Average MSE (in m 

2 ) over 100 datasets with different numbers of measurement 
data. 

Methods N m = 20 ( N f = 10) N m = 30 ( N f = 20) N m = 40 ( N f = 30) 

BM 1.20e − 6 6.54e − 7 3.02e − 6 
PF 1.22e − 6 7.85e − 7 4.52e − 6 
NLS 0.27 0.034 1.04e − 4 
EKF 2.91e − 6 2.54e − 6 5.48e − 5 

Table 2 

Statistics of MSE (Means Square Error) rank. 

N m = 20 ( N f = 10) N m = 30 ( N f = 20) N m = 40 ( N f = 30) 

Cases Times Cases Times Cases Times 

EBPN 6 ENBP 1 EPBN 1 
NEPB 1 EPBN 2 EBPN 3 
NEBP 1 EBPN 4 NPBE 2 
NPBE 5 EBNP 1 NBPE 5 
NBPE 4 NEPB 1 PNEB 2 
PNBE 2 NPBE 3 PNBE 3 
PBEN 39 NBPE 5 PEBN 2 
PBNE 10 NBEP 5 PBEN 9 
BPNE 10 PNBE 1 PBNE 26 
BPEN 20 PEBN 5 BNPE 8 
BEPN 2 PBEN 21 BPNE 25 

PBNE 7 BPEN 14 
BNPE 4 
BNEP 1 
BPNE 9 
BPEN 27 
BEPN 3 
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nder controlled laboratory environment. Here the fatigue test data re-
er to the data point of crack growth rate d a /d N versus the stress in-
ensity factor ΔK . Articles studying the relation between m and C for
ifferent materials are provided in [38–40] . In this paper, m true = 3.8
nd C true = 1.5e − 10 are taken based on references [8,12] , which corre-
ponds to the mean crack growth of Aluminum panel. The measurement
oise is Gaussian white noise with mean zeros and standard deviation
= 0.8 mm, which is equivalent to 10% coefficient of variation (COV)
ith respect to the initial crack size of 8 mm (over the 30 measure-
ents during 3000 cycles considered in this paper, the crack grows up to
3 mm. The true crack size at different cycles is given in Appendix B for
eference). The 100 random measurement datasets are generated by
1) using a 0 , m true , C true to compute the true crack size according to
he Paris model for given time steps, and (2) adding the measurement
oise V ∼N (0, 𝜎2 ) to the true crack size. The measurements are collected
very ΔT = 100 cycles until 4000 cycles, adding up to 40 measurement
ata. The above steps are repeated 100 times to obtain 100 measurement
ata sets, each containing 40 data. These datasets act as the database
sed by all algorithms. 

Based on the strategy for performance comparison in Section 3.1 ,
ere N f = 10, 20, and 30 (hence 3 time windows) are used to test the
rediction performance in different crack propagation stages: from the
lightly nonlinear case in earlier stage to the relatively strong nonlinear
ase in a later stage. N v is fixed to 10. For example, when N f = 10, the
easurements collected from 100th cycle to 1000th cycle (the first 10
easurements) are used to predict the crack propagation trajectory from
100th cycle to 2000th cycle; when N f = 20, the measurements collected
rom 100th cycle to 2000th cycle (the first 20 measurements) are used
o predict the trajectory from 2100th to 3000th cycle; and when N f = 30,
easurements collected from 100th cycle to 3000th cycle (the first 30
easurements) are used to predict the trajectory from 3100th to 4000th

ycle. 
Here the minimal number of data points we used for inferring the

odel parameters is 10. For the Bayesian inference-based algorithms,
.e., EKF, PF, and BM, they process the data either sequentially (EKF
nd PF) or in a batch way (BM). Theoretically, they don’t have limita-
ions on the number of data needed for inferring the parameters. But
he number of data indeed affects the uncertainties in the estimated pa-
ameters. For the regression-based algorithm, NLS, at least three data
re needed since the number of parameters to be estimated is two ( m
nd C ). Therefore, we can consider that at least three data are needed in
rder to make all algorithm work. However, too few data will result in
 large uncertainty in the estimated parameters, consequently, leading
o a large uncertainty in prediction. In such case, the prediction might
ot be very informative as the predicted results could fall in a very wide
ange, which is less meaningful in practice. Therefore, based on our ex-
erience and literature [1,12] , we use at least 10 data to perform the
arameter estimation. 

.1. Ranking of prognostics algorithms is sensitive to noise in data 

We first show that even for our simple degradation model, when
ealing with multiple measurement datasets from different realizations
f random noise, the performance of an algorithm varies from one data
et to another, and none of the methods performs best for all datasets.
he accuracy metric MSE is used to assess the performance of the al-
orithms. Later, we will show how to determine the ranking of algo-
ithms in absence of MSE, which is meaningful to help decision makers
o choose the proper method when facing a particular data set. 

The MSE is displayed in two ways. Table 1 compares the average
SE over 100 datasets for the three time windows (i.e., N f = 10, 20, and

0, respectively), while Fig. 2 illustrates the empirical cumulative distri-
ution function (CDF) of the MSE using 100 datasets for each method.
or BM, PF and EKF, the empirical CDF curves in the three time win-
ows are plotted in the same figure, while in NLS, the MSEs in different
91 
ime windows are not of the same magnitude. The curves are separately
lotted otherwise the figure becomes hardly readable. 

Table 1 shows that in terms of average performance, BM and PF out-
erform the other two while NLS yields the largest MSE, especially in
he earlier stage when very few data are available. For BM, PF and EKF,
he MSE is not monotonically reduced as more measurements are used
ut tends to be large at the steep section of the crack growth curve. This
ndicates the prediction error increases when the crack grows fast. For
LS, the MSE in the N f = 10 and N f = 20 are large. The reason is that
SE of NLS method has some abnormally large values. These outliers

f large MSE contribute to the average value, which makes the aver-
ge MSE much greater than other three algorithms. Fig. 2 tells that BM
nd PF show very similar behavior. This is expected since they are both
ased on Bayesian inference. NLS performs poorly when very few mea-
urement data are used, implying that NLS is not able to infer the model
arameters very well in the case of a small amount of data without prior
nformation. Bad estimates to parameters lead to very uncertain crack
ize prediction. When more data are given, the MSE of NLS method re-
uces significantly. The reason for poor performance of NLS in this case
s likely that no prior information is used under strongly correlated pa-
ameters. However, the effect of noise is large enough so that for some
ealizations of noise, NLS can outperform other methods. 

Next, we rank the four algorithms in terms of their MSE for each
ataset. To present the results we use letters B, P, N, and E to index the
ethods BM, PF, NLS, and EKF, respectively. There are 24 possible per-
utations of rank, and the number of times each permutation appears

s presented in Table 2 for N f = 10, 20, and 30. For example, for N f = 10,
1 permutations out of the 24 occur. Among these, the ranking PBEN,
hich indicates PF > BM > EKF > NLS, occurs the most frequently. It is

nteresting to note that even NLS, the worst performer on average, out-
erforms the others for 11 out of the 100 datasets. 

The above discussion illustrates that even with a simple crack growth
odel, the rank of the methods varies from dataset to dataset, even if the
ifference among data sets comes only from random noise with the same
oise level. In addition to the rank, random noise can also lead to a large
ifference in algorithm performance, that is to say, the best algorithm on
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Fig. 2. CDF of MSE of different methods. (a) BM (b) PF (c) EKF (d) NLS. 

Fig. 3. An example to show the rank of the four algorithms tested by two datasets. (a) 
tested on dataset #4 (b) tested on data set #14. 
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verage can have a very poor accuracy for some datasets. Specifically,
rom Table 2 , we see that PF is the best algorithm on average; i.e., PF is
he best 127 times out of 300 (51, 34, and 42 times in N f = 10, 20, and
0 cases, respectively). However, Table 2 also shows that for nine cases
ut of 300 datasets PF is the worst algorithm. 
92 
Fig. 3 gives an example showing the prediction performance for two
ifferent datasets (dataset #4 and #14) where the four algorithms rank
ifferently. In this example, 30 data are used for fitting and 10 data are
sed for validation. The numbers in parentheses are their MSE-rank. It is
orth noting that while the measurements for these two data sets look

imilar the difference in terms of the prediction for the four algorithms
an be quite significant, thus highlighting the importance to correctly
etermine the best performing algorithm for a given data set. 

In summary, the performance of prognostics algorithms strongly de-
ends on a specific dataset. Therefore, it may not have much sense to
ay one algorithm is better than the other. It would be better to choose
he best algorithm based on a given specific dataset. We also see that
he number of measurements can make a big difference in the ranking.
or example, PF is the best 51% of the time for N f = 10, 34% of the
ime for N f = 20, and 42% for N f = 30. When a large number of data
re available, we would expect all algorithms to do well. The prob-
em is with relatively small number of data, in which case even basic
uantities like the level of noise in the data is not well estimated. The
ifferent algorithms filter noise in a different manner so that the depar-
ure of the sample from the ideal distribution misleads them differently.
ur suggestion of how to accommodate this is to use all of the algo-

ithms rather than select one in advance. The proposed MSD measure
an then allow choosing the best performing algorithm for the given
easurements. 

.2. Ranking the algorithms in absence of true damage information 

.2.1. MSD can rank the algorithms in terms of accuracy 

In practice, the MSE is unavailable since the true crack sizes are un-
nown. We attempt to use another metric to assess the performance of
lgorithms. A straightforward way of evaluating the performance is to
ompare the predictions with validation data, which is the MSD pre-
ented in Section 3.3 . To verify our hypothesis, we consider the corre-
ation between MSD ( Eq. (5) ) and MSE ( Eq. (4) ). The correlation is pre-
ented in Fig. 4 , which includes a scatter plot of MSE and MSD as well
s the correlation coefficient (abbreviated as “cc” in Fig. 4 ). We can see
hat in general, MSD is highly correlated with MSE for all algorithms in
ll time-window scenarios, meaning that MSD could be considered as a
erformance indicator to assess the algorithm performance. 

When MSE is unknown, we naturally ask whether MSD can be used
o rank the algorithms in terms of accuracy. This can be achieved by
tudying how consistent the rank based on MSE is with that based on
SD. Specifically, for each dataset, we rank the four algorithms based

n their MSE. This is the actual rank in terms of accuracy. Then we re-
ank the algorithms based on their MSD, which is referred to as predicted

ank , and compare these two ranks to see to what extent they match. 
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Fig. 4. Correlation between MSE and MSD for each method. 
(a) N m = 20 ( N f = 10) (b) N m = 30 ( N f = 20) (c) N m = 40 ( N f = 30). 

Table 3 

Statistics of match extent of MSE rank and MSD rank. 

N m = 20 ( N f = 10) N m = 30 ( N f = 20) N m = 40 ( N f = 30) 

D R times D R times D R times 

0 81 0 65 0 86 
3 1 3 4 3 1 
5 2 5 6 7 11 
7 11 7 13 9 1 
15 1 10 1 15 1 
21 4 15 2 

21 6 
25 3 
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Fig. 5. Performance comparison, tested on data set #4. 
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The standard approach for comparing ranks would be to use the
pearman correlation coefficient r s . For four ranks, r s is given as 

 𝑠 = 1 − 0 . 1 
4 ∑
𝑖 =1 

𝑑 2 𝑖 (7)

here d i is the discrepancy in rank at the i -th position (we make the MSE
anking always 1234 rather than assign a number to an algorithm). For
xample, if MSE rank is NBPE and MSD rank is BNPE, then the two
anks are 1234 and 2134 respectively, and accordingly, d 1 = − 1, d 2 = 1,
 3 = d 4 = 0. However, this correlation coefficient does not distinguish
etween switching #1 and #2, versus switching #3 and #4. We opt in-
tead for a weighted measure D R of the discrepancy in ranking, which
ssigns a weight of four to a discrepancy in the first place and one to a
iscrepancy in the last place. The weight is introduced to take into ac-
ount the importance of mistaking different positions. We assume that
he importance of mismatching the i th position diminishes with increas-
ng i . A higher weight is assigned to a smaller i th position for accounting
his importance. Therefore, the smaller D R is, the better the two ranks
atch each other. The calculation of D R is given in Eq. (8) . For example,

f the first two places are permuted (2134) then D R = 7, if the last two
laces are permuted (1243) D R = 3, and if the order is reversed (4321)
 R = 50. 

 𝑅 = 

4 ∑
𝑖 =1 

(5 − 𝑖 ) 𝑑 2 𝑖 (8) 

The statistics of the D R for the 100 datasets are given in Table 3
here D R = 3 corresponds to switching 3rd and 4th positions, D R = 5 to

witching 2nd and 3rd, and D R = 7 to switching 1st and 2nd. It is seen
rom the table that out of all 300 datasets, 232 have a perfect agreement
93 
n rank and 49 others have a single adjacent permutation so that only
9 have a substantial difference in rank. 

We further probe the correlation between MSD and MSE with dif-
erent magnitude of the noise level. We test other two noise levels,
.e., 𝜎 = 0.3 mm and 𝜎 = 2.85 mm, which are equivalent to 3.75% and
5% coefficient of variation (COV) with respect to the initial crack size
8 mm). In fact, given initial crack size 8 mm, 35% is almost the largest
OV we could try, because for larger COVs negative values of crack

ength appear. The correlation between MSE and MSD as well as the
tatistics of match extent of MSE rank and MSD rank in those two noise
evels are reported in Appendix C . It shows that the correlation between
SE and MSD in both two noise levels are high, except the case of EKF
ith 35% COV noise level in the case of N f = 10, which is relatively low

0.64). In addition, in both two noise levels, the match extent between
SE rank and MSD rank are satisfactory. The results indicate that the
SD rank is tolerant to a relatively large measurement noise. 

An example is given here to show the process discussed above. The
omparison of the performances of the four algorithms for data set #4 is
laborated. Fig. 5 illustrates the prognostics behavior when N f = 10. It is
een that BM and PF are comparable. NLS performs worst while EKF is
etween the best two methods and the worst one. Table 4 compares the
ethods quantitatively by presenting their MSE and MSD. We can see
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Fig. 6. Histogram of estimated parameters by NLS, N f = 10, tested on dataset #4. 

Table 4 

Quantitative comparison of four algorithms in the case of N f = 10, tested by dataset #4. 

Method MSE/m 

2 MSD/m 

2 

BM 1.47e − 7 1.32e − 6 
PF 1.42e − 7 1.31e − 6 
NLS 4.05e − 6 5.90e − 6 
EK 2.19e − 6 3.79e − 6 
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Table 5 

Correlation study between EI and ÊI . 

N m = 20 ( N f = 10) N m = 30 ( N f = 20) N m = 40 ( N f = 30) 

BM PF NLS EKF BM PF NLS EKF BM PF NLS EKF 

0.77 0.76 0.99 0.84 0.81 0.85 0.99 0.98 0.84 0.92 0.99 0.96 

Table 6 

Statistics of match extent of EI rank and ÊI rank. 

N m = 20 ( N f = 10) N m = 30 ( N f = 20) N m = 40 ( N f = 30) 

D R times D R times D R times 

0 70 0 76 0 77 
3 20 3 21 3 19 
5 4 5 1 5 1 
9 4 7 2 7 2 
15 2 15 1 
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hat the actual MSE rank of the four methods is PBEN and the predicted
SD rank matches the MSE rank perfectly. 

Since the prediction using NLS in Fig. 5 is quite different from that
f others, it would be beneficial to study the NLS further. Since the up-
er bound of 90% C.I. rises sharply (Note that we set an upper limit of
ne meter for the predicted crack size to prevent positive infinite num-
ers in the numerical simulation), it is difficult to see the median of the
rediction. The subplot embedded in the original figure is shown after
eleting the upper bound, from which we see that the predicted median
an hardly trace the true crack size. The inferior performance of NLS
s due to a bad estimation of model parameters when only a few data
re available. Fig. 6 shows the histograms of the model parameters esti-
ated by NLS when N = 10. The parameters are poorly identified with
f 

Fig. 7. Prediction behavior of NLS tested o

94 
 wide range (remind that m true = 3.8 and C true = ln(1.5e − 10)), leading
ery uncertain prediction for crack size growth trajectories. The estima-
ion difficulty can be mitigated as more data are available, as shown in
ig. 7 . 

.2.2. ÊI can rank the algorithms taking into account the confidence 

nterval of prediction 

We introduce the synthetic index in Section 3.3.3 to account for the
onfidence interval of prediction. It is noted that the calculation of EI
epends on true crack size while that of ÊI depends on validation data.
e study the correlation between EI and ÊI for each algorithm. The

esults are reported in Table 5 . We see that EI highly correlates with
Î in different scenarios, indicating that E ̂I can be used to evaluate the
erformance taking into account the confidence interval when the true
rack sizes are absence. 

Naturally, we want to know whether E ̂I can be used for ranking the
lgorithms since EI is not available in practice. This is achieved by study-
ng how well the EI-rank matches ÊI -rank. Specifically, for each dataset,
e rank the four algorithms based on their EI and on ÊI and then com-
are these two ranks to see to what extent they match through calcu-
ating the weighted measure D R . The results are reported in Table 6 .

e see from the table that out of all 300 datasets, 223 have a perfect
greement in ranking and 70 others have a single adjacent permutation
corresponding to the cases D R = 3, 5, and 7). Only 7 have a substantial
ifference in ranking. 

In addition, we find that if we seek to predict a conservative esti-
ate of the crack growth, the most important aspect affecting the qual-

ty of this prediction is the algorithms rather than the dataset used.
e obtain always the similar ranking with either PF or BM the best

ndependently of the dataset (The EI-rank is either PF > BM > NLS > EKF
n dataset #4. (a) N f = 20 (b) N f = 30. 
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Table 7 

Times of occurrence of A and B|A, A = {MSE-best remains the best in the near future}, 
B = {MSD-best is consistent with MSE-best}. 

Times of 
occurrence 
of A 

Times of 
occurrence 
of B|A 

Times of 
occurrence 
of B̄ 

N m = 20 ( N f = 10) 87 78 16 
N m = 30 ( N f = 20) 66 56 25 
N m = 40 ( N f = 30) 73 70 12 

Table 8 

Times of occurrence of A ∗ and B|A ∗ , A ∗ = {MSE-best remains the best in the near future 
or is the second best given that the difference of relative errors between the second best 
the best is less than 5%}. 

Times of 
occurrence 
of A ∗ 

Times of 
occurrence 
of B|A ∗ 

Times of 
occurrence 
of B̄ 

N m = 20 ( N f = 10) 95 80 16 
N m = 30 ( N f = 20) 84 66 25 
N m = 40 ( N f = 30) 87 82 12 
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r BM > PF > NLS > EKF). This makes sense in reality. There are cases
here an accurate estimate is more useful than a conservative estimate
nd there are cases the other way around. Take the predictive mainte-
ance of an aircraft fleet in an airline as an example [41] , if the users
re more concerned about how many aircraft in a fleet will need main-
enance, the data decide which algorithm to use. In this case, MSD can
e used to choose the best algorithm in terms of accuracy for a given
ata set. If the users need to make a decision on one particular aircraft
hich is close to critical size, then conservativeness is more important,

n which case it is best to pick the algorithm involving the smallest
rediction uncertainty, which we found is mostly independent of the
ataset. 

.3. MSD can improve the success rate of selecting the best algorithm for 

redicting the future 

From the decision makers ’ point of view, instead of the ranking of the
lgorithms, it may be more desirable to know the best method to predict
he future damage growth for a given data set. The numerical example
n Table 2 shows that PF is the best 127 times out of 300 (51, 34, and
2 times in 10, 20, and 30 measurements case respectively). However,
n spite of its overall good performance, the rate of being best can be as
ow as around 42% (127/300). That is to say, if the users always select
he PF as the single algorithm for all datasets, more than 50% chance
hey cannot select the best algorithm. 

For a given set of measurements, the users may be concerned with
1) how to select the best algorithm based on the available data, and
2) how well the selected algorithm performs when used for predicting
nto the future (i.e. beyond the last measurement). The first concern has
een addressed in Section 4.2 . To investigate the second one, we predict
 certain number of cycles further from the last measurement, and cal-
ulate the relative error with respect to the true crack size in the future
ycle to see if the “best algorithm given by MSE” (refer to “MSE-best”
ereafter) also leads to the lowest error when predicting into the future
here no measurements are available. Specifically, when N m 

= 20, the
rst 10 data (collected from 100th cycle to 1000th cycle) are used for
tting ( N f = 10) and the rest 10 data (collected from 1100th to 2000th)
re used for validation ( N v = 10). MSE and MSD are calculated in the
alidation domain. Then we predict 1000 cycles further from the last
easurement (corresponding to 2000th cycle) up to 3000th cycle and

alculate the relative error to the true crack size of each algorithm at the
000th cycle to see whether the MSE-best remains the best (i.e. has the
owest error with respect to the true crack size). Moreover, given MSE-
est remains the best, we also calculate how often MSD-best (refer to
he best algorithm given by MSD) is consistent with the MSE-best (since
n practice MSE is unknown). We also investigate how many MSD-best
s inconsistent with the MSE-best for current. For N m 

= 30, we predict
000 cycles further from the last measurement up to 4000th cycle while
or N m 

= 40, we predict 500 cycles further up to 4500th cycle. In this
ast case, we limit the prediction to 500 additional cycles due to the ex-
onential growth of the crack, which leads to crack sizes exceeding the
ritical values after 1000 more cycles (refer to Appendix B ). 

To facilitate the description, we define the following events.
 = {MSE-best remains the best in the future}, B = {MSD-best is consis-

ent with MSE-best}. B|A = {B occurs given A occurs}. Accordingly, B̄ is
he complementary event of B. Then for N m 

= 10, 20, and 30, we inves-
igate the times of occurrence of event A and event B|A for all the 100
atasets. The results are reported in Table 7 . We see that when N m 

= 20,
he event that MSE-best remains the best at future prediction occurs in
3 out of 100 datasets, and 70 out of these 73 datasets MSD succeeds
n selecting the same best algorithm as MSE does. For N m 

= 30, the per-
entage is a bit lower but still better than the selecting PF as the single
lgorithm (which is 42%). For N m 

= 40, the rate is more satisfactory.
e take the most frequent MSE ranking when N m 

= 40, PBNE, (refer to
able 2 ) as an example and show how to count the frequency of A and
|A in Appendix D . 
95 
In addition, we found that for some datasets, the MSE-best switch
o the second best in the future but the difference between MSE-best
nd the future-best in terms of relative error is small. For example, in
ppendix D , for data set #58, the MSE-best, the particle filter, switches

o the second best at the 4500th cycle. However, the difference between
F and the best one at 4500th cycle in terms of relative error is very
mall (less than 1%). In such cases, we consider that MSE-best performs
ell in the future. To take into account such cases, we define the event
 

∗ . A 

∗ = {MSE-best remains the best at future prediction or is the sec-
nd best given that the difference of relative errors between the second
est and the best is less than 5%}. Under this definition, the number of
imes of occurrence of event A 

∗ and event B|A 

∗ among all 100 datasets
re reported in Table 8 . We see that the percentage that MSD selects a
ood algorithm for future prediction is improved. The results thus indi-
ate that the selected algorithm based on MSD has a high probability of
emaining good performance for predicting the near future. 

. Conclusions 

In this paper, the four most commonly used algorithms, Bayesian
ethod, particle filter, nonlinear least squares, and Extended Kalman
lter, are applied on a simple crack growth model with simulated ran-
om measurement noise. We investigate their performance statistically
y testing their performance using 100 randomly generated measure-
ent datasets with the same noise level. The mean squared error (MSE)

s used as a metric to rank the four algorithms in terms of accuracy for
ach data set. It is found that the performance of prognostics algorithms
trongly depends on the realization of random noise, and none of the al-
orithms can be the best on all realizations. It was found that on average
he two algorithms based on Bayesian inference substantially outper-
ormed the other two. However, the statistics of MSE rank showed that
he performance of the algorithms varies substantially from one dataset
o another even if the data are generated with the same noise level. As
 result, for some data sets the worst on-average algorithm can substan-
ially outperform the best one. Since the exact solution is not available in
ractice, the discrepancy between predictions and measurements (MSD)
as to stand for the actual error (MSE). We found a very good correla-
ion between MSE and MSD and that ranking the algorithms based on
iscrepancy with measurements is a good stand in for their true rank
n terms of accuracy. In addition, the best algorithm selected by MSD
as a high probability of maintaining the good performance in the near
uture. This is particularly useful for users to choose a good algorithm
or their specific case. 
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ppendix A. Apply the four algorithms on crack growth model 

The objective is to employ the four model-based algorithms to obtain
he posterior distribution of parameters given noisy measurements col-
ected up to current time step k , denoted as y 1:k . As detailed in Section 4 ,
he measurement noise is assumed as white Gaussian noise, in which the
easurements at any pair of times are identically distributed and sta-

istically independent. The theories of the four algorithms will not be
laborated here. Readers refer to [42] for BM, [43] for PF, [44] for EKF
nd [45] for NLS. Only their implementations on Paris model are pre-
ented here. Bayesian method (BM) and Nonlinear least squares (NLS)
mploy the non-recursive Paris model (see Section 2.5 for details) to
btain the posterior distribution as a single expression. Particle filter
PF) and Extended Kalman filter use the recursive Paris model and get
he posterior distribution recursively. In BM and PF, the posterior dis-
ribution of parameter at time step j, ( j = 1,2,…,k ) is presented in the
orms of samples. These samples are propagated through Paris model
o predict the crack growth trajectories from time k . In EKF and NLS,
ue to the normality assumption, the posterior distribution of parame-
er at time step j is multivariate normal distribution and t-distribution
haracterized by mean and covariance matrix. Samples are drawn from
hese distributions and used to predict the crack growth trajectories from
ime k . 

First of all, the likelihood function used in BM and PF are given. The
ognormal distribution is employed such that 

 ( 𝑦 𝑗 |𝑎 𝑖 𝑗 ( 𝑚 

𝑖 
𝑗 , 𝐶 

𝑖 
𝑗 )) = 

1 
𝑦 𝑗 

√
2 𝜋𝜁𝑖 

𝑗 

exp 
⎛ ⎜ ⎜ ⎝ − 

1 
2 

( 

ln 𝑦 𝑗 − 𝜂𝑖 
𝑗 

𝜁 𝑖 
𝑗 

) 2 ⎞ ⎟ ⎟ ⎠ , 𝑖 = 1 , 2 , ..., 𝑛 𝑠 (9)

n which 

𝑖 
𝑗 = 

√ √ √ √ √ ln 
⎛ ⎜ ⎜ ⎝ 1 + 

( 

𝜎

𝑎 𝑖 
𝑗 
( 𝑚 

𝑖 
𝑗 
, 𝐶 

𝑖 
𝑗 
) 

) 2 ⎞ ⎟ ⎟ ⎠ 
𝑖 
𝑗 = ln 

(
𝑎 𝑖 𝑗 ( 𝑚 

𝑖 
𝑗 , 𝐶 

𝑖 
𝑗 ) 
)
− 

1 
2 

(
𝜁 𝑖 𝑗 

)2 

In Eq. (9) , n s is the number of samples, here n s = 5000 for all four
ethods, 𝑎 𝑖 

𝑗 
( 𝑚 

𝑖 
𝑗 
, 𝐶 

𝑖 
𝑗 
) is the i -th sample at time step j . The parentheses in-

icate that the crack size is a function of parameters m and C . Eq. (9) can
e understood as following. When at a specific time step j that a mea-
urement y j is given, the likelihood is the function of crack size a j 

i ; that
s, the function of m j 

i and C j 
i . The computation of likelihood at time j

epends on the samples of the parameters m j 
i and C j 

i , and the data y j . 
n state-parameter estimation context, the parameters are uncertain. In
his case, the explanation of likelihood can be expressed as the prob-
bility to obtain the measured y j for a given parameter value m j 

i and
 j 
i . The idea of parameters identification is to select the m j 

i and C j 
i that

ake a j 
i closest to the measurement y j . 

.1. Bayesian method (BM) 

Eq. (9) gives the way of calculating the likelihood value for a given
easurement and a given sample. When multiple data are available, the
osterior distribution of parameters at the current step k is obtained by
 single equation, in which all the likelihood functions of measured data
p to the current time step are multiplied together. Specifically, given
ata y 1:k = { y 1 , y 2 , …, y k }, the joint posterior distribution of parameters
 and C at current time step k is calculated by 

 𝑚 𝑘 , 𝐶 𝑘 |𝑌 1∶ 𝑘 = 

1 √
2 𝜋𝜎𝑚 

exp 

( 

− 

[ 𝑚 − 𝜇𝑚 ] 2 

2 𝜎𝑚 2 

) 

× 1 √
2 𝜋𝜎𝐶 

exp 

( 

− 

[ 𝐶 − 𝜇𝐶 ] 2 

2 𝜎𝐶 2 

) 

×
𝑘 ∏

𝑗=1 

1 
𝑦 𝑗 

√
2 𝜋𝜁𝑖 

𝑗 

exp 

( 

− 

1 
2 

( ln 𝑦 𝑗 − 𝜂𝑗 

𝜁𝑗 

) 2 ) 

(10)

hich is the product of prior PDF function of m and C (the first two
erms) times the likelihood functions of all measurements up to k (the
96 
hird term). The prior distribution of the parameters m and C in BM are
ssumed normally distributed, with mean and standard deviation equal
o 𝜇m 

= 4, 𝜇𝐶 = ln(1.0e − 10), and 𝜎𝑚 = 0 . 2 , 𝜎C = 1.1. Once the expression
f joint posterior distribution is obtained, the MCMC sampling method
an be used to generate as many samples as needed. Tutorial on MCMC
ampling can be found in [21] . Given measurements { y 1:k }, the pro-
ess of sampling parameters from the joint posterior distribution, that is
q. (10) , is described as follows. 

Step 1 Choose an initial value for the damage model parame-
ers, denoted as 𝛉0 = [ 𝑚 

0 , 𝐶 

0 ] . In this application, the initial values are
 

0 = 4, C 

0 = ln(1.0e − 10). Then the crack size from time step 1 to k
iven 𝜽0 can be calculated through Paris ’ model, i.e., [ 𝑎 1∶ 𝑘 ( 𝑚 

0 , 𝐶 

0 )] =
 𝑎 1 ( 𝑚 

0 , 𝐶 

0 ) , 𝑎 2 ( 𝑚 

0 , 𝐶 

0 ) , ..., 𝑎 𝑘 ( 𝑚 

0 , 𝐶 

0 )] . The joint posterior PDF value
iven 𝜽0 at time k is accordingly obtained through Eq. (10) , denoted
s p ( 𝜽0 | Y 1: k ). 

Step 2 For i = 1, 2, …, n s , 

a) Generate a new sample 𝛉∗ = [ 𝑚 

∗ , 𝐶 

∗ ] from a proposal distribution
whose probability density function is denoted as T . and accordingly
calculate the crack size up to step k given 𝜽∗ , i.e., [ 𝑎 1∶ 𝑘 ( 𝑚 

∗ , 𝐶 

∗ )] =
[ 𝑎 1 ( 𝑚 

∗ , 𝐶 

∗ ) , 𝑎 2 ( 𝑚 

∗ , 𝐶 

∗ ) , ..., 𝑎 𝑘 ( 𝑚 

∗ , 𝐶 

∗ )] . Then calculate the joint poste-
rior PDF of m and C at time step k given the new parameters 𝜽∗ 

through Eq. (10) , denoted as p ( 𝜽∗ | Y 1: k ). 
b) Accept the new sample 𝜽∗ as the next sample, i.e., 𝛉𝑖 = 𝛉∗ if 

𝑢 ≤ min 
{ 

1 , 
𝑝 ( 𝛉∗ |𝑌 1∶ 𝑘 ) 𝑇 ( 𝛉𝑖 −1 |𝛉∗ ) 
𝑝 ( 𝛉𝑖 −1 |𝑌 1∶ 𝑘 ) 𝑇 ( 𝛉∗ |𝛉𝑖 −1 ) 

} 

otherwise, reselected the old sample 𝛉𝑖 −1 as the next sample, i.e.,
𝛉𝑖 = 𝛉𝑖 −1 . 

c) Set i = i + 1, go back to step (a) until i = n s . 

In this application, the proposal distribution is chosen as the uniform
istribution which is symmetric. Therefore 𝑇 ( 𝛉𝑖 −1 |𝛉∗ ) = 𝑇 ( 𝛉∗ |𝛉𝑖 −1 ) and

he acceptance criterion reduces to 𝑢 ≤ min {1 , 𝑝 ( 𝛉∗ |𝑌 1∶ 𝑘 ) 
𝑝 ( 𝛉𝑖 −1 |𝑌 1∶ 𝑘 ) } . 

.2. Particle filter (PF) 

There are many versions of PF [42] . The technique we used here in-
ludes three steps at each iteration, prediction, update, and resampling.
he implementation of PF on Paris model is described as follows: 

Step 1 Initialization 
The initial distribution of the parameters m and C in PF are as-

umed normally distributed, i.e., m 0 ∼N ( 𝜇m 

, 𝜎m 

), C 0 ∼N ( 𝜇C , 𝜎C ), with

m 

= 4, 𝜇𝐶 = ln(1.0e − 10), 𝜎𝑚 = 0 . 2 , and 𝜎𝐶 = 1 . 1 . Draw n s particles of m,

 from their initial distribution, denoted as [ 𝑚 

𝑖 
0 , 𝐶 

𝑖 
0 ] , 𝑖 = 1 , 2 , ..., 𝑛 𝑠 . 

Step 2 For j = 1, 2, …, k , 
Prediction. In this step, the crack size at previous time j -1 is propa-

ated to the current time j based on Paris ’ model. For this, samples of the
rior distribution need to be generated. First, n s samples of [ 𝑚 

𝑖 
𝑗 
, 𝐶 

𝑖 
𝑗 
] are

ropagated from previous step j -1. It should be noticed that model pa-
ameters inherently do not depend on time evolution. Therefore, n s sam-
les of [ 𝑚 

𝑖 
𝑗 
, 𝐶 

𝑖 
𝑗 
] become the same as the previous particles [ 𝑚 

𝑖 
𝑗−1 , 𝐶 

𝑖 
𝑗−1 ] .

ext, n s samples of the previous crack size 𝑎 𝑖 
𝑗−1 and model parameters

 𝑚 

𝑖 
𝑗−1 , 𝐶 

𝑖 
𝑗−1 ] are used in the Paris model to propagate n s samples of 𝑎 𝑖 

𝑗 
.

n summary, the crack size and parameters propagate through Eq. (11) .
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𝑖 
𝑗−1 
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𝑗−1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(11)

Update . Calculate the weight of each particle at time step j . The
eight is defined by normalizing the likelihood, as given in Eq. (12) 

𝑒 𝑖 𝑗 = 

𝑝 ( 𝑦 𝑗 |𝑎 𝑖 𝑗 ( 𝑚 

𝑖 
𝑗 
, 𝐶 

𝑖 
𝑗 
)) 

𝑛 𝑠 ∑
𝑖 =1 

𝑝 ( 𝑦 𝑗 |𝑎 𝑖 𝑗 ( 𝑚 

𝑖 
𝑗 
, 𝐶 

𝑖 
𝑗 
)) 

(12)
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Resampling . The inverse CDF method is used as the resampling al-
orithm. It includes the following steps: (a). construct CDF of y j from
he likelihood (b). Find the samples of 𝑎 𝑖 

𝑗 
( 𝑚 

𝑖 
𝑗 
, 𝐶 

𝑖 
𝑗 
) which make the CDF

f y j be the same value as (or the closest to) the randomly chosen value
rom a uniform distribution U(0,1). By repeating this process N times, N
amples of 𝑎 𝑖 

𝑗 
( 𝑚 

𝑖 
𝑗 
, 𝐶 

𝑖 
𝑗 
) are obtained, which represents an approximation

f the posterior distribution. After resampling process, every sample is
ssigned the same weight, 𝑤𝑒 𝑖 

𝑗 
= 1∕ 𝑁 . 

.3. Extended Kalman filter 

EKF deals with state-parameter estimation by appending the param-
ters vector onto the true state vector to form an augmented vector and
stimate the state and parameter simultaneously. In EKF, due to the
ormality assumption, the posterior distribution of state-parameter is a
oint normal distribution that is characterized by mean and covariance.
herefore, instead of using a collection of samples to describe the poste-
ior distribution, EFK gives only the mean and covariance matrix of the
tate-parameter vector. The recursive Paris model in Eq. (3) is used in
KF. The transition function is written as Eq. (13) . Note that in typical
KF, the system transition process contains process noise, whose vari-
nce is denoted as Q and will be used in EKF process. However, in the
urpose of prognostics in this paper, the process noise is ignored. 

 

 

 

 

𝑎 𝑗 
𝑚 𝑗 

𝐶 𝑗 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝑎 𝑗−1 + 𝐶 𝑗−1 

(
Δ𝜎√𝜋𝑎 𝑗−1 

)𝑚 𝑗−1 
𝑚 𝑗−1 
𝐶 𝑗−1 

⎤ ⎥ ⎥ ⎥ ⎦ (13) 

In the following EKF process, we use the symbol “ˆ ” to represent
n estimate and subscript “j ” to denote the time step. Symbols “-” and
+ ” in the upper right corner are used to indicate prior estimate and
osterior estimate respectively. For example, [ ̂𝑎 − 

𝑗 
, �̂� 

− 
𝑗 
, �̂� 

− 
𝑗 
] represents a

riori estimate of the crack size and parameters at time step j while
 ̂𝑎 + 
𝑗 
, �̂� 

+ 
𝑗 
, �̂� 

+ 
𝑗 
] denotes the a posteriori estimate. Similar, P − j is the a priori

stimate for state error covariance matrix at time step j while P + j is the
osterior one. EKF consists two steps: perdition and update. 

Before running EKF process, the following initial values are set.
1) The initial guess for crack size and parameters, denoted as �̂� + 0 �̂� 

+ 
0 , ̂𝐶 

+ 
0 ,

re drawn randomly from a uniform distribution centered at the true
alue, a 0 , m true and C true , with the range of 50% around these values.
eminder that a 0 = 0.8 mm, m true = 3.8, and C true = ln(1.5e − 10). (2) The

nitial covariance matrix P 0 (in our case, a 3-by-3 matrix) is chosen
epending on how much confidence one has to the initial estimates.
3) The variance of process noise Q is set to a small value of 1e − 10 in
rder to make the EKF run while R is the measurement noise variance. 

Prediction 

The posterior estimates of state-parameter at time step j − 1 are prop-
gated to time j through the following transition function 

 

 

 

 

 

�̂� − 
𝑗 

�̂� 

− 
𝑗 

�̂� 

− 
𝑗 

⎤ ⎥ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎢ ⎣ 
�̂� + 
𝑗−1 + 𝐶 

(
Δ𝜎

√ 

𝜋�̂� + 
𝑗−1 

)𝑚 
�̂� 

+ 
𝑗−1 

�̂� 

+ 
𝑗−1 

⎤ ⎥ ⎥ ⎥ ⎦ (14) 

The covariance P propagates as 

 

− 
𝑗 = Φ𝑗−1 𝑃 

+ 
𝑗−1 Φ

𝑇 
𝑗−1 + 𝑄 (15)

here Φ𝑗−1 is the Jacobian matrix of the transition function with re-
pect to the variables in the augmented vector, a, m, C , at the point
 ̂𝑎 − 
𝑗−1 , �̂� 

− 
𝑗−1 , �̂� 

− 
𝑗−1 ] 

𝑇 . Specifically, Φ𝑗−1 is calculated as 

𝑗−1 = 

[ 1 + 𝐶 

𝑚 

2 𝜋
𝑚 
2 (Δ𝜎) 𝑚 ( 𝑎 ) 

𝑚 
2 −1 𝐶 (Δ𝜎

√
𝜋𝑎 ) 

𝑚 
ln (Δ𝜎

√
𝜋𝑎 ) (Δ𝜎

√
𝜋𝑎 ) 

𝑚
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− 
𝑗−1 ,𝑚 = ̂𝑚 

− 
𝑗−1 ,𝐶 = ̂𝐶 

− 
𝑗−1 

Update 
The Kalman gain K j is computed from Eq. (16) , where H j is the Ja-

obin matrix of the measurement function with respect to a, m and C at
he point [ ̂𝑎 − 

𝑗 
, �̂� 

− 
𝑗 
, �̂� 

− 
𝑗 
] 𝑇 . In our case, the crack size is directly measured

nd the measurement data is simulated by adding noise to crack size.
he measurement function can be written as 𝑦 𝑗 = 𝑎 𝑗 + 𝑣 𝑗 , where v j is the
oise. In such a case, H j is a constant that H = [1 0 0] and accordingly,
 j is a 3-by-1 matrix. 

 𝑗 = 𝑃 − 𝑗 𝐻 

𝑇 
𝑗 [ 𝐻 𝑗 𝑃 

− 
𝑗 𝐻 

𝑇 
𝑗 + 𝑅 ] −1 (16) 

The estimated measurement can be computed as 

̂ 𝑗 = �̂� − 𝑗 (17) 

The posterior estimate of state is obtained from Eq. (18) 
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�̂� 
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�̂� 

+ 
𝑗 

⎤ ⎥ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎢ ⎣ 
�̂� − 
𝑗 

�̂� 

− 
𝑗 

�̂� 

− 
𝑗 

⎤ ⎥ ⎥ ⎥ ⎦ + 𝐾 𝑗 

(
𝑦 𝑗 − �̂� 𝑗 

)
(18) 

The error covariance matrix is updated as follow 

 

+ 
𝑗 

= [ 𝐼 − 𝐾 𝑗 𝐻 𝑗 ] 𝑃 − 𝑗 (19)

The prediction and update steps are repeated at each measurement
 j , j = 1,2,…k , until the current time k . Then the posterior estimate at time

 , [ ̂𝑎 + 
𝑘 
, �̂� 

+ 
𝑘 
, �̂� 

+ 
𝑘 

], and the covariance matrix 𝑃 + 
𝑘 

are obtained. Samples can

e drawn from a multivariate normal distribution with mean �̂� + 
𝑘 
, �̂� 

+ 
𝑘 
, �̂� 

+ 
𝑘 

nd covariance matrix 𝑃 + 
𝑘 

. These samples are used for predicting the
rack size behavior from the current time step k . 

.4. Nonlinear least squares 

NLS finds the model parameters by minimizing the weighted sum of
quared errors, SS E,W 

. 

 𝑆 𝐸,𝑊 

= 

𝑘 ∑
𝑗=1 

( 𝑎 𝑗 ( 𝑚, 𝐶) − 𝑦 𝑗 ) 2 

𝑤 𝑗 
2 = [ 𝐚 − 𝐲] 𝑇 𝐖 [ 𝐚 − 𝐲] (20)

here w j 
2 is a weight at the measurement point y j , W a diagonal matrix

ith the inverse of weights 1/ w j 
2 as the diagonal elements, a j ( m, C ) the

utput from Paris ’ model, and ( a j ( m, C )- y j ) the residual. It is assumed
hat the magnitudes of the errors at all measured points are the same.
hen w j 

2 becomes constant and identical to the variance of noise in the
easurement data, which can be determined by the estimated variance

f noise in data, as given in Eq. (21) , in which k is the number of data
nd 2 is the number of parameters. Therefore, W is a constant and has
o effect on the minimizing process to find parameters. 

 

2 
𝑗 = 

[ 𝐚 − 𝐲] 𝑇 [ 𝐚 − 𝐲] 
𝑘 − 2 

(21) 

In nonlinear least squares, the crack size a is not a linear combina-
ion of parameters m and C . In this case, the parameters are determined
sing an iterative process based on optimization techniques. The opti-
ization process is not detailed, but the Matlab function ‘lsqnonlin ’ is
sed instead. Readers refer the definition of ‘lsqnonlin ’ to Matlab docu-
entation of optimization toolbox. The input arguments of ‘lsqnonlin ’ in

ur application are as follows. The objective function is a vector-valued
unction, that is, a k -component vector containing the residuals from
ime step 1 to k such that 𝐅 = [ 𝑎 1 ( 𝑚, 𝐶) − 𝑦 1 , 𝑎 2 ( 𝑚, 𝐶) − 𝑦 2 , ..., 𝑎 𝑘 ( 𝑚, 𝐶) −
 𝑘 ] , in which m and C are design variables updating over the iterative
rocess whose initial values should be designated by users. Here, 4 and
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Table 10 

Correlation between MSE and MSD in 3.75% COV noise level. 

N m = 20 ( N f = 10) N m = 30 ( N f = 20) N m = 40 ( N f = 30) 

BM PF NLS EKF BM PF NLS EKF BM PF NLS EKF 

0.94 0.90 0.99 0.95 0.86 0.91 0.99 0.99 0.97 0.99 0.99 0.99 

Table 11 

Statistics of match extent of MSE rank and MSD rank in 3.75% 

COV noise level. 

N m = 20 ( N f = 10) N m = 30 ( N f = 20) N m = 40 ( N f = 30) 

D R Times D R Times D R Times 

0 88 0 87 0 87 
3 1 3 1 3 1 
5 3 5 6 5 6 
7 5 7 5 7 6 
15 2 21 1 
21 1 

Table 12 

Correlation between MSE and MSD in 35% COV noise level. 

N m = 20 ( N f = 10) N m = 30 ( N f = 20) N m = 40 ( N f = 30) 

BM PF NLS EKF BM PF NLS EKF BM PF NLS EKF 

0.83 0.72 0.99 0.64 0.92 0.92 0.99 0.80 0.96 0.94 0.99 0.95 

Table 13 

Statistics of match extent of MSE rank and MSD rank in 35% COV 
noise level. 
n(1.0e − 10) are assigned as the initial values for m and C , respectively.
evenberg-Marquardt method is chosen as the optimization algorithm
or ‘lsqnonlin’. ‘lsqnonlin’ gives the following outputs, the estimated pa-
ameters, denoted as �̂� and �̂� , the residuals that can be used to calcu-
ated w j 

2 in Eq. (21) , and a Jacobian matrix that will be used in the
ollowing calculation of the uncertainty in estimated parameters. 

In general, the iterative process yields a single set of parameters ’
alue that minimizes the SS E,W 

error. However, in prognostics, the op-
imum parameters depend on measurement data that include measure-
ent variability. If a different data are used, the optimized parameters

an be changed. That is, the estimated parameters have uncertainty. In
LS, the uncertainty of estimated parameters is characterized by its co-
ariance matrix given by the following equation: 

�̂� , ̂𝐶 = [ 𝐉 𝑇 𝐖𝐉 ] −1 (22)

here J is a Jacobian matrix of the first-order partial derivatives of the
aris model with respect to the model parameters m and C calculated at
ll measurements. In our case, J is a k -by-2 matrix such that 

 = 

⎡ ⎢ ⎢ ⎣ 
𝜕 𝑎 1 ( 𝑚, 𝐶)∕ 𝜕𝑚 𝜕 𝑎 1 ( 𝑚, 𝐶)∕ 𝜕𝐶 

⋮ ⋮ 
𝜕 𝑎 𝑘 ( 𝑚, 𝐶)∕ 𝜕𝑚 𝜕 𝑎 𝑘 ( 𝑚, 𝐶)∕ 𝜕𝐶 

⎤ ⎥ ⎥ ⎦ (23)

Eq. (22) can be rewritten as 

�̂� , ̂𝐶 = 𝑤 𝑗 
2 [ 𝐉 𝑇 𝐉 ] −1 (24)

Note that the residuals needed to compute 𝑤 

2 
𝑗 

and Jacobian matrix J
an be obtained directly from ‘lsqnonlin ’ function. The covariance ma-
rix 

∑
�̂� , ̂𝐶 can then be calculated. Once the model parameters and its

ariance are obtained, the distribution of parameters can be obtained.
he crack growth trajectory is predicted based on the samples of esti-
ated parameters. 

ppendix B. True crack size at different flight cycles used in this 
aper 

Table 9 tlists the true crack size (mm) at different flight cycles use in
his paper. The crack grows exponentially at the end stage. To prevent
ome complex or abnormal value (e.g., Inf or NaN in MATLAB) in the
umerical simulation, we set a limit of upper bound of 1000 mm for the
rack size. Therefore, the value at 4900th and 5000th cycle does not
ecessarily mean that the crack size is 1000 mm. 
able 9 

rue crack size at different cycles, unit in mm. 

Cycles Crack size Cycles Crack size Cycles Crack size Cycles Crack size 

Initial 8.0 1400 11.7 2800 20.7 4200 73.0 
100 8.2 1500 12.0 2900 21.9 4300 87.5 
200 8.4 1600 12.5 3000 23.2 4400 108.7 
300 8.6 1700 12.9 3100 24.7 4500 142.3 
400 8.8 1800 13.4 3200 26.3 4600 203.1 
500 9.0 1900 13.9 3300 28.2 4700 343.9 
600 9.3 2000 14.4 3400 30.4 4800 969.9 
700 9.5 2100 15.0 3500 32.8 4900 1000 
800 9.8 2200 15.6 3600 35.7 5000 1000 
900 10.0 2300 16.3 3700 39.2 
1000 10.3 2400 17.0 3800 43.3 
1100 10.6 2500 17.8 3900 48.3 
1200 11.0 2600 18.7 4000 54.5 
1300 11.3 2700 19.7 4100 62.5 

98 
ppendix C. Correlation between MSE and MSD in different noise 
evels 
N m = 20 ( N f = 10) N m = 30 ( N f = 20) N m = 40 ( N f = 30) 

D R Times D R Times D R Times 

0 88 0 86 0 79 
3 2 3 1 3 2 
5 1 5 3 5 5 
7 5 7 8 7 10 
15 1 15 1 10 1 
24 1 21 1 15 2 
25 1 24 1 
51 1 
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Table 15 

The predicted crack size at 4500th cycle by each algorithm 

by each method, unit in mm. 

Dataset # Predicted crack size at 4500th cycle (mm) 

P B N E 

4 118.18 106.48 63.50 54.04 
5 109.20 98.45 72.15 44.92 
7 118.44 103.18 67.18 48.00 
9 122.36 115.02 79.53 50.49 
12 110.42 108.75 83.43 39.87 
20 131.12 139.63 79.56 47.51 
26 113.92 109.86 97.71 51.96 
33 142.13 112.21 106.18 51.26 
35 141.74 120.58 94.61 52.23 
37 132.08 113.61 91.92 58.38 
40 114.49 118.43 114.16 56.21 
44 119.46 108.69 89.14 58.15 
47 106.73 100.56 48.04 39.38 
48 135.13 117.04 69.14 41.18 
49 155.56 105.66 97.19 51.98 
57 124.06 147.87 218.69 62.03 
58 110.10 110.13 107.07 61.19 
61 137.61 117.45 78.55 51.58 
62 148.20 118.45 81.46 37.02 
63 137.74 103.50 82.79 53.51 
67 128.34 113.09 96.79 61.70 
71 126.72 127.99 196.68 53.98 
82 114.69 101.19 79.70 40.35 
84 124.56 108.23 64.31 39.88 
95 140.45 130.24 95.95 61.54 
100 124.19 128.48 120.80 52.46 
ppendix D. An example to show the calculation of events A and 

|A 

The most frequent MSE ranking in the case of N m 

= 40 ( N f = 30),
BNE, (refer to Table 2 ) is presented as an example to show that how to
ount the occurrence times of event A, B|A, and B|A 

∗ . There are 26 out
f 100 datasets give the MSE ranking of PBNE, as listed in Table 14 . To
ach dataset, each algorithm predicts 500 cycles further from the last
easurements (corresponds to 4000th cycle) up to 4500th cycle. The

elative errors of the predicted crack size with respect to the true crack
ize at 4500th cycle are reported in Table 14 (Note that the true crack
ize at 4500th cycle is 142.3 mm, refer to Appendix B ). For reference,
he predicted crack size at 4500th cycle is given in Table 15 . 

Table 14 tells that event A occurs 20 times out of 26. The six datasets,
n which MSE-best fails to preserve the best in the future, are marked
ith an asterisk in the first column. The event B|A occurs 17 out of 20.
he three datasets, in which MSD-best is not consistent with MSE-best
iven that the MSE-best preserves the best in the future, are marked with
n asterisk in the last column. For data set #40, #58, #71 and #100,
lthough the MSE-best (the particle filter) switch to the second best in
he future, the difference with the future-best in terms of the relative
rror is less than 5% (2.7% for dataset #40, 3.0% for #100, and less
han 1% for #58 and #71). Therefore, event A 

∗ occurs 24 times out of
6 and event B|A 

∗ occurs 20 times out of 24. In summary, based on
he available data, one select the particle filter and there is 77% chance
20/26) that the particle filter will preserve good performance in the
uture. 
Table 14 

Relative error with respect to the true crack size at 4500th cycle by each 
algorithm, P-particle filter, B-Bayesian method, N-nonlinear least square, 
E-Extended Kalman filter. 

Dataset # Relative error at 4500th cycle (%) MSD Ranking 
P B N E 

4 16.95 25.17 55.38 62.02 PBNE 
5 23.26 30.82 49.29 68.44 PBNE 
7 16.77 27.49 52.79 66.27 PBNE 
9 14.01 19.17 44.11 64.52 PBNE 
12 22.41 23.58 41.37 71.98 PBNE 
∗ 20 7.85 1.88 44.09 66.61 BPNE 
26 19.94 22.80 31.34 63.48 PBNE 
33 0.12 21.14 25.38 63.98 ∗ BPNE 
35 0.40 15.26 33.51 63.29 PBNE 
37 7.18 20.16 35.40 58.97 PBNE 
∗ 40 19.54 16.78 19.78 60.50 BPNE 
44 16.05 23.62 37.36 59.13 PBNE 
47 24.99 29.33 66.24 72.32 PBNE 
48 5.04 17.75 51.41 71.06 PBNE 
49 9.31 25.75 31.70 63.47 PBNE 
∗ 57 12.82 3.91 53.68 56.41 PBNE 
∗ 58 22.63 22.61 24.76 57.00 PBNE 
61 3.29 17.46 44.80 63.75 ∗ BPNE 
62 4.14 16.76 42.76 73.99 PBNE 
63 3.21 27.27 41.82 62.40 PBNE 
67 9.81 20.53 31.98 56.64 PBNE 
∗ 71 10.95 10.06 38.21 62.07 PBNE 
82 19.40 28.89 43.99 71.65 PBNE 
84 12.46 23.95 54.80 71.97 PBNE 
95 1.30 8.48 32.57 56.75 ∗ BPNE 
∗ 100 12.73 9.71 15.11 63.14 PBNE 
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