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Epistemic Uncertainty Stemming
From Measurement
Processing—A Case Study of
Multiphase Shock Tube
Experiments
Experiments of a shock hitting a curtain of particles were conducted at the multiphase
shock tube facility at Sandia National Laboratories. These are studied in this paper for
quantifying the epistemic uncertainty in the experimental measurements due to process-
ing via measurement models. Schlieren and X-ray imaging techniques were used to
obtain the measurements that characterize the particle curtain with particle volume frac-
tion and curtain edge locations. The epistemic uncertainties in the experimental setup
and image processing methods were identified and measured. The effects of these uncer-
tainties on the uncertainty in the extracted experimental measurements were quantified.
The influence of the epistemic uncertainty was significantly higher than the experimental
variability that has been previously considered as the most important uncertainty of
experiments. [DOI: 10.1115/1.4042814]

1 Introduction

The validation of scientific computational models has tradition-
ally been done by comparing model predictions against experi-
mental measurements [1–3]. Uncertainty quantification has been
the key ingredient in the modern validation process, where the dis-
tribution of model predictions is compared with that of experi-
mental measurements [4,5]. Nominally identical experiments are
repeated multiple times in order to quantify uncertainty from vari-
ous sources. During the experiments, the uncertainty in the input
parameters/conditions as well as that of the quantities of interest
(QoIs) are measured. Then, the uncertainties in the input parame-
ters/conditions are propagated through the physical model to pro-
duce the distribution of predictions. The validation is conducted
using various validation metrics based on the two distributions
[6,7].

Often experimental variability has been considered as a major
uncertainty source. However, epistemic uncertainty in measurement
process also has received attention. Ferson et al. [8] address the
needs of the characterization of measurements including epistemic
uncertainty and suggest an interval estimation instead of point esti-
mation. Beresh [9] suggests detailed comparisons of data sets from
redundant measurement methods that introduce different epistemic
uncertainties for the same experiment to capture the error source of
experiment. Hughes et al. [10] demonstrate the importance of
experiment configuration design for minimizing epistemic uncer-
tainty in measurement process based on legacy data and past docu-
mentation. Thurber [11] discusses the influence of various
characteristics of acetone on planar laser-induced fluorescence
imaging and is to make diagnostics quantitative. Adrian and West-
erweel [12] discuss various aspects of particle image velocimetry
image processing including theoretical models and possible error

sources. Timmins et al. [13] suggest a method to obtain measure-
ment uncertainty from the epistemic uncertainty in parameters for
the particle image velocimetry algorithm to process experimental
data. Hughes et al. [14] introduce the concept of forensic uncer-
tainty quantification (UQ) for simulation validation. Forensic UQ
proposes an independent investigator to discover possible missing
uncertainty sources in validation-quality experiments. The concept
is demonstrated with an explosion experiment performed at the
Eglin Air Force Base. The epistemic uncertainty in the model pre-
diction comes from model error, numerical error, and/or discretiza-
tion error. When the two distributions fail to match, it is often
concluded that the model is invalidated. The objective of this paper
is to show that there can be a significant portion of epistemic uncer-
tainty in experiments too. Sometimes, this epistemic uncertainty
may be larger than the aleatory uncertainty. In such a case, it is
required to have a careful assessment of uncertainties in order to
obtain a meaningful outcome from the validation. The objective of
this paper is to demonstrate the potential significance of epistemic
uncertainty in experiments using the case study of the multiphase
shock tube experiments that were conducted by Sandia National
Laboratories [15–18].

The major source of epistemic uncertainty in experiments
occurs when the QoI is measured indirectly. While attempting to
measure the QoI, the experimentalist typically measures an inter-
mediate quantity that allows obtaining the QoI. The process of
converting the intermediate quantity into the QoI often involves a
model or assumptions. For example, a strain gage may be used to
measure the strain in a beam, but it actually measures the change
in voltage. A linear model between the change in voltage and
strain is used to calculate the strain. Therefore, the uncertainty in
measured voltage is propagated through the model to yield the
uncertainty in strain. However, as the complexity of such models
increases, the propagation of uncertainty becomes less trivial, and
it becomes a major source of epistemic uncertainty.

In the present paper, we illustrate the importance of quantifying
epistemic uncertainty in QoI using a series of shock-particle
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interaction experiments run on the multiphase shock tube at San-
dia National Laboratories. The study was motivated by the
development of a shock-particle curtain interaction simulation
and the necessity for validating the simulation program
[15,19,20]. Experimental measurements were to be compared
with simulation results to assess the validity of the simulation.
The challenge in this case is the indirect nature of critical experi-
mental measurements, the particle volume fraction, and the
location of the curtain, which are obtained from X-ray and
Schlieren image that require two separate postprocessing mod-
els. X-ray and Schlieren images have pros and cons. They are,
respectively, used to measure curtain volume fraction at t¼ 0
and particle front position at different time exclusively. Wagner
et al. [21] discuss that it is not possible to measure volume frac-
tion using Schlieren images since the particle curtain is com-
pletely opaque towards visible light.

The experiments involve a planar shock wave impinging on a
particle curtain formed inside the rectangular frame of the shock
tube (shown in Fig. 1). The shock wave is generated by a high-
pressure ratio between the driver and driven sections when a dia-
phragm between them is burst. The particle curtain is formed
when the particles in the reservoir fall down through a narrow slit.
When the shock hits the particle curtain, it makes the particle cur-
tain expand and move downstream. Schlieren and X-ray imaging
techniques are used to capture the motion of the particle curtain
and to measure the distribution of the volume fraction from the
images [22]. The data extraction process involves complicated
calculations. These calculations are derived from physical models
that define the relationship between the QoI and the images as
well as calibrating model parameters from other experiments.
Therefore, the measurement process includes epistemic uncer-
tainty. As the models become more complicated, they will likely
contribute a significant amount of epistemic uncertainty in the cal-
culations of the desired measurements.

Our studies associated with the particle curtain characterization
revealed important sources of epistemic uncertainty that signifi-
cantly increased the overall uncertainty in the QoI. Traditionally,
model form errors in simulation are considered as the dominant
sources of epistemic uncertainty in validation exercises. However,
we emphasize that complex measurement processing in experi-
ments may act as major uncertainty sources that should be thor-
oughly considered.

The paper is organized as follows: Sec. 2 explains details of the
experimental setup and the measurement process for Schlieren
and X-ray. Section 3 describes the process of uncertainty quantifi-
cation for these processes. Section 4 shows the comparison
between the aleatory and the epistemic uncertainty, followed by
conclusions in Sec. 5.

2 Shock-Tube Imaging Experiments

The shock tube experiments were initially conducted at the
multiphase shock tube in Sandia National Laboratories [16]. The
shock tube apparatus consists of two sections separated by a dia-
phragm: a high-pressure driver section and a low-pressure driven
section. Once the diaphragm bursts, a shock wave is generated
due to pressure difference, and it propagates toward the test sec-
tion as shown in Fig. 1(a). Although the original experiments
were conducted for various shock speeds, we only analyze the
case of Mach 1.67 in this paper. The particle curtain is formed by
falling particles, under the influence of gravity, through a 3.2 mm
beveled slit in the particle reservoir, forming about 2 mm thick cur-
tain in the test section. Soda-lime particles with the average diame-
ter of 115 lm are used for the experiment. Figure 1(b) shows a
schematic side view of the initial particle curtain. Once the shock
wave reaches the particle curtain from the left, the curtain expands
and moves to the downstream, where the downstream edge moves
faster than the upstream edge, as shown in Fig. 1(c).

Measurements of the experiment are conducted via two imag-
ing systems: Schlieren and X-ray radiography. Both systems are
aimed at the window in the test section shown in Fig. 1, where the
motion of the particles can be visible. Note that each experiment
is recorded with Schlieren or X-ray images, not both, because
they cannot share the observation window of the test section.

Two QoIs are required for simulation validation. The first is the
position of upstream and downstream particle curtain fronts,
which track the expansion and movement of the particle curtain
fronts as a function of time. The curtain thickness is obtained as
the difference between the two front positions. Experimentally,
the particle front positions are obtained from high-speed Schlieren
imaging system, which will be compared with the simulation pre-
dictions to assess the validity of the simulation. The second QoI is
the distribution of particle volume fraction within the curtain,
which can be measured using the flash radiography (X-ray) tech-
nique. A unique aspect of these QoIs is that they can be used for
both the input to the simulation and the QoI for validation. Before
the shock hits the curtain, these two QoIs can be used as the initial
condition of the simulation, while after the shock hits the curtain,
they will be used as the QoI for validation.

The postprocessing of the raw data is largely done through
physics-based image analysis techniques. Figure 2 depicts the pro-
cess of obtaining the particle volume fraction and the locations of
particle curtain fronts. The images of the particle curtain are
obtained with a high-speed Schlieren imaging system to capture
the motion and expansion of the curtain as the shock impinges on
the curtain. X-ray images are used to measure particle volume
fraction. This process is supported by the X-ray calibration experi-
ment that calibrates the attenuation of the X-rays due to the parti-
cle volume that they pass through. This experiment calibrates the
X-ray image processing. The introduction of the calibration
experiment brings an additional source of uncertainty in measure-
ment processing.

As shown in Fig. 2, the three experiments produce input param-
eters for the simulations as well as output QoIs for validating the
simulations. The input parameters are those experimental meas-
urements that define the initial conditions of the simulations.
Experimental measurements at time t¼ 0 or before the shock hits
the curtain yield information about these input parameters. These
include the initial curtain thickness and the initial distribution of
particle volume fraction both obtained from the Schlieren and X-
ray images of the curtain before shock impingement, respectively.
On the other hand, the experiments also measure the output QoIs
that are used to validate simulation predictions. The primary vali-
dation QoI is the particle curtain front locations over time meas-
ured via the Schlieren experiments. The secondary validation QoI
is the distribution of particle volume fraction over time measured
by the X-ray experiments. Additionally, the X-ray experiments
require X-ray parameters that are obtained from X-ray calibration
experiments. These parameters are used in X-ray experiments to

Fig. 1 Schematic figure of the shock tube experiment: (a) San-
dia multiphase shock tube, (b) particle curtain before impact,
and (c) particle curtain after impact
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estimate the particle volume fraction from X-ray image intensity.
The approximation process in these X-ray parameters contributes
to the epistemic uncertainty in the measurement process.

2.1 Schlieren Measurement Processing. The Schlieren
imaging system measures the front locations over time, which are
used as the primary validation QoI for simulations. The images
produced by the experiment must undergo postprocessing in order
to find the particle curtain locations. The postprocessing is an
inverse process based on the physics of light that explains how a
particle curtain appears on the Schlieren image [16].

2.1.1 Schlieren Imaging. Schlieren photography is a tech-
nique used to visualize density variations in a fluid flow. These
variations or gradients of density cause the deflection of light.
When the light meets a region with a high gradient of density, the
light is deflected toward or away from the region, which produces
a shadow pattern. This shadow pattern is shown as an image inten-
sity depending on the fluid expansion or compression. The tech-
nique helps visualize shocks and other flow characteristics, and
for the purpose of identifying particle curtain fronts, it is straight-
forward, as the solid particles show up in strong shadow. The den-
sity variation between a particle and the air around it simplifies
the Schlieren imaging process. Figure 3 shows particles captured
on a Schlieren image with consistent contrast against the

background. The major advantage of Schlieren photography is
that it can capture both the shock location and the particle curtain
locations.

2.1.2 Image Processing. Using the Schlieren images obtained
from Wagner et al. [21], the postprocessing for determining the
particle curtain fronts was performed with uncertainty quantifica-
tion. The Schlieren photography produced approximately 20
images showing the expansion of the curtain after the shock hits
the curtain. Figure 3 depicts some of these images where Fig. 3(a)
shows the curtain before the impingement of the shock (the shock
is located to the left of the curtain), while Fig. 3(b) shows the
expansion of the particle curtain after the shock passes through it.
The bowed particle curtain in the y-direction is due to boundary
effects. It is reasonable to expect smaller boundary effects to
occur near the sidewalls where there is a small air gap between
the curtain and the wall. The particle curtain forming apparatus on
top of the test section blocks the view of the curtain in the z-
direction. Although the Schlieren images shown in Fig. 3 capture
almost the entire portion of the curtain, the center portion within
the two white lines with a height of 5 mm is used for analysis to
avoid the effects of varying curtain thickness in the vertical direc-
tion and boundary effects near the top and bottom. Quantifying
the uncertainty due to boundary effects is not feasible but the
uncertainty is considered little based on expert opinion. In order

Fig. 2 Experimental postprocessing procedure

Fig. 3 Schlieren image of curtain: (a) particle curtain before impact and (b) particle
curtain after impact
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to minimize the boundary effect, the particle front locations are
calculated based on the middle section of the images. This also
helps expand the field of view. The effect of gravity can be
ignored because the time span of the shock-curtain interaction
captured in this experiment is a several orders of magnitude less
than that of the gravity. The curtain fronts are then identified using
a threshold of image intensity for different time frames.

Figure 4 depicts the image processing conducted to obtain the
particle front locations. First, the image is cropped to the region of
interest, which is the region between the white lines in Fig. 3.
Next, the average pixel intensity was calculated across the pixels
at the same horizontal location to produce an averaged intensity
vector representing every location in the horizontal direction.
Then, the front location is obtained on either side of the curtain by
finding the pixel location where the averaged intensity is closest
to the 5% of the average background intensity. The last step is to
calculate the curtain thickness by multiplying the number of pix-
els with the size of one pixel.

Another important aspect of the image processing is how to
identify the initial time. Time, t¼ 0, is defined as the moment
when the shock first encounters the curtain. In fact, simulation
will position the shock at the left curtain front location when t¼ 0.

2.2 X-Ray Measurement Processing. The X-ray experi-
ments have higher measurement processing complexity for
obtaining initial volume fraction. Thus, the uncertainties in the
process need rigorous quantification. As depicted in Fig. 2, the X-
ray image processing requires a separate calibration experiment to
convert the image intensity to the volume fraction. Since Schlie-
ren imaging alone is unable to obtain a volume fraction measure-
ment, Wagner et al. [17,21] switched the imaging apparatus to an
X-ray method, which was expected to reduce the uncertainty.

2.2.1 X-Ray Measurement Setup. The X-ray imaging tech-
nique was setup to measure the variations of particle volume frac-
tion along the streamwise direction by measuring X-ray beam
intensity reduction. Wagner et al. [21] note that the X-ray images
are obtained with a computer radiograph system that is composed
of a Carestream Industrex digital imaging plate having a spatial
resolution of 100 microns and an ALLPRO Imaging scanner
(ALLPRO Imaging, Melville, NY). Since Schlieren imaging
could not penetrate the opaque curtain, a top-hat volume fraction
distribution was assumed, resulting in a large uncertainty in the
volume fraction. The X-ray technique described in Ref. [21]
employed the X-ray setup shown in Fig. 5.

The stationary X-ray source was aligned accurately with the
particle curtain. To avoid the error due to misalignment, X-ray
was used not to measure the particle front positions but to measure
the volume fraction at t¼ 0. The uncertainty due to misalignment
is considered little in the paper.

The X-ray experimental data are limited to one image per
experiment because of the inability of an X-ray apparatus to flash

rapidly. After one exposure, the X-ray source must be recharged.
Thus, five time-points, t¼ 0, 110, 180, 230, and 340 ls, were
selected and four repetitions were conducted at each time point
resulting in 20 total experiments. The X-ray source is positioned
to align with the center of the curtain at a given time for each of
the experiments in order to minimize the error due to misalign-
ment. In addition, since the distance between the X-ray source and
the particle curtain was much larger than the movement of the cur-
tain for the times of flashing, the effect of misalignment is
expected to be little. In Sec. 3, it will be shown that this misalign-
ment can cause an error in measuring the distribution of volume
fraction, which will be considered as epistemic uncertainty.

2.2.2 X-Ray Image Processing. Figure 6 shows the X-ray
images of the test section. The X-ray images are cropped to an
approximately 20 mm vertical section outlined in Fig. 6(b) with
white lines, and the image intensities are averaged over the verti-
cal direction to create an average intensity for every location
along the streamwise direction. The intensities are used to esti-
mate the volume fraction by following the formulation from
Wagner et al. [21].

The method used to convert intensity to volume fraction is
based on the assumption that the volume fraction is proportional
function to the intensity ratio. Since X-ray beam intensity decays
while passing through the soda-lime particles, the ratio between
the X-ray intensities of the curtain and background tells the travel-
ing distance, w, of the X-ray beam through the particles. When the
width of the particle curtain is w0, the volume fraction up can be
estimated as

up ¼
w

w0

(1)

where w is the path length the X-ray beam through particles (the
rest of the path is through air with negligible attenuation).
Although the shape of particles is spherical, since we average the
intensity over the vertical direction, Eq. (1) will be a good approx-
imation of the volume fraction.

Fig. 4 Schlieren measurement processing

Fig. 5 Multiphase shock tube X-ray apparatus schematic
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The Beer–Lambert law [23] calculates the attenuated intensity I
of X-rays after traveling through a medium with density q and
thickness w when the intensity without the medium is I0. The rela-
tionship is given as

I ¼ I0e�Aqw (2)

where A is the X-ray attenuation coefficient.
Wagner et al. [21] used these two relations to create a working

form of the Beer–Lambert law to estimate the volume fraction
from intensity measurements as

up ¼
ln I=I0ð Þ
�Aqw0

(3)

where I=I0 represents the ratio between the intensity at the point
of interest and the background intensity I0 from an X-ray image.
In the equation, the density of particles is represented by q. The
value w0 represents the depth of the particle curtain along the z-
axis in Fig. 5.

Since the X-ray is from a point source as shown in Fig. 5, the
projected image of the particle curtain is larger than the actual
curtain size. Therefore, it is necessary to compensate for the mag-
nification effect before converting X-ray image intensity to the
volume fraction profile. Based on the geometries of the experi-
mental setup shown in Fig. 5, the amount of magnification can be
calculated using

M ¼ SODþ IOD

SOD
(4)

where image-to-object (IOD) and source-to-object (SOD) are
8 cm and 136 cm, respectively.

As can be seen in Eq. (3), the conversion from image intensity
ratio to the volume fraction depends on the attenuation coefficient
A. Wagner et al. [21] noted that the attenuation coefficient A is not
a constant but a function of the intensity ratio due to the beam
hardening effect. In addition, the attenuation coefficient needs to
be calibrated. To obtain the functional form of the attenuation
coefficient, Wagner et al. [21] conducted a calibration experiment
using the glass wedge shown in Fig. 7.

Considering that the height at the center of the glass wedge cor-
responds to w0, the volume fraction at the center equals to one. As
the height w decreases toward the tip, the volume fraction gradu-
ally decreases. X-rays are projected down toward the top of the
glass wedge in Fig. 7. Since the height of each step ðwÞ and the
density of the material (q, the same soda-lime glass material as
the particles) are known, and since the intensity ratios for each
step are measurable from the X-ray image from the calibration
experiment, the attenuation coefficient of each step can be calcu-
lated using Eq. (2). Figure 8 shows the attenuation coefficient data
(hollow circles) at different steps and a linear fit for the data.
Wagner et al. [21] fit the data using a linear function for the
attenuation coefficient, which was used to obtain the volume frac-
tion from the X-ray experiments of the curtain. As shown in
Fig. 8, the linear fit captures the trend of data but also shows mod-
eling errors. The effect of the modeling error due to this linear
assumption will be investigated in Sec. 3.

The image processing workflow of the X-ray experiments is
depicted in Fig. 9, where both the calibration and the X-ray cur-
tain experiments contribute to the calculation of the particle vol-
ume fraction of the curtain. The top half depicts the calibration

Fig. 6 X-ray image of the particle curtain: (a) raw X-ray image of test section and (b) particle curtain X-ray
image

Fig. 7 Glass wedge for X-ray calibration experiment
Fig. 8 Calibration experiment results for attenuation
coefficient
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experiment described previously, while the bottom half describes
the X-ray experiment.

3 Uncertainty Quantification of Measurement

Processing

In this section, the uncertainty in the QoIs from the two imaging
systems in Sec. 2 is quantified. Studying the image processing
methods allows us to identify uncertainty sources of QoIs, the
locations of particle curtain fronts, and the volume fraction. Meas-
uring the magnitude of these uncertainties and propagating them
through the calibration process allow us to quantify the uncer-
tainty in the QoIs.

3.1 Uncertainty Quantification of Schlieren Measurement
Processing. A key step in uncertainty quantification is to
measure/estimate all possible sources of uncertainty in the experi-
mental process. Table 1 lists the uncertainty sources in the Schlie-
ren image processing step based on Wagner et al. [16]. Table 1
also lists those parameters whose uncertainties were not measured
but their influences were assumed ignorable. For example, the
Schlieren apparatus was assumed to be placed in perfect align-
ment with the curtain to eliminate the magnification effect,
although the uncertainty in the alignment was not measured.

The main goal is to quantify the effects of the uncertainty sour-
ces listed in Table 1 on the front locations. The image and time
resolutions had uncertainties that had negligible bearing on the
front location estimated by the measurement processing. An
assumption is made that the Schlieren light source is collimated

since we have no reason to believe otherwise; therefore, we con-
sider that the effect of magnification is ignorable.

3.1.1 Initial Curtain Thickness. A critical input parameter
from the Schlieren experiments is the initial curtain thickness.
This is obtained by images taken before the shock hits the curtain.
We use 15 images before the shock hits the curtain to represent
approximately 350 ls, which is approximately the length of time
we study during the shock-curtain interaction. This gives us an
idea of how much the curtain thickness varies naturally over the
period as well as a value for the curtain thickness for simulation
input. Schlieren image analysis showed a mean curtain thickness
of 2.38 mm and a standard deviation of 0.1 mm. The variability
remained constant within the 350 ls range.

3.1.2 Schlieren Apparatus Alignment. Misalignment in the
light source for taking Schlieren image could magnify the curtain
as it appears in the image inflating calculations of curtain thick-
ness. Figure 10 depicts a block curtain where a source of colli-
mated light is illuminating the curtain from a slight (dramatized)
angle. This slight misalignment captures the side of the curtain,
which would present as inflation to the curtain thickness in the
image. A trivial ray tracing exercise revealed that a 1 deg mis-
alignment of the light source could cause up to a 1.2 mm distor-
tion in the front location. This is particularly significant for the
initial curtain thickness measurements used as inputs to simula-
tions. The four experiments studied in this paper showed curtain

Fig. 9 X-ray measurement processing

Table 1 Uncertainty sources of Schlieren imaging experiment

Uncertainty sources in the image processing Value

Image resolution 0:226 6 0:001 pixels=mm
Frame rate of Schlieren imaging system 24:4 6 0:01 ls
Intensity threshold to define front location 1–20% of maximum intensity

Parameters without uncertainty information Assumed value

Camera and light source alignment 90 deg (perpendicular to
test section)

Magnification 1:0
Fig. 10 Schlieren apparatus misalignment
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thickness up to d0 ¼ 2:38 6 0:2 mm. As described in Table 1, the
uncertainty in the misalignment for the shock tube experiments
was unavailable. However, later experiments done on the same
apparatus by DeMauro et al. [18] measured the particle curtain
thickness to be d0 ¼ 1:5 6 0:2 mm. Therefore, the misalignment
should be considered as a significant source of uncertainty in the
curtain thickness.

3.1.3 Time Resolution—Identifying t¼ 0. Initial time, t¼ 0
ls, was defined as the moment the shock first hit the left edge of
the curtain. Two methods were used to estimate the initial time
and the uncertainty. The first method utilized three sequential
Schlieren images: one where the shock is seen just upstream of
the curve, the second where the shock has passed through the cur-
tain, and a third just after the second. The shock speed is estimated
between each pair of images and averaged curtain location
(assuming that the shock speed is constant through the curtain).
The curtain location at t¼ 0 ls is estimated using the distance
between the shock and the curtain in the first image. Estimating t¼ 0
is simply just defining the times associated with each images given
the definition of time, t¼ 0 ls. The second method used the average
nominal shock speed based on the burst disk and the distance
between the shock and curtain in the first image to estimate when the
shock hits the curtain. This first image can be seen in Fig. 3(a).
Uncertainty in the shock speed estimated from the three consecutive
images and uncertainty in the average shock speed estimated by the
burst disk properties resulted in shock speeds ranging from 2.4 to 2.5
pixels/ls. Then, calculating the adjustment necessary to center the
data around t¼ 0 yields an uncertainty of approximately 0.5 ls. That
means the particle position has temporal uncertainty of 0.5 ls.

3.1.4 Uncertainty in Threshold. The particle front location is
obtained using a threshold. For example, the particle front of the
curtain in Fig. 3 is determined by selecting a pixel, whose intensity
is lower than the threshold intensity. An ad hoc method is used to
select the threshold of 5% to define the front locations in the image
analysis [16]. However, it turned out that the variations from 1 to
20% had a negligible effect on identifying the front location (stand-
ard deviation of 0.05 mm). It is concluded that the uncertainty due
to the threshold selection has a small contribution. This is because
of the nature of the particles in the Schlieren images, which present
a sharp, consistent contrast against the empty background.

3.1.5 Variability in Experiments. Besides the uncertainties
regarding the imaging process, there is variability in experiments.
The plot in Fig. 11(a) shows the downstream and upstream fronts
for four runs. Of note, the fourth run was shifted back a single
time interval (24.4 ls) to align with the others because of a sus-
pected processing error. Figure 11(b) shows the average of the

upstream and downstream fronts over the four experiments. The
uncertainty bands represent variability of 95% confidence interval.
Since the uncertainty in the time of data is little (0.5 ls), the hori-
zontal error bars of the data are omitted.

3.2 X-Ray Measurement Processing Uncertainty
Quantification. Table 2 consists of sources of uncertainty iden-
tified in the image processing and the calibration experiment. The
average background intensity was measured by averaging inten-
sities from the background pixels of the images without including
the particle portion. The uncertainties in the particle density and
the curtain width were obtained from the communication with the
authors of Wagner et al. [21]. The magnification uncertainty was
conservatively estimated by assuming that there is uncertainty in
the experiment configuration, using Eq. (4). The uncertainties in
the imaging process are little. The largest uncertainty source in
terms of coefficient of variation is the uncertainty in the particle
density. However, the uncertainty is averaged out in the process
of analyzing X-ray images since the process uses integrated den-
sity of particles along the beam travel direction. The uncertainty
in the location of X-ray source was not measured. The source was
precisely placed with a high-load micrometer and it is assumed
that its influence on the volume fraction calculation process is lit-
tle [21,24].

The most important uncertainty in the process is the uncertainty
in the attenuation coefficient curve obtained from the calibration
experiment. Sections 3.2.1 and 3.2.2 describe the uncertainty
quantification of the curve and quantifying the uncertainty in the
volume fraction.

3.2.1 Uncertainty Quantification of Attenuation Coefficient
Calibration. The attenuation coefficient, A, as discussed before, is
estimated as a function of the X-ray image intensity at a point and
the background intensity. The calibration experiment with the
soda-lime glass block shown in Fig. 7 yielded 15 attenuation coef-
ficients for I=I0 of the steps. Wagner et al. [21] fit the attenuation
coefficient data with a linear function to estimate the volume frac-
tion in the particle curtain experiments. The data, however, have
noise and finding the true trend while filtering out the noise and
estimating the uncertainty are of key importance. Since the data
came from the steps of one block, we assume that the noises are
correlated. Since the regular linear regression model assumes inde-
pendent noise, we developed a linear regression model with corre-
lated noise using a Gaussian process (GP) model in the Appendix.

By applying the developed regression model, a linear fit and the
uncertainty in the fit were obtained. Figure 12 shows the 95% con-
fidence interval for the predicted attenuation coefficient curve
with a linear model and two randomly generated curves (curves

Fig. 11 Schlieren particle front locations: (a) front locations (four experiments) and (b) averaged front locations
with 95% confidence intervals
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with dashed line). The confidence interval represents the uncer-
tainty in the predicted curve. The confidence interval is wider at
the sides of the intensity range that represents extrapolation uncer-
tainty. Since the curve is based on the whole noisy data set, the
uncertainty in the curve is less than the individual point uncer-
tainty. Note that the uncertainty in the intensity ratio is little
because the intensity data were directly obtained from digital
images. The horizontal error bars of the data are omitted.

3.2.2 Uncertainty Propagation Through Volume Fraction
Calculation Model. The uncertainty in the volume fractions was
quantified by propagating uncertainties involved in the process.
Thus, the uncertainty in the volume fraction is the result of the
attenuation uncertainty, which is due to the data noise and data
sparsity causing extrapolation. As discussed, the influence of the
uncertainty sources in Table 2 was minimal based on this study,
while the uncertainty in the attenuation curve is the dominant
uncertainty source. Figure 13(a) is the possible attenuation coeffi-
cient curves based on the regression model. Figure 13(b) shows
the quantified uncertainty in the volume fraction calculation at
t¼ 0 ls for a single X-ray image.

Note that the model to measure the volume fraction assumes
that the attenuation coefficients for spherical particles and the
glass calibration plate are identical. However, this assumption
may include another model form uncertainty. Thus, it could
enlarge the current total uncertainty and it reinforces the impor-
tance of measurement uncertainty further.

3.2.3 Variability in Experiments. The plot in Fig. 14(a) shows
three volume fraction profiles, which are processed based on three
experiments. Figure 14(b) shows the variability in the volume
fraction profiles over the three experiments. The uncertainty bands
represent variability of 95% confidence interval obtained from the
three profiles in Fig. 14(a). Since the X-ray image resolution is
high, the spatial uncertainty is ignorable.

Without doubt, uncertainty reduction is essential for UQ analy-
sis informative. A large uncertainty in measured QoI confirms that
the measurement is not informative. Park et al. [25] discuss the
importance of uncertainty reduction in measured QoI for valida-
tion. The most dominant source of uncertainty in volume fraction
measurement process is the uncertainty in the noisy calibration
data. For noisy data, tradeoff between distributed fine sampling
(exploration) and repetitive coarse sampling for a limited sam-
pling budget is an interesting study for general uncertainty reduc-
tion. Matsumura et al. [26] report that distributed sampling often
provides more accurate prediction than repetitive samples like the
calibration samples. Since the samples are well distributed, adding
more samples could reduce the uncertainty in the attenuation coef-
ficient curve and so does the uncertainty in volume fraction.

4 The Effects of Epistemic Uncertainties on

Measurements

In the Schlieren experiments, the measurement processing pro-
duced negligible sources of uncertainty, but the alignment intro-
duced significant uncertainty. Figure 15(a) shows the front

Table 2 Uncertainty sources regarding X-ray image
processing

Uncertainty sources in the image processing Value

Average background intensity, I0 20347 6 8
Particle density, q 2:42 6 0:05 g/cm3

Curtain width, w0 68:6 6 2:0 mm
X-ray image resolution 100 lm (20 cells for

2 mm curtain)

Uncertainty sources in the calibration experiment Value

X-ray source alignment 90 deg (perpendicular
to test section)
Centered at particle
curtain center

Magnification 1:06 6 0:01

Fig. 12 The 95% confidence interval for the attenuation coeffi-
cient curve and two randomly generated curves

Fig. 13 The uncertainty in the estimation of the attenuation coefficient curve and its effect on a calculated volume
fraction profile: (a) randomly generated possible attenuation coefficient curves and (b) uncertainty in particle volume
fraction profiles (t 5 0 ls) due to the uncertainty in the attenuation coefficient curve estimation
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locations determined by the Schlieren image processing. The
alignment uncertainty due to one-degree misalignment was
applied to four experiments. The gray band shows the computed
epistemic uncertainty of the four experiments. Front locations
without considering the uncertainty are plotted with circles and
crosses. The symbols (i.e., circles and crosses) form groups com-
posed of four experiments at different times. Each group is not at
the same time because of the timing uncertainty in taking the
Schlieren images. The vertical difference between symbols of a
group denotes the variability in the experiments. The experimental
variability shown in the symbols is significantly lower than the
epistemic uncertainty due to the alignment uncertainty. The epis-
temic uncertainty dominates the uncertainty in the front location
measurements.

In the X-ray experiments, the uncertainty in the attenuation
coefficient calibration was analyzed in this paper. Figure 15(b)
shows the computed uncertainty in the volume fraction profiles
from the uncertainty in the attenuation coefficient and the aleatory
uncertainty estimated based on the three X-ray images. The gray
bands are uncertainty profiles from the computed uncertainty
using the double loop Monte Carlo Sampling. The lines are vol-
ume fraction calculations without considering the uncertainty in
the calibration. In this case, the contribution of the computed
uncertainty looks not significantly different from that of the

epistemic uncertainty in the calculation but it is still larger than
the variability estimated based on three experiments.

5 Conclusions

In this paper, we point out that in experiments measurements
are often indirect, measuring one quantity and using a model to
infer from it the desired quantity of interest. This leads to a neces-
sity of quantifying the effect of epistemic uncertainty in the mod-
els on the measurements. Here, we perform this uncertainty
quantification for a shock tube experiment with a shock hitting a
curtain of glass particles. Both Schlieren and X-ray experimental
measurements were used to infer particle front position and vol-
ume fraction distribution. Image processing, calibrating experi-
ments, and experimental setup were studied. We found that the
effects of epistemic uncertainties were much more significant than
the variability on the uncertainty in the experimental measure-
ments. This demonstrates the risk of using experimental measure-
ments without quantifying epistemic uncertainties.

Quantifying epistemic uncertainty also identified significant
uncertainty sources. For the front locations obtained using the
Schlieren imaging technique, the alignment uncertainty in the
light source was identified to be the largest uncertainty source.
The dominant uncertainty in the volume fraction calculation based

Fig. 14 X-ray volume fractions: (a) volume fraction profiles (three experiments) and (b) volume fraction with 95%
confidence intervals

Fig. 15 Uncertainty in front locations and particle curtain volume fraction profiles: (a) epistemic uncertainty (gray
band) and experimental variability (multiple circles) in curtain front locations and (b) computed uncertainty in parti-
cle volume fraction profile due to the uncertainty in the attenuation coefficient and the variability in the profiles
(t 5 0 ls)
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on the X-ray imaging technique was the uncertainty in the attenu-
ation curve estimation due to the uncertainty in the calibration
test.
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Nomenclature

A ¼ X-ray attenuation coefficient
I ¼ attenuated intensity of X-ray image

I0 ¼ reference intensity of X-ray image
up ¼ particle volume fraction

Appendix

The attenuation coefficient data were obtained from one contin-
uous block. Thus, we assumed that the noise in the data is corre-
lated. With the assumption, the observed attenuation coefficient
z(x) for intensity ratio x is modeled as

zðxÞ ¼ yðxÞ þ eðxÞ (A1)

where yðxÞ is the true trend and eðxÞ is the correlated noise model
based on the GP [27,28]. In the GP model, the noise is modeled
with a normal distribution Nð0;r2Þ at x and the spatial correlation
between two different inputs is modeled with a multivariate nor-
mal distribution. The attenuation trend function is defined as

yðxÞ ¼ hðxÞTb (A2)

where h(x) is the basis function vector and b is the coefficient vec-
tor. For a one-dimensional linear trend function, the h vector is
{1, x}. The correlation of noises between different inputs is
defined with the Gaussian kernel as

rðx; x0Þ ¼
Ym
k¼1

expð�hkðxk � x0kÞ
2Þ (A3)

where ðx; x0Þ are two different points, m is the dimension of x, and
hi ði ¼ 1 � mÞ are hyperparameters of the correlation model to be
estimated. The covariance of noises at two different inputs is
defined based on the correlation function with process variance r2

as

CovðeðxÞ; eðx0ÞÞ ¼ r2rðx; x0Þ (A4)

Then, Eq. (A1) becomes a GP with a trend function of yðxÞ.
The parameters h, b, and r2 should be estimated with data using a
likelihood function with observed data z expressed as

L h;b;r2 jz
� �

¼ 1

2pð Þn=2
rnjRj1=2

exp � z�HTb
� �T

R�1 z�HTb
� �

2r2

" #

(A5)

where H ¼ ½ hðx1Þ; … ; hðxNÞ �T and y ¼ ½ y1 … yN �T. R is
N by N matrix and its (i, j) component is defined with rðxi; xjÞ.
The maximum likelihood estimators of b, r2 can be analytically
derived as a function of h. The maximum likelihood estimators
are obtained as

b̂ ¼ðHTR�1HÞ�1
HTR�1z (A6)

r̂2 ¼ ðz�Hb̂ÞTR�1ðz�Hb̂Þ
N

(A7)

where the “hat” denotes a maximum likelihood estimator. By sub-
stituting Eqs. (A6) and (A7) into (A5), the likelihood function is
reformulated as

L h j b̂; r̂2; z
� �

/ 1

r̂njRj1=2
(A8)

By subscripting the estimated parameters to the GP model, pos-
sible attenuation coefficient curves can be generated using
Eq. (A1). A curve values at xtest follow a multivariate normal dis-
tribution as

zðxtestÞ � NðhðxtestÞTb;RtestÞ (A9)

Note that the observed data z(xtest) follow a normal distribution at
the test point but it is correlated with an observed data at a differ-
ent test point.
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