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Numerical method for shape optimization using meshfree
method

N.H. Kim, K.K. Choi and M.E. Botkin

Abstract A numerical method for continuum-based
shape design sensitivity analysis and optimization using
the meshfree method is proposed. The reproducing ker-
nel particle method is used for domain discretization in
conjunction with the Gauss integration method. Special
features of the meshfree method from a sensitivity an-
alysis viewpoint are discussed, including the treatment of
essential boundary conditions, and the dependence of the
shape function on the design variation. It is shown that
the mesh distortion that exists in the finite element–based
design approach is effectively resolved for large shape
changing design problems through 2-D and 3-D numeri-
cal examples. The number of design iterations is reduced
because of the accurate sensitivity information.

Key words design sensitivity analysis, shape opti-
mization, meshfree method, reproducing kernel particle
method

1
Introduction

Major computational challenges involved in structural
shape optimization using finite element methods (FEM)
arise from the excessive mesh distortion that occurs dur-
ing large shape design changes and mesh–dependent so-
lution accuracy. Numerous difficulties are encountered in
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finite element analysis, such as those involving mesh dis-
tortion, mesh adaptivity, and potentially a large number
of re-meshes that are required during the optimization
process (Bennett and Botkin 1985; Yao and Choi 1989).
Meshfree methods have been proposed to overcome the
aforementioned difficulties, in which the shape function is
independent of the mesh geometry. The meshfree method
is unique because it generates new interpolation/shape
functions, which allow field variables to be interpolated at
a global level, therefore avoiding the use of mesh. In this
paper, a numerical method of shape design sensitivity an-
alysis (DSA), developed in the continuum setting (Choi
and Haug 1983), is proposed using the meshfree method.
The main purpose of this paper is to introduce special
features of the meshfree method from a DSA and op-
timization viewpoint and its numerical implementation.
In addition, mesh distortion and re-meshing problems
encountered in FEM–based shape optimization can be
avoided and the design costs can be significantly reduced
as a result of the accurate and efficient computation of
design sensitivity information.

Significant efforts to generate a shape function of in-
terpolation that is independent of mesh geometry have
resulted in several meshfree methods. The moving least
square method (Lancaster and Salkauskas 1981), the
smooth particle hydrodynamics method (Randles and
Libersky 1996), the diffuse element method (Nayroles
et al. 1992), the element free Galerkin method (Be-
lytschko et al. 1994), the reproducing kernel particle
method (RKPM) (Liu et al. 1995), the partition of unity
method (PUM) (Melenk and Babuska 1996), and the hp–
cloud method (Duarte and Oden 1996) are a short list of
meshfree developments. RKPM was further extended to
highly nonlinear hyperelastic and elastoplastic problems
by Chen et al. (1996). RKPM is utilized as an analysis
tool in this paper.

For the gradient–based optimization algorithm, an
accurate computation of sensitivity information plays
a critical role in the convergence rate of the optimiza-
tion algorithm. Efficient and accurate sensitivity com-
putation, with respect to shape design parameters, can
substantially reduce the design optimization costs. Much
research has been proposed in the field of DSA for lin-
ear problems such as: the discrete method (Adelman and
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Haftka 1986), the material derivative method (Dems and
Mroz 1984; Choi and Haug 1983; Belegundu and Rajan
1988; Arora and Cardoso 1992), and the control volume
method (Haber 1987; Tortorelli and Wang 1993). Al-
though DSA research has been conducted using a mesh-
free method in the continuum approach (Grindeanu et al.
1998; Kim et al. 2000a,b,2001), the meshfree discretiza-
tion of the design sensitivity equation, which is much dif-
ferent from FEM, has not been presented before. Thus,
the numerical method of meshfree DSA needs to be care-
fully considered, which is the main purpose of this paper.
The linear elastic problems are selected in this paper,
since the complicated kinematics of the nonlinear prob-
lem can divert the reader’s attention from the focus of the
paper.

The FE shape function depends on the reference
geometry of the finite element, which is fixed throughout
the design variation, such that only the spatial derivatives
of shape function rely on the shape design variation. The
shape function of RKPM, however, depends on a global
coordinate of material points that are the design param-
eters for shape DSA. Thus, the design derivative of the
shape function, which explicitly depends on design vel-
ocity, has to be considered during the implementation of
DSA. Since the shape function of RKPM is constructed
from the reproducing condition, the material derivative of
the reproducing condition is consistently taken in order
to obtain the design variation of the meshfree shape
function.

The composition of this paper is as follows. In Sect. 2,
a brief review of the meshfree method (RKPM) is pre-
sented. In Sect. 3, the design sensitivity equation is ap-
proximated from the continuum equation. Conditions for
the special treatment of the meshfree method in DSA are
explained in detail. The mesh distortion problem and the
re-meshing procedure, which appear in the FEM-based
approach (Bennett and Botkin 1985), are completely re-
solved for a large shape-changing design problem, as
shown in Sect. 4.

2
Review of the meshfree approximation

The theory of the meshfree method has been recently de-
veloped in order to remove or reduce a dependency on
mesh geometry in the conventional FEM. Insensitiveness
to the mesh shape is a very important feature in shape
optimization. In addition, a higher accuracy is achieved
simply by adding more particles to the structure, but
without remodelling the total structure. However, the dif-
ficulty in imposing the essential boundary condition, and
the relatively high analysis costs remains weaknesses de-
spite the previously mentioned advantages. For the nu-
merical method of DSA, a meshfree method will be de-
scribed here, even though a detailed description can be
found in the papers by Liu et al. (1995) and Chen et al.
(1996).

2.1
Reproducing kernel approximation

Reproducing kernel approximation regularizes the dis-
placement z(x), using the kernel function and the correc-
tion function. The kernel function controls the smooth-
ness of the approximation and the correction function
contributes to the exact reproduction of polynomials. For
given domain Ω ∈R1, displacement is approximated as

zR(x) =

∫
Ω

C(x; ξ−x)φa(ξ−x) z(ξ) dξ , (1)

where zR(x) is the reproduced (approximated) displace-
ment of z(x), C(x; ξ−x) is the correction function,
and φa(ξ−x) is the kernel function. Suppose that the
domain Ω is discretized by a set of particles [x1, . . . ,xI ,
. . . ,xNP ], where xI is the location of particle I, andNP is
the total number of particles. Using a simple trapezoidal
rule, (1) is discretized into

zR(x) =
NP∑
I=1

C(x;xI −x)φa(x
I −x)zI∆xI , (2)

where zI = z(xI) and ∆xI is a measure of the length (or
weight) associated with particle I. It is difficult to deter-
mine the value of ∆xI in a multidimensional case, but it
can also be treated as a weight of the nodal value. How-
ever, in practice the effect of∆xI will be counterbalanced,
as will later be explained.

In this paper, a cubic spline curve is utilized for the
kernel function that has a C2–continuous property. In the
case of one–dimensional problem, if s=

∣∣(xI −x)/a∣∣ is the
normalized length between point x and surrounding par-
ticle point xI with the support size a, then the kernel
function is defined as

φa(s) =
1

6a




(3s3−6s2+4), 0≤ s≤ 1

−(s−2)3, 1≤ s≤ 2

0, otherwise

(3)

which covers length 2a. In a multi–dimensional case, the
products of (3) in each coordinate direction are used. For
example, in a three–dimensional case,

φa(s
I) = φax(s

I
x)φay (s

I
y)φaz (s

I
z) . (4)

Each particle xI has a support size a= [ax, ay, az]. In the
following derivations, x= [x, y, z]T = [x1, x2, x3]

T will be
used whenever convenient. Let IP be the number of par-
ticles whose support a covers x. Then, the reproducing
kernel approximation of displacement z(x) in R3 is

zR(x) =
IP∑
I=1

C
(
x;xI −x

)
φa
(
xI −x

)
zI∆xI . (5)
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The correction functionC(x;xI−x) can be computed
from the linear combination of monomial bases, as

C
(
x;xI −x

)
= q(x)TH(xI −x) , (6)

where

H
(
xI −x

)
=
[
1, xI −x, yI −y, zI− z

]T
, (7)

q(x) = [q0(x), q1(x), q2(x), q3(x)]
T (8)

are the basis and coefficient vectors, respectively. q(x) is
computed from the first–order reproducing (or complete-
ness) condition where the approximation in (5) is exact
for polynomials up to the order one, i.e. constant and lin-
ear functions. After taking a Taylor series expansion of
z(x) and imposing the completeness condition, the fol-
lowing linear system of equations is obtained:

M(x)q(x) =H(0) , (9)

whereM(x) is the moment matrix, defined as

Mij(x) =
IP∑
I=1

φa(s
I)Hi(x

I −x)Hj
(
xI −x

)
. (10)

In computing M(x), the same integration method as in
(2) is used, so that the effect of the integration weight is
counterbalanced since q(x) in (9) has the information of
M(x)−1.

To develop a shape function for discrete approxima-
tion, the correction function in (6) is substituted into the
reproducing approximation in (5) as

zR(x) =
IP∑
I=1

q(x)TH(xI −x)φa(x
I −x)dI ≡

IP∑
I=1

ΦI(x)dI , (11)

where dI is the generalized displacement of particle I.
The function ΦI(x) is interpreted as the meshfree shape
function of particle I, and dI is the associated coeffi-
cient. The shape function ΦI(xJ ) depends on the cur-
rent coordinate xJ , whereas the FEM shape function
only depends on coordinates of the reference geometry.
It should also be noted that, in general, the shape func-
tion does not bear Kronecker delta properties, i.e. ΦI(xJ )
�= δIJ . Therefore, for a general function z(x) which is
not a polynomial, dI in (11) is not the nodal value of
z(xI).

The structural domain is discretized by using non–
overlapping integration zone Ω =Ω1∪ . . .∪ΩN , and the
standard Gauss integration method is used to evaluate
the domain integral (Fig. 1, Chen et al. 1996). This do-
main partitioning is independent of the particle locations,
and particles are not interconnected by elements. Figure 1
shows 5× 5 integration points (marked by ×) in inte-
gration zone ΩIX . For example, the support size of three

Fig. 1 Domain discretization and meshfree shape function

particles (I, J, and K) covers the integration point A.
Thus, these three particles are used to construct the
shape function at point A.

2.2
Spatial derivatives of the shape function

In FEM, the shape function depends on the reference
geometry and its derivative is computed by using a map-
ping relation between the reference and physical domains.
However, the meshfree shape function in (11) depends on
the global coordinates of material points, and there is no
reference domain. Differentiation of the shape function in
(11) is required in structural analysis in order to evaluate
stress and strain. From (11), we can obtain

dz

dxi
=
IP∑
I=1

dΦI(x)

dxi
dI , (12)

where dΦI(x)/dxi can be calculated from the differential
versions of (6) and (9) as

dq(x)

dxi
=−M(x)−1

dM(x)

dxi
q(x) , (13)
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dC(x;xI −x)

dxi
=

dq(x)

dxi

T

H
(
xI −x

)
+

q(x)T
dH
(
xI −x

)
dxi

. (14)

The expression of dM/dxi and dH/dxi can be obtained
from their definitions in (10) and (7), respectively. Thus,
the derivative of the shape function can be computed
from the derivative of the kernel function, as

dΦI(x)

dxi
=

dC
(
x;xI −x

)
dxi

φa(x
I −x)+

C
(
x;xI −x

) dφa(x
I −x)

dxi
. (15)

and strain can similarly be computed from (12).

2.3
Variational formulation and meshfree discretization

Let the displacement variation be z̄ and let Z be the space
of kinematically admissible displacements that satisfy
homogeneous, essential boundary conditions. For given
body force f bi and the surface traction force fsi on the
boundary Γ s, the variational equation in the continuum
domain Ω is formulated as

a(z, z̄)≡

∫
Ω

σijεij(z̄) dΩ =

∫
Ω

z̄if
b
i dΩ+

∫
Γs

z̄if
s
i dΓ ≡ �(z̄) , (16)

for all z̄ ∈ Z, where σij is the stress tensor and εij is the
engineering strain tensor. In this paper, the superposed
“–” denotes the variation of a quantity. For notational
convenience, the forms a (z, z̄) and �(z̄) are used for struc-
tural energy and external load, respectively. For linear
elastic materials, the constitutive relation is given as

σij(z) = cijk�εk�(z) , (17)

where cijk� is the 4th–order stiffness tensor.
The meshfree approximation of (16) in R2 is derived

as follows. From a computational viewpoint, vector nota-
tion is simpler than tensor notation, and will therefore be
used. The strain tensor εij(z̄) is approximated using the
variation of the generalized displacement, as

εεε(d̄) =



ε11(d̄)

2ε12(d̄)

ε22(d̄)


=

IP∑
I=1

BI d̄
I , (18)

where d̄I = [d̄I1 d̄
I
2]
T is the variation of generalized dis-

placement at the particle point xI , and BI is the strain–
displacement matrix, defined as

BI =

[
ΦI,1 ΦI,2 0

0 ΦI,1 ΦI,2

]T
. (19)

The subscribed comma represents the spatial derivative,
i.e., ΦI,j = ∂Φ

I
/
∂xj , whose expression is given in (15). The

stress vector is defined for a two–dimensional domain as

σσσ =



σ11

σ12

σ22


=Cεεε(d) , (20)

where C is the stiffness matrix corresponding to cijk� in
(17), and εεε(d) has the same expression as (18) if general-
ized displacement d is used instead of d̄.

Let the structural domain be partitioned with an N
number of integration zones and let the traction bound-
ary be composed of an M number of integration zones.
The approximation of a (z, z̄) and �(z̄) can be expressed
in terms of the global generalized displacement vector
d= [d1, d2, . . . , dNP ]T , and along with its variations, as

a (z, z̄)≈
N∑
i=1

∫
Ωi

IP∑
I=1

JP∑
J=1

d̄I
T
BTI CBJd

J dΩ ≡

d̄TKd , (21)

�(z̄)≈
N∑
i=1

∫
Ωi

IP∑
I=1

ΦI d̄I
T
fb dΩ+

M∑
i=1

∫
Γ i

IP∑
I=1

ΦI d̄I
T
fs dΩ ≡ d̄TF . (22)

Using (21) and (22), the discretized variational equation
of (16) is obtained as

d̄TKd= d̄TF , (23)

for all d̄ whose counterparts z̄ belong to Z.
Since it is difficult to make d̄ belong to Z, a trans-

formation has to be used in order to construct an admis-
sible displacement space. There are several ways to con-
struct an admissible displacement variation (Chen et al.
2000a). In this paper, the full transformation and mixed
transformation methods are explained. Since the space of
kinematically admissible displacements cannot be easily
chosen from the generalized displacement, the general-
ized displacement variation in (23) is transformed into
the physical displacement variation, using the following
relation:

zJ = z(xJ ) =
IP∑
I=1

ΦI(XJ )dI ≡
IP∑
I=1

AIJd
I ,

zg =ATd , (24)
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where A is the matrix that transforms the generalized
displacement into the physical displacement and zg =
[z1, z2, . . . , zNP ]T denotes the global displacement vec-
tor of the discretized domain. The variations of displace-
ments have a similar relation as (24). By imposing an
inverse relation of (24) onto (23) for d̄,

z̄TgA
−1Kd= z̄TgA

−1F, ∀z̄g ∈ Zg , (25)

where Zg is the space of kinematically admissible dis-
placements in the discretized domain. By defining K∗ =
A−1K and F∗ =A−1F, the following linear matrix equa-
tion is solved:

K∗d= F∗ . (26)

Note that K∗ is indefinite because of rigid body motion.
For the displacement boundary condition, let the dis-
placement of the particle J be prescribed as zJ = gJ . The
essential boundary condition is imposed using the rela-
tion established in (24), as

IP∑
I=1

AIJd
I = gJ . (27)

This relation is substituted into (26) for the correspond-
ing degree–of–freedom location of the essential boundary
condition, which makes K∗ positive definite. After solv-
ing for the generalized displacement d, the physical dis-
placement can be calculated from (24).

The expensive computational cost of the meshfree
method comes from the following three factors: (1) the
number of particles during the meshfree approximation in
(11) is usually greater than that of FEM, (2) the domain
integration requires large number of integration points as
shown in Fig. 1 because the shape function is higher order
than that of FEM, and (3) the calculation ofA−1 in (25)
is more expensive than solving the matrix equation (26).
The first two properties are not significant disadvantages
since the approximation that is more accurate is obtained
because of them.

In order to reduce the computation cost involved
in (25), the mixed transformation method (Chen et al.
2000a) is used in this paper. Since the purpose of (25) is
to construct kinematically admissible displacements, it is
necessary to transform only those particles that belong
to the essential boundary. Thus, a new discrete vector
ˆ̄d is defined from d̄ as

ˆ̄d≡

{
z̄B

d̄I

}
=

[
aBB aBI

000 I

]{
d̄B

d̄I

}
≡Λd̄dd , (28)

where the subscribed B represents the essential bound-
ary nodes, while I denotes interior nodes. The component
matrix of Λ is obtained from the component matrix of A
as

A=

[
aBB aBI

aIB aII

]
. (29)

Instead of the matrixA, the matrixΛ can be used for the
transformation in (25). The computational advantage of
using the matrix Λ is that the inverse matrix Λ−1 can be
calculated much easier thanA−1. That is,

Λ−1 =

[
a−1BB −a−1BBaBI

000 I

]
. (30)

In fact, it is unnecessary to store the whole matrix Λ.
The small component matrices aBB and aBI need to be
stored, which is much smaller in size than the matrix aII .

3
Shape design sensitivity analysis

3.1
Material derivative and design sensitivity equation

In shape design, the shape of the domain that a struc-
tural component occupies is treated as a design variable.
Suppose that the initial structural domain Ω is changed
into the perturbed domain Ωτ in which the parameter τ
controls the shape perturbation amount. By defining
the design changing direction to be V(x), the material
point at the perturbed design can be denoted as xτ =
x+ τV(x). The solution zτ (xτ ) of structural problems is
assumed a differentiable function with respect to shape
design. The material derivative of zτ (xτ ) at x ∈ Ω is de-
fined as

ż= lim
τ→0

zτ (x+ τV(x))−z(x)

τ
. (31)

The design sensitivity equation is obtained by taking
the material derivative of the variational equation (16).
The derivative of the energy form then becomes

d

dτ
aτ (zτ , z̄τ )

∣∣∣∣
τ=0

= a (ż, z̄)+a′V (z, z̄) . (32)

The first term on the right-hand side represents an im-
plicit dependence on design through the state variable,
while the second term, the structural fictitious load, de-
notes an explicit dependence on the design velocityV(x),
defined as

a′V (z, z̄) =

∫
Ω

[
εVij(z̄)σij(z)+ εij(z̄)cijklε

V
kl(z) +

εij(z̄)σij(z) divV
]
dΩ , (33)

where

εVij(z) =−
1

2

(
∂zi

∂xk

∂Vk

∂xj
+
∂zj

∂xk

∂Vk

∂xi

)
. (34)
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If the applied load is independent of displacement, i.e.
conservative, then the external fictitious load form be-
comes

�′V (z̄) =

∫
Ω

[
z̄i
∂f bi
∂xj

Vj+ z̄if
b
i

∂Vj

∂xj

]
dΩ +

∫
Γs

[
z̄i
∂fsi
∂xj

Vj+κz̄if
s
i Vn

]
dΓ , (35)

where Vn is the normal component of the design velocity
on the boundary, and κ is the curvature of the boundary.
The design sensitivity equation is obtained from (32) and
(35), as

a (ż, z̄) = �′V (z̄)−a′V (z, z̄), ∀z̄ ∈ Z . (36)

Note that by substituting z into ż, the left of the de-
sign sensitivity equation (36) takes the same form as that
of the response analysis in (16). Thus, the same stiffness
matrix can be used for DSA and response analysis, with
a different right-hand side.

After calculating the material derivative of state vari-
able żwith respect to the shape design variable, the sensi-
tivity of the general performance measure (cost and con-
straint function)

ψ =

∫
Ω

g(zi, zi,j) dΩ (37)

can be obtained using a chain rule of differentiation, as

ψ′ =

∫
Ω

[g,zi żi + g,zi,j żi,j+ gVi,i−

g,zi,jzi,kVk,j ] dΩ . (38)

The computation of design sensitivity using (38) is called
the direct differentiation method ; in contrast, the adjoint
variable method (Choi and Haug 1983) uses an adjoint
equation to solve ż explicitly in terms of the design vel-
ocity field.

3.2
Meshfree discretization of design sensitivity equation

Since the main unknown variable of the meshfree method
is generalized displacement d, the design sensitivity equa-
tion (36) of a continuum form, which is written in terms
of ż, has to be discretized using ḋ. Since displacement z is
approximated using the meshfree shape function in (11),
ż can be approximated as

żI =
IP∑
I=1

(ΦI ḋI + Φ̇IdI) ,

żg =AT ḋ+ ȦTd . (39)

This decomposition is quite different from FEM in which
shape function is independent of design. The first term of
(39) constitutes the main unknown ḋ of the design sensi-
tivity equation in meshfree approximation, while the sec-
ond term represents the dependence of the shape function
on design, which is explicit inV(x). A numerical method
to compute Φ̇I(x) will now be introduced.

From the relation xτ = x+ τV(x), the derivative of
the material point x with respect to design is nothing but
the design velocity V(x). Consider the material deriva-
tive of the kernel function in (3) for a one–dimensional
problem,

φ̇a(s) =
V I −V

2a2




(3s2−4s), 0≤ s≤ 1

−(s−2)2, 1≤ s≤ 2

0, otherwise

(40)

where V I is the design velocity at xI , and V is the design
velocity at x. For a multi–dimensional problem, the prod-
uct rule in (4) can be used. To compute Φ̇I(x), the design
derivative of the reproducing condition has to be taken.
By taking the design derivative of the completeness con-
dition in (9), and using (10),

q̇=−M−1Ṁq , (41)

Ṁij =
IP∑
I=1

[
φ̇aHiHj+φaḢiHj+φaHiḢj

]
, (42)

Ḣ=
[
0,V Ix −Vx,V

I
y −Vy,V

I
z −Vz

]T
. (43)

Thus, from the definition in (11) and from the product
rule of differentiation,

Φ̇I = q̇THφa+qT Ḣφa+qTHφ̇a . (44)

For given design velocityV(x), (44) can be explicitly cal-
culated even before any sensitivity analysis. The design
derivative of dΦI(x)/dx in (15) can also be calculated
using a similar procedure as has been described above,
but requiring lengthy algebraic calculations.

In a DSA procedure, it is frequently necessary to take
the material derivative of a strain tensor or, equivalently,
the gradient of displacement zi,j = ∂zi/∂xj. Choi and
Haug (1983) uses the concept of a partial derivative that
is commutable to a spatial gradient. By using (11) and
(39), a meshfree approximation of the design derivative of
zi,j can be expressed as

d

dτ
(zi,j) =

IP∑
I=1

(
ΦI,j ḋ

I
i + Φ̇

I
,jd
I
i −Φ

I
,kd
I
iVk,j

)
. (45)

Note that the last term is used in the construction of εεεV

in (34) and the additional term Φ̇I,jd
I
i appears that is ex-

plicitly dependent on design velocity. The only unknown
is ḋIi which will be computed from the design sensitivity
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equation. To simplify the approximation of (45), consider
the following relation:

d

dτ
(ΦI,i) = Φ̇I,i−Φ

I
,kVk,i . (46)

Thus, the last two terms of (45) can be combined to-
gether to represent an explicitly dependent term onV(x)

through
d

dτ
(ΦI,i). Using (46), (45) is simplified to

d

dτ
(zi,j) =

IP∑
I=1

(ΦI,j ḋ
I
i )+

IP∑
I=1

[
d

dτ
(ΦI,j)d

I
i

]
. (47)

Note that the two summations of (47) have a similar for-
mat. The first term on the right-hand side has to be solved
using a design sensitivity equation, and the second term
can be computed explicitly in terms of the design velocity
V(x) using relation (44).

In the development of a DSA, it is usually assumed
that the spaceZ is independent of shape design, i.e. ˙̄z= 0.
However, this assumption may not be true for all situa-
tions. Even if the assumption of ˙̄z= 0 is not used, since
˙̄z ∈ Z, the following relation is satisfied:

a (z, ˙̄z) = �( ˙̄z) . (48)

Because of (48), the contribution of ˙̄z in (36) was ignored.
In addition, from the relation in (45),

d

dτ
(z̄i,j) =−z̄i,kVk,j =−

IP∑
I=1

ΦI,kd̄
I
i Vk,j . (49)

An approximation of the design sensitivity equation
(36) follows the same method as a response analysis. For
a given meshfree shape function, using its material deriva-
tives from (44), as well as using the relation in (47), the
following approximation can be obtained:

εεεV (z) =
IP∑
I=1

ḂId
I , (50)

where ḂI is the design derivative of BI in (19), defined by

ḂI =

[
d
dτ (Φ

I
,1)

d
dτ (Φ

I
,2) 0

0 d
dτ (Φ

I
,1)

d
dτ (Φ

I
,2)

]T
. (51)

In contrast, the approximation of εεεV (z̄) has a different
expression because of (49),

εεεV (z̄) =
IP∑
I=1

BVI d̄
I , (52)

where

BVI =−

[
ΦI,kVk,1 ΦI,kVk,2 0

0 ΦI,kVk,1 ΦI,kVk,2

]T
. (53)

Thus, the structural fictitious load in (33) and the exter-
nal fictitious load in (35) are discretized by

a′V (z, z̄)≈
N∑
i=1

∫
Ωi

IP∑
I=1

d̄I
T
[
BV

T

I σσσ+BTI Cεεε
V (z)+

BTI σσσ divV
]
dΩ ≡ d̄dd

T
Fa , (54)

�′V (z̄)≈
N∑
i=1

∫
Ωi

IP∑
I=1

d̄̄d̄dI
T
[ΦI(∇fbV+ fb divV)] dΩ+

M∑
i=1

∫
Γ i

IP∑
I=1

d̄I
T
[ΦI(∇fsV+κ fs Vn)] dΓ ≡ d̄

TF� . (55)

The global discretized variational equation of DSA is ob-
tained from (36) as

d̄TKḋ= d̄T (F�−Fa) , (56)

for all d̄ whose counterparts z̄g belong to Zg. By following
the same response analysis procedure to construct kine-
matically admissible displacements, the following linear
matrix equation is solved:

K∗ḋ=A−1(F�−Fa) , (57)

whereK∗ represents the same stiffness matrix of response
analysis as in (26), which is already factorized. Thus, it
is very efficient to solve (57) with different right sides. If
the mixed transformation method is used, then the ma-
trixΛ−1 in (30) can be used instead ofA−1.

Consideration of the essential boundary conditions is
somewhat different from that of the analysis undertaken
in (27), since the transformation matrixA, which is com-
posed of a meshfree shape function, depends on the shape
design. Let the prescribed displacement gJ at xJ be inde-
pendent of design, which is true in most cases. Then, from
the design derivative of (27),

IP∑
I=1

AIJ ḋ
I =−

IP∑
I=1

ȦIJd
I , (58)

where ȦIJ = Φ̇I(xJ ) is obtained from (39). Equation
(58) is substituted into (57) for those rows that corres-
pond to the degree–of–freedom of xJ . Equation (57) is
solved for each design parameter with the same decom-
posed K∗ matrix. After solving ḋ, the material deriva-
tive of physical displacement can be calculated from
the relation in (39). Note that the transformation ma-
trix A and its material derivative Ȧ have the same
form for different transformation methods. Thus, the im-
plementation of DSA is independent of transformation
method.
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4
Numerical examples

4.1
Shape design optimization of a torque arm

This paper uses a torque arm design optimization prob-
lem, presented by Bennett and Botkin (1985), as a numer-
ical example. The geometry of the torque arm (see Fig. 2)
is modelled using The MacNeal–Schwendler Corp. (1999),
and is represented by parametric coordinates. Design pa-
rameterization was performed by selecting the control
points of the parametric curves. Design velocity vectors
that represent the movement of particles in the direction
of a given design parameter were computed by perturb-
ing the parametric coordinates. This process is referred
to as the isoparametric mapping method. Design param-
eterization and design velocity vector computation were
also carried out by using a Design Sensitivity and Opti-
mization Tool (DSO) code (Chang et al. 1995), developed
by the authors and the co–workers of this article. In all,
eight design parameters were chosen in order to perturb
the outer/inner boundary curves of the torque arm.

An automatic particle–generation procedure was used
to distribute meshfree particles over the structure. The
domain of the torque arm was discretized by 239 RKPM
particles (478 DOF), as shown in Fig. 2. The plane stress
formulation is used with a thickness of 0.3 cm. The torque
arm is made of steel with E = 207 GPa, and ν = 0.3.

The meshfree analysis required 5.19 sec., whereas by
using one processor of HP Exemplar s-class workstation
DSA required 0.57 seconds per each design parameter.
The efficiency of the sensitivity computation derives from
the fact that DSA uses the same stiffness matrix, already
factorized from the response analysis stage.

Fig. 2 Design parameterization and meshfree analysis result
of torque arm

The sensitivity coefficients of the performance mea-
sures, including the structural area and the stresses, were
computed based on the continuum approach. The high-
est stress values at 19 integration zones are selected as
performance measure, which will be served as constraints
during optimization. Using a very small perturbation
size, the accuracy of the sensitivity coefficients is com-
pared with the finite difference method in Table 1. Very
accurate sensitivity results are observed. In Table 1, the
first column represents design parameters, the second
column represents performance measures, i.e. structural
area and von Mises stress at eight integration zones.
The third column ∆ψ denotes the first–order sensitiv-
ity results obtained from the forward finite difference
method with a perturbation of τ = 10−6. The fourth col-
umn represents the sensitivity computation results from
the method employed. As shown in the last column, the
sensitivity results from two methods match quite well.

Table 1 Design sensitivity results and comparison with fi-
nite difference results

u ψ ∆ψ ψ′ ∆ψ/ψ′×100

Area 0.10361×10−5 0.10362×10−5 100.00
σ82 −0.62892×10−7 −0.62891×10−7 100.00
σ85 −0.17736×10−8 −0.17722×10−8 100.08
σ88 −0.88829×10−7 −0.88828×10−7 100.00

u1 σ91 −0.11245×10−6 −0.11245×10−6 100.00
σ97 −0.77783×10−7 −0.77781×10−7 100.00
σ136 −0.15990×10

−6 −0.15991×10−6 100.00
σ133 0.33665×10−7 0.33667×10−7 100.00
σ100 −0.67624×10

−7 −0.67623×10−7 100.00

Area 0.10118×10−5 0.10119×10−5 100.00
σ82 −0.78084×10−9 −0.78177×10−9 99.88
σ85 0.14674×10−9 0.14678×10−9 99.97
σ88 −0.58752×10−8 −0.58748×10−8 100.01

u3 σ91 −0.19387×10−7 −0.19387×10−7 100.00
σ97 −0.39358×10−7 −0.39357×10−7 100.00
σ136 −0.38821×10

−9 −0.38886×10−9 99.83
σ133 0.41596×10−9 0.41525×10−9 100.17
σ100 −0.59788×10

−7 −0.59787×10−7 100.00

Area −0.20000×10−5 −0.20000×10−5 100.00
σ82 0.20682×10−8 0.20709×10−8 99.87
σ85 0.47302×10−8 0.47324×10−8 99.95
σ88 0.60386×10−8 0.60409×10−8 99.96

u7 σ91 0.81475×10−8 0.81496×10−8 99.98
σ97 0.16225×10−7 0.16227×10−7 99.99
σ136 −0.78753×10

−9 −0.78694×10−9 100.08
σ133 0.26136×10−9 0.26181×10−9 99.83
σ100 0.25006×10−7 0.25008×10−7 99.99

The design optimization problem is formulated in
such a way that the total area of the structure is mini-
mized with respect to its shape design parameters, with
design constraints defined as the second invariant of the
stress tensors (von Mises stress), as

minimize mass
subject to σMAX ≤ 800 MPa

, (59)
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The sequential quadratic programming method has been
used in a commercially–available optimization program
(Vanderplaats 1997). Figure 3 shows the meshfree an-
alysis results at optimum design where the stress con-
straints along the upper side of torque arm became active.
No remodelling was used during the design optimization
procedure.

Figure 4 provides an optimization history of the cost
function. Through optimization, the structural mass was
reduced from 0.878 kg to 0.421 kg (47.9%). The highest
stress value initially, 305 MPa around the left hole, shifts
to 800 MPa around the upper frame at optimum design.
A total of 41 response analyses and 20 DSA were carried
out during 20 optimization iterations. When FEA is used
with a re-meshing process (Bennett and Botkin 1985),
the optimization process converged at 45 iterations with
eight re-meshing processes. Thus, this approach reduces
the cost of design more than 50%, without even mention-
ing the cost related to the re-meshing process.

Since the initial particle distribution was used through-
out the design optimization process, a very irregular
particle distribution resulted in the optimum design. To
confirm the accuracy of the analysis, remodelling was
carried out in order to redistribute particles evenly at

Fig. 3 Analysis result at optimum design

Fig. 4 Histories of design optimization

Fig. 5 Meshfree analysis result at optimum design after re-
distributing particles

the optimum design stage. Figure 5 shows that the an-
alysis results for the redistributed meshfree particles are
very similar to the results from the irregular distribution
in Fig. 3. Thus, it is clear that particle distortion does not
significantly contribute to either the solution accuracy or
the optimum result.

4.2
Shape design optimization of a bracket

Figure 6 shows design parameterization, meshfree par-
ticle discretization, and response analysis results for
a bracket problem. A total of 12 design parameters have
been selected to change the inner/outer boundary of
the bracket, while maintaining symmetry. A total of 276
meshfree particles (552 DOF) are distributed over the
domain.

Figure 7 plots the stress sensitivity with respect to
u12. As design parameter u12 increases in value, the stress
in the upper region of the inner space significantly in-
creases. However, u12 also reduces the structure’s mass.
A trade–off analysis must be performed by the design en-

Fig. 6 Design parameterization and meshfree analysis result
of bracket
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gineer in order to select an appropriate amount of design
perturbation in a manual design procedure.

The same design optimization problem defined in (59)
has also been formulated to minimize the structural area
or mass with respect to the stress constraints. The op-
timization problem converged in 17 iterations. Figure 8
shows the analysis results at the optimum design. The
first eight iterations are used to reduce the structure’s
outer profile, with the inner triangle subsequently in-
creasing in size until stress constraints have been acti-
vated. Because boundary conditions are given at the two
side holes in the lower region of the bracket, the lower
frame does not carry any load, and optimum results sug-
gest that it can be removed. Since the existing domain
cannot be removed during the shape optimization pro-
cess, the optimizer must move the design parameters, cor-
responding to the lower frame, to the upper/lower bounds
to reduce structural mass.

Optimal mass is reduced from 0.341 kg to 0.138 kg,
which is 40.5% of the initial mass. The increased height
of the inner triangle (u12) produces the most significant
reduction in structural mass, until stress constraints are
activated at the side frame. The maximum value of stress
(319 MPa), located at the top of inner triangle, moves to
the side frame at 800 MPa. A total of 37 response analyses

Fig. 7 Von Mises stress sensitivity with respect to u12

Fig. 8 Shape design optimization history

Fig. 9 Meshfree analysis result at optimum design with re-
distributed particles

and 17 DSA were carried out during 17 optimization it-
erations. When FEM is used with the re-meshing process
(Bennett and Botkin 1985), the optimization process con-
verges at 34 iterations with seven re-meshing processes.
Thus, this approach reduces the cost of design about 50%,
without factoring in the costs related to the re-meshing
process.

Since the initial particle distribution is used through-
out the design optimization process, particle distribu-
tion at the optimum design is very irregular, as shown
in Fig. 8. To confirm the accuracy of analysis, remod-
elling is carried out to distribute particles evenly at the
optimum design. Figure 9 shows that the analysis re-
sults using redistributed meshfree particles are very simi-
lar to the irregular distribution results in Fig. 8. Thus,
it is again clear that particle distortion does not signifi-
cantly detract from either solution accuracy or optimum
results.

4.3
Shape design optimization of a road arm

The previous two examples use Gauss quadrature in the
Galerkin meshfree method to integrate domain. For that
purpose, a background mesh (integration zone) is still re-
quired, which is a drawback in the true sense of the mesh-
free method. Direct nodal integration, on the other hand,
leads to numerical instability, due to an under integration
and to derivatives of shape functions that vanish at the
nodes. A strain-smoothing stabilization for nodal integra-
tion has been proposed by Chen et al. (2000b) to elimi-
nate such spatial instability in nodal integration, and to
provide the same level of accuracy as in Gauss quadra-
ture. DSA for stabilized conforming nodal integration en-
hances computational efficiency and completely removes
background mesh, so that the integration of the shape
DSA and optimization can be effectively carried out.

In this section, a stabilized nodal integration method
is employed to the design optimization of a 3-dimensional
road arm, which transfers a force and torque from a road
wheel to a suspension unit (see Fig. 10). Since the geome-
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Fig. 10 Road arm model and meshfree analysis result

tries in the corner are so complicated, it is challenging to
make a regular-shaped finite element. In addition to the
complicated initial geometry, the structural shape fur-
ther changes during design optimization process, which
will cause a mesh distortion problem if a finite element
method is used.

The road arm model is approximated by using 1455
meshfree particles (4365 DOF), without background
mesh. The road arm is made of steel with E = 206 GPa,
and ν = 0.3. At the center of the right hole, a vertical
force of 3736 N and a torque of 44 516 Nm is applied,
while the left hole is fixed. Unlike Gauss quadrature-
based method in the previous two examples, the stress
value is calculated at the particle position. As was illus-
trated in Fig. 10, the stress concentration appears in the
left corner of the road arm. If the highest stress level in the
left corner is considered as a reference value, then the di-
mension of the right corner cross-section can be reduced,
because this region has a large safety margin.

Since two holes are connected to the road wheel and
torsion bar, the dimension and the geometry of the holes
are fixed. Thus, the design goal is to determine the di-
mension of the cross-sections of the arm. The heights and
widths of four sections are selected as design parameters
(see Fig. 11). Thus, a total of eight design parameters are
considered in this example.

The design optimization is carried out to minimize
the structural weight of the road arm, while maintaining
the maximum stress level. Design optimization problem

converges after eight iterations. Figure 12 compares the
meshfree analysis result at the initial and optimum de-
signs. The structural weight at the optimum design is
reduced by 23% compared to the initial weight. Since the
stress concentration appears in the left corner at the ini-
tial design, the optimization algorithm tried to reduce the
cross–section of the right corner so that both parts may
have the same level of stress values. Because of the sig-
nificant geometry changes in the right corner, the mesh
distortion problem may occur if the finite element-based
analysis method is employed.

Through the three design optimization examples, it is
concluded that the mesh distortion problem in the finite
element-based shape design can be effectively resolved by
using the meshfree method. In addition, it is shown that
the solution accuracy of the meshfree method is insensi-
tivity to the regularity of the particle distribution.

Fig. 11 Design parameterization of the road arm

Fig. 12 Meshfree analysis result at the initial and optimum
designs
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5
Conclusions and plan

A numerical method of design sensitivity analysis and op-
timization using the meshfree method is proposed by dis-
cretizing continuum–based variational equations. Unlike
finite element and boundary element methods, the shape
function of the approximation depends on shape design
parameterization, whose effects have been discussed in
detail.

Shape design optimization of automotive parts under-
going large shape changes can be effectively carried out
using meshfree methods that are insensitive to geomet-
ric distortions, without requiring re-meshing. Fast con-
vergence of the design optimization algorithm is accom-
plished using the accurate sensitivity information. This
approach reduces human interaction and design costs sig-
nificantly during optimization, yet it maintains the same
level of accuracy if not an even better level.
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