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Surrogate models have been developed to infer the response of engineering systems based on scattered tests/

simulations. An effective sampling scheme enables surrogates to have a desirable accuracy while balancing the

sampling budget. Most sampling methods implicitly assume that all samples have the same cost to produce. In some

applications, however, the cost to obtain samples may substantially vary in the input variable space because some

configurations are more expensive to test or simulate than others. As an initial effort to incorporate with varying

sampling cost, this paper explores an adaptive sampling strategy in which the sampling cost varies (AS-C). The

proposed scheme adopts the Gaussian process for design space exploration, which is based on space filling. Two

surrogates are constructed: one for the target function (quantity of interest) and the other for the sampling cost. Then

avaluemetric is defined to estimate theuncertainty reductionper cost.Anew sample is addedper iterationat thepoint

with themaximumvaluemetric. TheproposedAS-C is evaluatedusing 1Dand 2Danalytical functions. Four different

cost functions and 100 sets of initial samples are produced for evaluation. For a fixed sampling budget, the AS-C adds

more samples in an inexpensive region and thus provides a better accuracy than the standard adaptive sampling

strategy (AS).As a case study, theAS-C is applied to thedesign space explorationof behavioral emulation (BE).BE is a

coarse-grained simulation method, which predicts the runtime of a given simulation using high-performance

computing. Because the cost/runtime of BE varies by the orders of magnitude, the AS-C adds many more samples in

the inexpensive region and greatly outperforms the AS for a given sampling budget.

Nomenclature

Amax = areametric formaximumerrorwith increasing sampling
budget

AR2 = area metric for R-squared with increasing sampling
budget

C�x� = cost function for sampling at x

Ĉ�x� = estimated cost function

Cov�⋅� = covariance function
emax = maximum error

f̂�x� = surrogate model at the input x
�f�xj� = mean of the function values at the grids

H�n� = Heaviside step function
p = dimensionality of the input variable space

V̂�x� = estimated value function

Var�x� = prediction variance of f̂�x�
x = a point in the multidimensional space
xi = the ith point in the input variable space
Z�x� = Gaussian process
μ = mean value of samples
θm = kriging hyperparameter vector with m � 1; 2; : : : ; p

σ2 = variance of the Gaussian process

σ̂�x� = standard deviation of the prediction

I. Introduction

D ESIGN optimization of engineering systems usually requires
extensive simulations and tests to achieve desirable perfor-

mances. Surrogate models are often introduced as an efficient tool to
approximate the response of engineering systems from scattered
simulations/tests in the input variable space. An effective surrogate
model enables an inexpensive prediction of system responses at a given
input configuration/design.Design optimization basedon the surrogate
model has been adopted for numerous engineering systems with
significantly reduced simulation costs or test period [1–3]. Besides
design optimization, surrogate models have been applied to a various
engineering analysis. For example, advanced materials or innovative
designs are emerging, which might lack effective theoretical models
such as lattice structure and composite material [4]. Surrogate models
may serve as an empirical model for the fundamental mechanics to
enable multiscale analysis. Surrogates model is also a key technology
for verification, validation, and uncertainty quantification such as the
multifidelity surrogates, which is developed to compensate for the
discrepancy between experiments and simulations [5,6]. For example,
Alexandrov et al. [7] showed that different fidelity models can be used
to save computational cost for optimization. Chaudhuri et al. [8]
presented adaptive sampling (AS) with multifidelity surrogates for the
multidisciplinary application.
The accuracy of surrogatemodels strongly depends on the location

and number of samples (experiments and simulations). Methods to
select samples are termed design of experiments (DOE). Desirable
DOE enables accurate surrogate models while balancing the
sampling budget. AS is a popular strategy of DOE, which adds
samples iterativelywith updated surrogates. VariousAS strategies [9]
were developed and proved effective for different applications, such
as reduced order modeling [10,11], structural optimization [12],
and reliability-based design optimization [13]. Efforts have been
made to understand the major components of AS, such as surrogate
types, prediction uncertainty metrics, updating schemes, and
stopping criteria [9,14]. The AS could be more effective than all-at-
once sampling based on the reported studies [14,15]. Toolboxes have
been developed for the general usage of AS schemes [16,17].
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One major component of AS is uncertainty metrics. Two types of
uncertainty metrics are mainly used for AS: model-based and data-
driven prediction variances. The prediction error at a point could be
estimated by prediction variance. The prediction variance quantifies
the variation of the potential system response, which is assumed a
statistical distribution. The points with a large prediction variance
imply a risky approximation and could be improved by adding more
samples. The commonly used prediction variance is usually available
for a few types of surrogates by inherently assuming a distribution
for the samples. For example, the Gaussian process [18] assumes a
multivariate normal distribution for the samples, while polynomial
response surface assumes a normal distribution for the residual errors
[19]. The Gaussian process-based AS has proved to be effective for
various engineering applications [14,20]. Recent efforts have been
made to obtain the uncertainty metric for an arbitrary surrogate based
on data-driven approach such as cross-validation (CV). Jin et al. [21]
estimated the prediction uncertainty using the difference between the
surrogates from leaving-one-out CV and the surrogate using full
samples. Ben Salem et al. [17] proposed a series of surrogates
from leaving-one-out CV. Then a weighted scheme was used to
fit the empirical cumulative distribution function (ECDF) from the
predictions of the surrogates. The predictionvariance is then generated
from theECDF to indicate the estimated uncertainty [22].Xuet al. [23]
associated surrogate predictionwith the Voronoi diagram to determine
the uncertainty of surrogate predictions.
The current practice of AS for single-fidelity surrogates implicitly

assumes that all samples have the same cost, which is applicable for
many applications. The number of samples is therefore used to
indicate the cost/budget of sampling. However, in some applications,
the cost to obtain samples may substantially vary in the input variable
space. For example, the computational resource of a computational
fluid dynamics (CFD) analysis relies heavily on the mesh density,
which changes with Reynolds number and Mach number. The
runtime of the CFD could also vary while using the warm-start
strategy for accelerated computation [24]. The effect of sampling cost
might be significant in the high-performance computing (HPC)
environment. The HPC architecture and algorithm might change in
the input variable space for optimum performance such as power
consumption, an important part of sampling cost, for a given CFD
simulation task [25,26].
This paper explores a DOE strategy with varying sampling

costs. The cost/budget of sampling is reflected by the runtime of
simulations. We examine the AS for adding samples iteratively.
We take a cue from multifidelity and multisource optimization
approaches, where estimated gain is maximized per unit cost [24,25].
A value metric is proposed to maximize the expected gain from an
added sample per unit cost. In addition, unlike papers on multisource
optimization, we assume that the actual cost of a sample is not known
in advance. Therefore, two sets of surrogates are developed: one for
the target function and the other for the sampling cost. The value
metric is defined as the ratio between the standard deviation of
prediction and the sampling cost estimated from the two surrogates.
A new sample is then added at the point where the value metric is
maximized (adaptive sampling with varying sampling cost [AS-C]).
As analytical examples, algebraic test functions with algebraic
cost functions are examined. We evaluated the proposed approach
based on 1D and 2D algebraic functions, which are convenient for
visualization and discussion.
As a case study, the proposed AS-C has been applied to the design

space exploration of behavioral emulation (BE). BE predicts the run
time of a given CFD simulation using HPC. As we move toward
exascale computing, it is important for application developers and
system architects to perform co-design to develop an optimized,
energy-efficient application code and machine [27]. To speed up
this co-design process and to enable architectural design space
exploration, system architects build simulator models to study the
performance of the application on various underlying conditions. BE
[28] is one such coarse-grained approach for simulation of extreme-
scale systems and application. Because the cost/run time of BE for
different input configurations varies by orders of magnitude, it serves
as an excellent case study for AS-C.

In the remainder of the paper, details on the standard AS using
kriging are introduced in Sec. II. The proposed AS strategy with
varying cost is presented in Sec. III. Section IV introduces the
multivariate algebraic test function and four algebraic cost functions.
Section V investigates the numerical performance of the proposed
approach. Effect of different cost functions with increasing
complexity and different initial samples are discussed. Section VI
applies the AS-C to the approximation of BE with a comparison to
AS, followed by conclusions in Sec. VII.

II. Adaptive Sampling Using Surrogate

A. Basic Steps in Adaptive Sampling

Adaptive/sequential sampling refers to the systematic procedure to
add samples iteratively in order to improve the accuracy of surrogate
prediction. Among different ways of AS, we consider here AS that
relies on an uncertainty model of the surrogate and that seeks to
improve the surrogate everywhere rather than toward a target. The
basic steps for such AS are provided in Fig. 1. The initial samples are
first generated with a portion of the total sampling budget. Then an
initial surrogate model is built with prediction variance in the input
variable space. One additional sample xnew is added at the point with
maximum prediction variance as shown in Eq. (1), where Var�x� is
the prediction variance at the input x.

xnew � arg max
x

Var�x� (1)

Instead of maximum prediction variance, other criteria are also
available to determine the new sampling point, such as expected
improvement (EI), which is used to search for the possible minimum
function value during optimization [29]. Multiple sampling points
can be added per iteration to take advantage of parallel computation
and to reduce the number of iterations. The stopping criterion plays
an important role in the performance of AS [30,31]. The AS and
modeling iterate until a prescribed stopping criterion based on total
cost or estimated accuracy of the surrogate aremet [31]. In this paper,
kriging is used for surrogate modeling, where the prediction variance
is based on its inherent assumption for multivariate normal distri-
bution. The stopping criterion adopted here is the total sampling cost.
Namely, the AS procedure stops just before the total sampling cost
exceeds a prescribed sampling budget.

B. Kriging Surrogate

Kriging [19] with a constant trend is adopted in the paper for
surrogate modeling as given in Eq. (2):

f̂�x� � μ� Z�x� (2)

where μ is the mean value of the samples and Z�x� is assumed to be a
Gaussian process. The covariance function of theGaussian process is

Initial design of experiments with partial budget for sampling 

Develop surrogate model and prediction variance

Perform sampling/test at the point with maximum prediction variance

Update surrogate model  f (x)  ˆ

Stopping criterion (based on cost, estimated accuracy etc)

Done

No
Yes

Fig. 1 Basic steps of classical adaptive sampling for global
approximation. One additional sample is added per iteration.
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set to be the squared anisotropic exponential function and given in
Eq. (3):

Cov�Z�xi�; Z�xj�� � σ2
Yp
m�1

exp�−θm�xi;m − xj;m�2� (3)

where xi and xj denote two points in the p-dimensional space,
σ2 is the process variance, and θm is the hyperparameter with
m � 1; 2; : : : ; p. The parameters of kriging are obtained from
maximum likelihood estimation. The kriging predictions interpolate
samples, and therefore the prediction variance is zero at sample
points. The kriging is based on the assumption ofmultivariate normal
distribution and naturally provides the prediction variance at an
untested point. Kriging has been proved effective to approximate the
response of various systems and has been used as a major surrogate
for AS. The implementation of kriging is based on the surrogate
toolbox from Viana [32].

III. Adaptive Sampling Strategy with Varying
Sampling Cost

A. Proposed Methodology

The classicalAS strategy (shown in Fig. 1) is revised to incorporate
the effect of varying sampling cost. For this purpose, a second

surrogate Ĉ�x� is constructed to approximate the sampling cost. Then

a value metric V̂�x� is defined as the ratio between the standard

deviation of the prediction σ̂�x� and the cost prediction Ĉ�x� as shown
in Eq. (4). The V̂�x� is evaluated at a grid of 100p test points in the
input variable space. One additional sample, xnew, is determined at

the point with the maximum value V̂�x� as in Eq. (5). The V̂�x�
indicates the uncertainty reduction per unit cost. σ̂�x� and V̂�x�
decrease to 0 after adding the sample at x because prediction

uncertainty is zero at a sample point. The σ̂�x� is used to define V̂�x�,
considering that σ̂�x� is proportional to the confidence interval,
which is the key measure of estimated prediction error. Note that
AS-C becomes classical ASwhen the cost function is a constant. The
flowchart of AS-C is summarized in Fig. 2.

V̂�x� � σ̂�x�
Ĉ�x� (4)

xnew � arg max
x

V̂�x� (5)

B. Illustration of AS-C Using 1D Algebraic Function

The Forrester function [33] is selected for illustration and
preliminary investigation of the proposed AS-C. The Forrester
function is a 1D algebraic function on x ∈ �0; 1� as given in Eq. (6):

f�x� � �6x − 2�2 sin�12x − 4� (6)

A linear cost function is introduced in Eq. (7). The cost function
needs to be positive in the input variable space. The response of
Forrester function and associated cost function are visualized in
Fig. 3.

C�x� � x� 0.1 (7)

To approximate the Forrester function, the initial DOE is 3 samples
at x � 0, 0.5, and 1. The initial samples and surrogates are shown in
Fig. 4a for the target function and Fig. 4b for the cost function. The
green-colored area represents 95% confidence intervals due to
prediction uncertainty. It is clear that the accuracy of f̂�x� is poor due
to the sparse initial samples. The cost function has a simple linear
trend, and Ĉ�x� matches the true cost function even with just three
samples. For a complicated cost function, Ĉ�x� is expected to be less
accurate. Compared with AS, the AS-C is based on two surrogates
and expected to suffer from larger uncertainty when the cost function
has a complicated response.
After constructing the initial surrogate, one sample is added per

iteration and a new surrogate is built using kriging. The sampling
budget is set to be up to 4.5 in this example. Final predictions using
AS resulted in 7 samples as shown in Fig. 5a, while AS-C in 8
samples as shown in Fig. 5b because AS-C chose samples in the low-
cost region. Details of surrogate results are summarized in Table 1.
Compared with AS, the AS-C enabled more samples in the input
variable space for a fixed budget. Based on themaximum error, AS-C
was more accurate than AS. In the following section, the AS-C is
investigated further using a 2D test function with different cost
functions and different initial samples.

C. Application of AS-C with Other Value Metrics

The prediction variance of GP is based on only the hyper-
parameters and spatial location, not a direct reflection on the
goodness of the fit. For isotropic GP, AS with maximum variance is
essentially a uniform spatial sampling scheme like Latin Hypercube
Sampling (LHS). There have been proposals for improving on the
prediction variance for error estimates and/or AS. Examples are the
universal prediction distribution (UPD) [17] and the sequential
sampling for globalmetamodeling [21]. The proposedAS-C could be
used with all these uncertainty estimations. The effect of different
uncertainty measures could be explored further.
As an initial effort to incorporate varying cost with sampling, this

paper is limited to design space exploration that focuses on the global
accuracy everywhere. We have performed a preliminary study on
EI-based optimization with varying cost. For optimization, the
quantity of interest is on the optima rather the whole design space.
Adding more cheap runs far from optima might be not as valuable as
the case for design space exploration.
The AS-C might fail (i.e., be worse than a regular AS) for highly

nonlinear cost functions and sparse samples. As discussed later in
Fig. 6, the AS-C deteriorated for the highly nonlinear cost functions
due to the large error from the surrogate on cost estimation. But with
increasing number of samples, theAS-Cwould bemore accurate than
AS. The essence of AS-C is adding more cheap runs instead of a few
expensive ones to benefit the global accuracy everywhere.

IV. Multivariate Test Function and Algebraic
Cost Functions

The complexity of cost function has a significant effect on the
AS-C as discussed in Sec. III. In this section, a 2D test function is
selected for further evaluation of AS-C. Four different cost functions
are introduced to imitate the effect of varying sampling cost.

Initial design of experiments with partial budget for sampling 

Develop surrogate model f (x) to approximate the target function and C (x) ˆ ˆ

ˆ

ˆ

to approximate the sampling cost

Perform sampling/test at the point with maximum V (x)  

Update surrogate models f (x) and C (x)ˆ

Stopping criterion based on total sampling cost 

Done

No
Yes

Compute the value function V (x) from σ (x) and C (x)ˆ

ˆ

ˆ

Fig. 2 Flowchart of the adaptive sampling with varying sampling cost.
One additional sample is added per iteration at the point with maximum
value metric to improve the global approximation.
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A. Normalized Branin Function

The Branin function is selected as the target function to evaluate
AS-C. The function is in the 2D input variable space, which is
convenient for visualization and inspection. The original Branin
function is given in Eq. (8) and defined in x1 ∈ �−5; 10�, x2 ∈ �0; 15�.
For the study of varying sampling cost, the input variable space of
Branin function and cost function is normalized within x1, x2 ∈ �0; 1�
for consistency. The response ofBranin function is normalizedwithin
f�x� ∈ �0.1; 1.1� for a convenient quantitative study. The mapping/
scaling of input variable space and function value is performed
through a linear transformation. The response of the normalized
Branin function is shown in Fig. 7.

fBranin�x��
�
x2−

5.1

4π2
x21�

5

π
x1−6

�
2

�10

�
1−

1

8π

�
cos�x1��10

(8)

B. Four Algebraic Cost Functions

Four different cost functions have been adopted to illustrate

different cases of varying cost in the input variable space. They are a

linear function, an exponential function, the Rosenbrock function,

and the Damper function. The linear function is shown in Eq. (9).

The exponential function shown in Eq. (10) increases more

drastically in the input variable space. The Rosenbrock function is

given in Eq. (11), which has a response with moderate nonlinearity.

The Damper function [34] is given in Eq. (12) to imitate the

resonance effect. The original input variable spaces of the four test

functions are provided in Table 2. For the study of varying sampling

cost, the input variable spaces of cost functions are normalized

within x1, x2 ∈ �0; 1� for consistency with the target function. The

value of cost function is normalized within f�x� ∈ �0.1; 1.1� for

0 0.2 0.4 0.6 0.8
a) b)

1
x

-10

-5

0

5

10

15

20

f(
x)

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

1.2

C
(x

)

Fig. 3 One-dimensional algebraic example: a) Forrester function; b) cost function for sampling.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

1.2

f(
x)

0 0.2 0.4 0.6 0.8 1
xa) b)

-10

-5

0

5

10

15

20

25

30

f(
x)

95% C.I.
samples
target function
surrogate prediction

Fig. 4 Initial samples and surrogate prediction for a) the Forrester function and b) linear cost function.

Table 1 Details of AS and AS-C for the approximation of Forrester
function with a budget of up to 4.5 total cost

Number of samples Total cost Max error

AS 7 4.0 1.46
AS-C 8 4.1 0.87

0 0.2 0.4 0.6 0.8 1
x

-15

-10

-5

0

5

10

15

20

f(
x)

0 0.2 0.4 0.6
a) b)

0.8 1
x

-15

-10

-5

0

5

10

15

20

f(
x)

95% C.I.
samples
target function
surrogate prediction

Fig. 5 Surrogate predictions for adaptive sampling plans for Forrester function example using a) AS and b) AS-C.

ZHANG ETAL. 1035

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
FL

O
R

ID
A

 o
n 

A
pr

il 
2,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
74

70
 



convenient quantitative comparison. The lower bound 0.1 indicates

the basic sampling cost. This has the effect of creating a cost ratio of

1/11 for all the cost functions between the cheapest and most

expensive points. The response of normalized cost functions is

visualized in Fig. 8.

CLinear�x� � 100x1 � 100x2 � 50 (9)

CExp�x� � exp�5x1� � exp�5x2� � 50 (10)

CRosen:�x� � 100�x2 − x21�2 � �x1 − 1�2 (11)

CDamper�x� �
j1 − �1∕x2�2j����������������������������������������������������������������������������������������������������������������������������������������������������������

�1 − R�1∕x1�2 − �1∕x1�2 − �1∕β2�2 � �1∕x21x22��2 � 4ζ2��1∕x1� − �1∕x1x22��2
p (12)

V. Numerical Performance of AS-C

A. Evaluation Plan

The proposed AS-C was compared with AS using the Branin

function. For AS, only one surrogate was developed to approximate

the target function, and the true cost functions in Eqs. (9–12) were

used to evaluate the total cost of sampling. The stopping criterion of

AS-C and AS was based on the total sampling cost. The sampling

procedure stopped just before the total sampling cost exceeds 10. For

a given set of samples, kriging surrogate with the constant trend is

built as shown in Sec. II for both the target function and the cost

function. The six initial samples were generated by the LHS with

5000 iterations. One hundred sets of initial sampleswere generated to

account for the effect of sampling uncertainty. The key factors of the

evaluation plan are summarized in Table 3.
The prediction accuracy of the surrogate was examined at a grid of

100 × 100 test points, xj, j � 1; 2; : : : ; 10;000. For a given set of

initial samples, two prediction metrics were adopted to estimate the

global and local performance of the surrogates. The global accuracy

was quantified by the coefficient of determination R2 as given in

Eq. (13), where f�xj� denotes the function true value at the jth grid

point, f̂�xj� denotes the surrogate prediction, and �f is the mean of

f�xj�. An R2 of 1 indicates that the surrogate perfectly fits all the test

points. The local performance of surrogates was quantified by the

maximum error emax in Eq. (14). The worst prediction/maximum

error is usually of critical interest in addition to the overall accuracy.

R2 � 1 −
P

100×100
j�1 �f�xj� − f̂�xj��2P

100×100
j�1 �f�xj� − �f �2 (13)

emax � max
j∈�1;10000�

h
jf�xj� − f̂�xj�j

i
(14)

R2 and emax measured the prediction accuracy at a given cost. The
relative performance (higher accuracy) of AS and AS-C might

changewith increasing samples as illustrated in Fig. 9, where cinitial is
the cost of initial samples. The performance of an AS scheme should
be interpreted over the entire range of sampling cost. The areametrics

AR2 and Amax were proposed to measure the relative performance of

Linear Exp Rosen. Damper
a) b)

50

60

70

80

90

100

ar
ea

 m
et

ric
 in

 %

Linear Exp Rosen. Damper

40

50

60

70

80

90

100

ar
ea

 m
et

ric
 in

 %

Fig. 6 The population of areametrics for the approximation of the Branin functionwith four cost functions: a) areametric forR-squared; b) areametric
for max error.

Fig. 7 Normalized Branin function in the input variable space.

Table 2 Original input variable space for the four
cost functions

Variable CLinear�x� CExp�x� CRosen:�x� CDamper�x�
x1 [0, 1] [0, 1] �−1.5;−0.5� [1, 1.1]
x2 [0, 1] [0, 1] [2, 3] [1, 1.1]
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AS and AS-C as given in Eqs. (15) and (16), where H�⋅� is the

Heaviside step function defined in Eq. (17). The evolution of ASwith

increasing total sampling cost is interpolated between samples. AR2

measures the percentage of times when AS-C is more accurate than

AS over increasing samples with accuracy measured by R2. Amax

measured the percentage of times when AS-C dominates AS over

increasing samples with accuracy measured emax. An area metric

equal to 50% indicates a similar performance of AS and AS-C. The

median and variation of AR2 and Amax with different initial samples

are also presented in the following sections.

AR2 �
R
cfinal
cinitial

H�R2
AS-C�c� − R2

AS�c�� dc
cfinal − cinitial

× 100% (15)

Amax �
R
cfinal
cinitial

H�emax;AS�c� − emax;AS-C�c�� dc
cfinal − cinitial

× 100% (16)

H�n� �
�
0; n < 0

1; n ≥ 0
(17)

B. Typical Case Using the AS and AS-C

A typical case of the AS and AS-C to approximate the Branin
function and linear cost function is presented in this section. Six
initial samples were generated fromLHS.One additional samplewas
added per iteration until the total cost of samples was about to exceed
10. The initial samples and final samples are shown in Fig. 10 using
AS and AS-C. The AS-C allocated more samples around the origin
due to the cheap sampling cost. Details of AS and AS-C results are
summarized in Table 4. AS ended with 16 samples and the total cost
was 9.5, whereas AS-C ended with 18 samples and the total cost was
9.3. Adding one more sample at the location requested by the
sampling algorithm would exceed the total sampling budget of 10.
However, it is clear that cheaper samples can still be added.
Both AS and AS-C approximated the global response well

(R2 were 0.96 and 0.99, respectively), withAS-Cbeingmore accurate.
The difference between emax was significant (0.1 vs 0.05) considering
the function value varies between [0.1, 1]. Evolution of prediction
accuracywith respect to the total sampling cost is shown inFig. 11.AR2

Fig. 8 Response of the four cost functions in normalized input variable space: a) linear cost function; b) exponential cost function; c) Rosenbrock cost

function; d) Damper cost function.

Total sampling cost

AS-C

cinitial

A
cc

ur
ac

y

cfinal

Fig. 9 An illustration of the evolution of accuracy for adaptive sampling
with increasing total sampling cost.

Table 3 Key factors of the evaluation plan

Key factor Plan

Initial sample 100 sets of 6 samples generated from LHS
Cost function Four cost functions with varying complexity
Evaluation plan Evolution for R-squared and a maximum error of

AS and AS-C at different total sampling cost
Prediction metric R-squared to measure overall accuracy; max error

to measure local accuracy; area metric to measure
the effect of total sampling cost

Comparisons between
AS and AS-C

1) Details of a typical case, 2) median performance
with different initial samples, and 3) variation with
different initial samples
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was 99.7%andAmax was100%; that is,AS-Cwas almost alwaysbetter

than AS. The performance of AS-C oscillated at the beginning in

Fig. 11. This was mainly due to the large uncertainty of the Branin

surrogate from scarce samples. The cost function was estimated

accurately even with the initial samples.

C. Different Cost Functions and Different Initial Samples

The performance of AS heavily depends on the quality of surrogate

and initial samples. As mentioned before, when the cost function is

complicated,AS-Cmight suffer fromuncertainty in the costmodel too.

ASandAS-Cwere evaluated using the four cost functions, as shown in

Fig. 8. To consider the initial sampling uncertainty, AS andAS-Cwere

repeated 100 timeswith different initial samples. Therefore, 100 sets of

AR2 and Amax were generated. The median value of them is used to

indicate the average performance of AS and AS-C.
When AR2 or Amax is equal to 50%, this indicates similar

performance between AS andAS-Cwith different total sampling cost.
AR2 and Amax larger than 50% indicate the higher accuracy of AS-C

over AS-C.As seen in Table 5,AR2 was close to 100% for all four cost

functions, and therefore AS-C proved to be accurate overwhelmingly.

The lowest AR2 came from the Damper cost function that has a

complicated response and leads to a large uncertainty of estimation.

The values of Amax were also high and indicated preference of AS-C

over AS. Similarly, the Amax was lower for Rosenbrock cost function

and Damper cost function as they have complicated responses.

The collection of AR2 and Amax was visualized using boxplot in
Fig. 6. Almost all the values of AR2 and Amax were larger than 50%;

that is, AS-C was preferred for the approximation of the Branin
function. The boxplot also reveals significant variability of AR2 and
Amax. The performance of ASmight bemore robust by increasing the
number of initial samples or introducing other advanced schemes for

the initial DOE.
AS-Cmight lead tomore total samples than theAS, as discussed in

Sec. III. The total number of samples was collected for the 100 sets of
evaluations to validate this observation. Table 6 summarizes the
median value of total samples for AS andAS-C from 100 repetitions.
The AS-C resulted in more samples in general. The difference

between the numbers of samples increased when more samples were
used. Compared with AS, AS-C adopted three more samples using
the linear cost function and eightmore samples using theDamper cost
function. The collection of the total number of samples was

visualized using boxplot in Fig. 12. The AS-C lead to more samples
than AS almost all the time.

0 0.2 0.4 0.6 0.8 1
x1a) b)

0

0.2

0.4

0.6

0.8

1

x2

0 0.2 0.4 0.6 0.8 1
x1

0

0.2

0.4

0.6

0.8

1

x2

Fig. 10 Final samples for a typical DOE the approximation of Branin functionwith linear cost function using a) AS and b) AS-C. The solid circles denote
the initial samples.

Table 5 Median value of area metricsAR2 andAmax

(in %) using 100 sets of initial samples

Area metric CLinear�x� CExp�x� CRosen:�x� CDamper�x�
AR2 93.2 96.9 93.4 89.9
Amax 98.3 93.9 77.8 84.9

4 6 8 10

Total costa) b)

-0.2

0

0.2

0.4

0.6

0.8

1

R
2

AS-C

AS

4 6 8 10

Total cost

0

0.2

0.4

0.6

0.8

M
ax

 e
rr

or

Fig. 11 Evolution of adaptive sampling with increasing samples for a typical DOE for the approximation of Branin function and linear cost function:
a) R-squared; b) max error.

Table 4 Details for a typical DOE of AS and ASC
for the approximation of Branin function and a linear cost function

with up to 10 total cost

R2 emax AR2 Amax

Total sampling
cost

Number of
samples

AS 0.96 0.1 99.7% 100% 9.5 16
AS-C 0.99 0.05 9.3 18

Table 6 Median values of total samples for AS and AS-C
using 100 sets of initial samples

Sampling scheme CLinear�x� CExp�x� CRosen:�x� CDamper�x�
AS 16.0 25.0 36.0 27.0
AS-C 19.0 31.0 44.0 33.5
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VI. Adaptive Sampling for Behavioral Emulation
of Exascale Computing

At the PSAAP-II Center for Compressible Multiphase Turbulence
(CCMT) at the University of Florida, CMT-nek [35], a large-scale
parallel application to be run on future exascale systems, is being
developed to perform a simulation with instabilities, turbulence,
and mixing in particulate-laden flows under conditions of extreme
pressure and temperature. CMT-nek is being developed from a
production release of petascale code Nek5000 [36], a Gordon Bell
prize–winning open-source software for simulating unsteady
incompressible flow with thermal and passive scalar transport.
In parallel, CCMTis performing research on co-design of theCMT

algorithms and the computer architecture on which they run. For that
purpose, a coarse-grained simulation method called BE is used to
predict the execution time of a representative skeleton app of
CMT-nek (called CMT-bone-BE). Coarse-grained modeling in BE
involves abstraction of the computation and communication
operations in the application code. Each of these operations is
modeled as an indivisible block with prebuilt performance estimate
models or instrumented run data [28]. The BE simulation is
performed in a discrete-event fashion, where the predicted execution
of the simulated application on simulated hardware is obtained.
These simulated results are then validated against results from
running the actual application on actual hardware.
Because BE simulations can be computationally demanding, we

developed a surrogate based on sample BE simulations. Because the
cost/run time of BE for different input configurations varies by orders
of magnitude, it serves as an excellent case study for AS-C.

A. Experimental Setup

Again, the application under study is BE simulation of CMT-nek
[37]. There are three main application parameters of interest—
element size (ES), the number of elements per processor (EPP), and
the number of processors (NP). In CMT-nek, fluid flow is broken into
small grids called elements. The ES ranges between 5 and 25. NP is
the total number of ranks (i.e., number of processors) on which the
MPI application code is run. The total number of elements divided by
the NP is the number of EPP.

Application performance can be affected by changing any of these
parameters. We chose 125 DOE based on a five-level, full-factorial
design as shown in Fig. 13a. “Five-level” denotes the 5 points/grids
selected along each parameter. The DOE is ES � �5; 9; 13; 17; 21�,
EPP� �8;32;64;128;256�, andNP� �16;256;2048;16384;131072�.
As a result, the experimental runs require up to 131,072 processors,
34 million elements, and 311 billion computational grid points. The
collected BE simulations are summarized in TableA1 in the Appendix.
The cost of BE simulations varies from 0.01143 to 859.0498 s.
BE simulation run time varies onlywith the increasingNP. Change

in ES and EPP does not affect the simulation time of BE. This is
mainly because the problem size of the simulation is the size of
the system being simulated. This size is determined through NP. The
bigger the simulated system is, the more time it takes to construct
the system and then to simulate it on all cores. We accounted for this
varying cost through eight runs of varying NP for a fixed number of
time stepswhile keeping ES and EPP fixed.NPwas varied from 16 to
131,072 processors as shown in Fig. 13b. The cost (runtime) varies
significantly by orders of magnitude. The collected cost of BE
simulations is summarized in Table A2 in the Appendix.
The outputs of BE simulations vary from 0.0143 to 110.2280 s.

TheNP and outputs (objectives) of the BE simulations were analyzed
in the logarithmic coordinate due to the large variation.

B. Target Function and Cost Function of BE

Setting up and collecting the results from the BE simulations are
time-consuming. For a comprehensive evaluation of AS for BE
simulation, the target function and the cost function are represented
by the polynomial response surface (PRS) for further tests. Then,
the developed PRS is used to produce samples and associated cost for
the evaluation of AS. The PRSwith different orders were fitted to the
125 BE simulations using leave-one-out CV as shown in Table 7,
where the root-mean-square error (RMSE) andmaximum error of the
CV were calculated. Cubic PRS provided the least error for both
RMSE and maximum error. The residual errors fitting to all samples
were also shown in Table 7. Considering that the range of BE
simulations is 110.2137 s (110.228–0.0143), the cubic PRS was
considered to be accurate with small residual errors (RMSE is 0.94;
the maximum error is 3.26). Similarly, a cost function was also
developed using PRS fitted only with varying NP. The accuracy
of the PRS for cost was shown in Table 8. Linear PRS was selected
with least CVerrors in logarithmic coordinate as shown in Fig. 13b.
The RMSE and maximum errors for residual errors decreased with
increasing orders in logarithmic coordinate during fitting.

C. Approximation of BE with Adaptive Sampling

AS-C and AS were compared for the approximation of BE
simulations with three selected input variables. The samples and
associated cost were produced from the fitted PRS. Eight initial
samples were generated using LHS. One additional sample was
added per iteration. The AS schemes stopped when the budget (given

Linear Exp Rosen. Damper
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AS-C(right)

Fig. 12 The number of samples used for the approximation of the
Branin function with four cost functions using AS and AS-C.
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Fig. 13 Design of experiment for BE simulation and runtime of the BE. a) 125 grids for the BE; b) run time of BEwith increasing number of processors.
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cost threshold) is met; the budget was set at 600 s for this evaluation.

The RMSE and maximum error were adopted as the predictions

metrics at the 20 × 20 × 20 grids. Again, for sampling uncertainty,

100 sets of different initial samples were generated for the evaluation.

Typical samples usingAS-Cwere shown in Fig. 14. The total cost for

the initial 8 samples was 474 s. It is seen that the initial samples are

scattered in thewhole design space, whereas the additional samples are

mostly allocated at smallNP.The total cost forAS-C is 561 s.WhenAS

tries to addonemore sample at �ES;NP;EPP� � �21; 131070; 256�, the
cost becomes 752 s, exceeding the given budget.

The detailed prediction metrics for the 100 sets of evaluations are
summarized in Fig. 15. The R2 of AS-C in Fig. 15a concentrates
around 1.00,whereas theR2 ofAS is around 0.56 and hasmuch larger
variation. AS-C resulted in much more accurate overall. The
maximum error of AS-C is around 3.68 as shown in Fig. 15b.
Considering that the range of BE simulations is 110.2137 s, AS-C is
quite accurate and bested AS regarding the maximum error. The total
number of samples used for AS and AS-C are shown in Fig. 16 with
100 sets of initial samples. AS-C resulted in cheaper runs thanAS and
lead to better accuracy to approximate the input variable space.

VII. Conclusions

This paper studies the effect of varying sampling cost on theDOE.A
strategy for AS with varying sampling cost is proposed (AS-C). Two
surrogates are developed to approximate the target function and cost
function. A value metric is defined as the ratio between the standard
deviation of prediction and the estimated cost. The valuemetric is used
to indicate the uncertainty reduction per cost. A new sample is then
added at the point with maximum value. The proposed AS-C method
was evaluated using 1D and 2D algebraic functions and algebraic cost
functions. The AS stops just before the total sampling cost exceeding
the prescribed budget. Four different cost functions and 100 sets of
different initial samples were produced to evaluate the AS-C. AS-C
was comparedwith standardAS regardingR-squared,maximumerror,
and evolution with increasing total sampling budget. For the global

Table 8 Accuracy of the PRS fitting to the runtime of BE measured
in linear coordinate

Order of PRS fitted
in logarithmic coordinate

Leave-one-out
cross-validation

Residual errors fitting
to all samples

RMSE Max RMSE Max

Linear 70.02 193.89 39.10 106.98
Quadratic 160.84 453.14 34.37 93.16
Cubic 274.54 764.42 43.64 107.58
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Fig. 14 The design of experiments using AS-C for the approximation of
BE with three variables, ended with 130 samples.
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Fig. 15 The 100 sets of predictions developed using AS and AS-C with different initial samples for a) R2 and b) maximum error.
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Fig. 16 The total number of samples used forAS andAS-Cwith 100 sets
of initial samples.

Table 7 Accuracy of the PRS fitting to the BE predictions measured
in linear coordinate

Order of PRS fitted in
logarithmic coordinate

Leave-one-out
cross-validation

Residual errors
fitting to all samples

RMSE Max RMSE Max

Linear 29.67 148.70 27.23 134.73
Quadratic 4.57 16.80 4.10 14.49
Cubic 1.11 4.15 0.94 3.26
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approximation of the test function in the whole input variable space,
AS-C led tomore samples thanAS, andAS-Cwasmore accurate than
AS in the large majority of DOEs. As a case study, AS-C was applied
for the design space exploration of BE. BE, a coarse-grained
simulation method, predicts the run time of a given CFD simulation
using a supercomputer. Because the cost/run time of BE varies by the
order of magnitude, AS-C resulted in many more samples and greatly
outperformed AS for a given sampling budget.
This paper is an initial effort to incorporate varying sampling cost

with DOE, the proposed scheme adopted GP for design space
exploration that is based on space filling. The proposedAS-C allocated
more cheap runs instead of a few expensive runs and improved the
global accuracy noticeably for the tested cases. There are alternatives
for uncertainty estimations (e.g., universal prediction distribution) and
similar schemes could be developed for these alternatives.

Appendix: Behavioral Emulation Predictions and Costs

Table A1 125 runs for the predictions of behavioral emulations
(in seconds) for the shock simulation per time step

Index
Element
size

Number of
processors

Element per
processor

BE
prediction

1 5 16 8 0.0143
2 5 256 8 0.0143
3 5 2,048 8 0.0143
4 5 16,384 8 0.0144
5 5 131,072 8 0.0144
6 9 16 8 0.1178
7 9 256 8 0.1182
8 9 2,048 8 0.1183
9 9 16,384 8 0.1184
10 9 131,072 8 0.1184
11 13 16 8 0.5417
12 13 256 8 0.5427
13 13 2,048 8 0.5429
14 13 16,384 8 0.5429
15 13 131,072 8 0.5429
16 17 16 8 1.6277
17 17 256 8 1.6304
18 17 2,048 8 1.6307
19 17 16,384 8 1.6309
20 17 131,072 8 1.6308
21 21 16 8 3.4460
22 21 256 8 3.4497
23 21 2,048 8 3.4505
24 21 16,384 8 3.4509
25 21 131,072 8 3.4507
26 5 16 32 0.0559
27 5 256 32 0.0559
28 5 2,048 32 0.0560
29 5 16,384 32 0.0560
30 5 131,072 32 0.0560
31 9 16 32 0.4742
32 9 256 32 0.4778
33 9 2,048 32 0.4780
34 9 16,384 32 0.4781
35 9 131,072 32 0.4781
36 13 16 32 2.1741
37 13 256 32 2.1789
38 13 2,048 32 2.1793
39 13 16,384 32 2.1794
40 13 131,072 32 2.1794
41 17 16 32 6.5119
42 17 256 32 6.4713
43 17 2,048 32 6.5206
44 17 16,384 32 6.5209
45 17 131,072 32 6.5208
46 21 16 32 13.7869
47 21 256 32 13.7997
48 21 2,048 32 13.8010
49 21 16,384 32 13.8012
50 21 131,072 32 13.8011
51 5 16 64 0.1102

Table A1 (Continued.)

Index
Element
size

Number of
processors

Element per
processor

BE
prediction

52 5 256 64 0.1107
53 5 2,048 64 0.1109
54 5 16,384 64 0.1109
55 5 131,072 64 0.1109
56 9 16 64 0.9498
57 9 256 64 0.9497
58 9 2,048 64 0.9501
59 9 16,384 64 0.9502
60 9 131,072 64 0.9502
61 13 16 64 4.3940
62 13 256 64 4.3991
63 13 2,048 64 4.3999
64 13 16,384 64 4.4000
65 13 131,072 64 4.4000
66 17 16 64 12.5411
67 17 256 64 12.5412
68 17 2,048 64 12.5426
69 17 16,384 64 12.5427
70 17 131,072 64 12.5431
71 21 16 64 27.5157
72 21 256 64 27.5315
73 21 2,048 64 27.5333
74 21 16,384 64 27.5336
75 21 131,072 64 27.5336
76 5 16 128 0.2258
77 5 256 128 0.2271
78 5 2,048 128 0.2272
79 5 16,384 128 0.2273
80 5 131,072 128 0.2273
81 9 16 128 1.8962
82 9 256 128 1.9005
83 9 2,048 128 1.9009
84 9 16,384 128 1.9010
85 9 131,072 128 1.9010
86 13 16 128 8.6678
87 13 256 128 8.6786
88 13 2,048 128 8.6796
89 13 16,384 128 8.6798
90 13 131,072 128 8.6798
91 17 16 128 25.9900
92 17 256 128 26.0086
93 17 2,048 128 26.0101
94 17 16,384 128 26.0104
95 17 131,072 128 26.0103
96 21 16 128 55.0990
97 21 256 128 55.1290
98 21 2,048 128 55.1317
99 21 16,384 128 55.1321
100 21 131,072 128 55.1322
101 5 16 256 0.4500
102 5 256 256 0.4519
103 5 2,048 256 0.4522
104 5 16,384 256 0.4523
105 5 131,072 256 0.4523
106 9 16 256 3.7727
107 9 256 256 3.7727
108 9 2,048 256 3.7802
109 9 16,384 256 3.7803
110 9 131,072 256 3.7803
111 13 16 256 17.2886
112 13 256 256 17.3051
113 13 2,048 256 17.3065
114 13 16,384 256 17.3067
115 13 131,072 256 17.3067
116 17 16 256 51.9621
117 17 256 256 51.9932
118 17 2,048 256 51.9959
119 17 16,384 256 51.9962
120 17 131,072 256 51.9962
121 21 16 256 110.1680
122 21 256 256 110.2240
123 21 2,048 256 110.2260
124 21 16,384 256 110.2280
125 21 131,072 256 110.2270
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