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In the data-driven approaches for engineering prognostics, the lack of run-to-fail (RTF) data
has been one of the bottlenecks that hinders practical applications in the field. In order to
tackle this issue, the dynamic time warping (DTW) method is presented to augment the
RTF data obtained from different operating conditions or systems to the current system,
which plays the role of virtual RTF data under the current condition. Once the virtual
RTF data are available, they are used to train a neural network model to predict the remain-
ing useful life of the current system. When multiple RTF data are available with different
behavior under different failure modes, an RMSE-based performance criterion is proposed
that can adaptively choose the closest match to the current data and use it as the virtual
RTF data during the prognosis process. Numerical examples are given to show that the pro-
posed DTW-based data augmentation can predict the RUL with less uncertainty than the
conventional neural network model without data mapping.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Diagnosing the current health state of system and predicting the unexpected failure bring us not only a cost-effective
operation but also a zero-downtime unscheduled maintenance. Nowadays, researches toward this objective, which is recog-
nized as the area of prognostics and health management (PHM), are growing rapidly in many industrial fields. Two main
streams of PHM are the diagnostics and prognostics. Diagnostics focuses on estimation of degradation level of component
or system and identification of root causes of failure. Prognostics predicts the occurrence of fault or critical failure and esti-
mate the remaining useful life (RUL) before the failure occurs.

There are several review papers which have introduced the state-of-the-art of PHM research [1–6]. Jardine et al. [1] sum-
marized the researches and developments in the machinery diagnostics and prognostics. Pecht et al. [2] have addressed the
research state in the PHM of information and electronics-rich systems. Lee et al. [3] provided a comprehensive review of the
current PHM field and introduced commonly used algorithms and their characteristics. An et al. [4] suggested practical
options for prognostics to choose appropriate algorithms for different applications. Several review papers have commonly
pointed out that the prognostics is of more importance than the diagnostics in order to achieve effective asset management.
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Prognostics is generally categorized into three approaches, namely model-based, data-driven and hybrid approach. Each
approach has its own advantages and disadvantages [6]. Model-based approaches integrate a physical degradation model
with measured data to predict the future trajectory of degradation and RUL. The most popular algorithms are Particle filter
(PF) [7] and Kalman filter (KF) [8]. The model-based approaches provide accurate estimation of the RUL if the model is
applied properly. In the case of complex system, however, it is difficult to characterize the physics of failure and construct
an accurate degradation model. Data-driven approaches build a mathematical model or numerical algorithm to describe the
degradation behavior using measured data, which is often called training data set. Many researches have employed data-
driven approaches to predict the RUL of machineries. Numerous machine learning algorithms are employed in this field such
as Multi-layer perceptron (MLP) [9], Recurrent neural network (RNN) [10]. Convolutional neural network (CNN) [11] and
Long short-term memory (LSTM) [12]. The advantage of data-driven approaches is that they do not require the domain
knowledge and understanding complex physical behavior of damage. However, data-driven approaches need a larger
amount of run-to-failure data than the model-based approaches to train the mathematical model with many unknown
parameters. Hybrid approaches attempt to leverage the advantages by combining the two approaches. For this purpose,
selection of various prognostics algorithms is suggested depending on the data availability [13].

Among the three prognostics methods, according to the recent review paper [5], the data-driven prognostics is widely
used in many applications. However, the lack of available field data describing the fault progression has been a major huddle,
which is referred to as ‘data deficiency’. There have been a few studies to overcome this huddle. For example, Widodo et al.
[14] utilized censored and complete data obtained during the condition monitoring (CM) to assess the machine degradation.
Hu et al. [15] proposed a co-training approach to predict the RUL by combining the censored data till the planned mainte-
nance and a small number of run-to-fail (RTF) data. Even though the co-training approach shows an accurate RUL prediction,
its long-term prediction is unclear because it uses the censored data at the last stage (90–100% of life cycle) of unit’s lifetime.
Sobie et al. [16] trained a machine learning classification model with training data which is generated from a simulation
model for bearing diagnostics. Although the paper proposed interesting approaches, it requires a good system-level simula-
tion model, which is rare in complex systems. An et al. [17] proposed prognostics approaches utilizing the degradation data
in the accelerated life test (ALT) by converting them to those in the field loading conditions. However, this approach requires
various ALT data under several different loading conditions in order to use them by mapping in the field loading condition.
All the previous studies commonly mentioned that RTF data are rarely available in the in-service system, whereas proper RTF
data should be used for the training in the data-driven prognostics.

In this paper, a dynamic time warping (DTW) method and artificial neural network (ANN) are utilized to predict RUL
when a small number of RTF data are available. The future degradation data of the current system are simulated by mapping
the current degradation data to the RTF data using DTW. The major assumption of the proposed approach is that the failure
mode of the current data is the same with that of RTF data. If the RTF data under various failure modes exist, RUL prediction
of current data can be accomplished by applying DTW to those RTF data. This is equivalent to exploring all possible failure
modes from the past RTF data. DTW has been widely used to measure a similarity between two different sequence data.
Barré et al. [18] estimated signal patterns from acquired data to observe the change in degradation behavior of battery,
which was quantified using DTW. Tao et al. [19] developed the dynamic spatial time warping (DSTW) based on traditional
DTW for the purpose of estimating the battery capacity degradation. Atamuradov et al. [20] focused on the phenomenon that
similarity between the observed time series and control signal gives an information about the health state of the railway
turnout system and used DTW to calculate the similarity. In addition to this, there were several studies to improve the per-
formance of finding the global optimal mapping path. Yi et al. [21] proposed FastMap and a lower bounding function to
improve the speed of DTW. Kim et al. [22] introduced a novel approach that supports high search performance without false
dismissal under DTW by utilizing new distance function. Park et al. [23] employed a suffix tree for fast retrieval of similar
subsequences without false dismissals in DTW. For the purpose of diagnostics and prognostics, most literature only used
DTW to identify a similarity between two datasets by finding optimal mapping path between them. Unlike existing litera-
ture, this paper proposes the first attempt to generate virtual data by predicting the mapping path of DTW. In addition to this
aspect, the original purpose of DTW is modified by adding the predictive interval to the mapping path. Therefore, the unique
contribution of this paper is to use DTW not just for measuring the similarity but also overcoming the data deficiency by
creating a number of virtual RTF data. Once, the virtual RTF data set is generated, the RUL prediction is performed by using
an ANN model.

The paper is organized as follows. Section 2 introduces theoretical background of the proposed algorithms. In this section,
basis of DTW is explained with numerical example. In Section 3, the authors introduce a methodology of data augmentation
and mapping performance measure which is represented with root mean squared error (RMSE). Applications of the proposed
algorithm are presented in Section 4 using simulation and real data of crack growth. The paper is concluded in Section 5.
2. Theoretical background

2.1. Dynamic time warping

DTW compares two sets of asynchronous signals and measures the similarity by finding the optimally matching path
between them. DTW has been commonly used in the field of speech recognition, data mining and imaging [18,19,24]. Sup-
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pose that two time-series data, X ¼ x1; x2; � � � ; xNf g and Y ¼ y1; y2; � � � ; yMf g of length N andM, respectively, are given. In prog-
nostics, these two data sets represent degradation data under different operating conditions.

The first step toward DTW is to construct the N-by-M cost matrix whose components are the difference c xi; yj
� �

between
two data xi and yj; that is, c xi; yj

� � ¼ jxi � yjj. Typically, c xi; yj
� �

is small (low cost) when xi and yj are similar to each other,
otherwise it is large (high cost). Then the goal is to find an alignment between X and Y having a minimal overall cost. A warp-
ing path is a sequence p ¼ p1; � � � ; pLð Þ with pl ¼ nl;mlð Þ 2 1 : N½ � � 1 : M½ �;8l 2 1 : L½ �which defines an alignment between two
sequences by assigning the element xnl of X to the element yml

of Y. Typically, the warping path satisfies the following
conditions.
Boundary condition : p1 ¼ 1;1ð Þ and pL ¼ N;Mð Þ
Monotonicity condition : n1 6 n2 6 ::: 6 nL and m1 6 m2::: 6 mL

Step size condition : plþ1 � pl 2 1;0ð Þ; 0;1ð Þ; 1;1ð Þf g for l 2 1 : L� 1½ �
ð1Þ
The last condition means that the warping path can move either in the horizontal, vertical, or diagonal direction. Among
the three possible paths, DTW finds the one that yields the lowest total cost. The total cost cp X;Yð Þ of a warping path p
between X and Y is calculated by accumulating all the individual cost c xnl; ymlð Þ along the path as
cp X;Yð Þ ¼
XL

l¼1

c xnl; ymlð Þ ð2Þ
where L is the total number of components in the path. Furthermore, an optimal warping path p� between X and Y is deter-
mined by minimizing the total cost among all possible warping paths. The DTW distance, dDTW X; Yð Þ, between X and Y is then
defined as the total cost of p�:
dDTW X;Yð Þ ¼ cp� X; Yð Þ ¼ min cp X;Yð Þjp is an N;Mð Þ �warping path
� � ð3Þ
The optimal path p� can be found by defining an accumulated cost matrix, D N;Mð Þwith N rows andM columns. The accu-
mulated cost matrix D satisfies the following conditions
D n;1ð Þ ¼ Pn
k¼1

c xk; y1ð Þ for n 2 1 : N½ �

D 1;mð Þ ¼ Pm
k¼1

c x1; ykð Þ for m 2 1 : M½ �

D n;mð Þ ¼ c xn; ymð Þ þmin D n� 1;m� 1ð Þ;D n� 1;mð Þ;D n;m� 1ð Þf g
for 2 6 n 6 N and 2 6 < m 6 M

ð4Þ
The first row and the first column are calculated by accumulating cost along the row and column, respectively. The com-
ponent D n;mð Þ is calculated by adding c xn; ymð Þ to the smallest accumulated cost in the previous adjacent elements; i.e.,
among D n� 1;m� 1ð Þ;D n� 1;mð Þ; andD n;m� 1ð Þ.

Once the accumulated cost matrix is available, the optimal path p� is determined in the reverse order of the indices start-
ing from pL ¼ N;Mð Þ. Suppose pl ¼ n;mð Þ has been determined. Then, the next point pl�1in the path can be determined as
pl�1 :¼
1;m� 1ð Þ if n ¼ 1
n� 1;1ð Þ if m ¼ 1
argmin D n� 1;m� 1ð Þ;D n� 1;mð Þ;D n;m� 1ð Þf g; otherwise;

8><
>: ð5Þ
If ‘‘arg min” is not unique, the smallest pair is taken lexicographically. The process ends when (n, m) = (1, 1). As a result,
the mapping path that is found by DTW yields the best global match or alignment between two sequences as are mentioned
in several literatures [25–27]. A simple example of DTW between X and Y sequence, is shown in Fig. 1(a), where the sequence
length N and M are 8 and 9, respectively. As shown in Fig. 1(b), the cost matrix between two sequences can be calculated
using the difference between data. Once the accumulated cost matrix is constructed, the warping path can be generated
as depicted in Fig. 1(c). Table 1 specify the optimal warping path of Fig. 1(c). Using the optimal mapping path calculated
by DTW, X sequence and Y sequence can be mapped each other.

2.2. Artificial neural network

In recent years, artificial neural network (ANN) has received much attention as a tool for solving complex problems. ANN
is one of the most commonly used data-driven techniques in prognostics [28]. Fig. 2 shows a simple example of ANN, which
consists of 3 layers: input, hidden and output layers. The inputs xi, i = 1,. . ., I to the neuron are multiplied by weights Wij and

summed up together with the constant bias term of l th layer h lð Þ
j at the hidden node j. The resulting nj is the input to the

activation function g [29]. The same process is conducted from a hidden node j to output node k to yield output data ok



Table 1
Optimal mapping path example.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

n 1 2 3 3 3 4 5 6 7 8
m 1 1 2 3 4 5 6 7 8 9

Fig. 2. ANN with one hidden layer.

Fig. 1. Application of DTW to X and Y sequence data: (a) X and Y sequence data, (b) cost matrix between X and Y, and (c) Accumulated cost matrix and
warping path.
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of the network. It is possible that multiple hidden layers can be used for a complex network model. As more nodes and layers
are used, more weights and biases need to be identified, which makes the model more flexible but the process of building the
model becomes more challenging.
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During the training process, the weights and the biases of the ANN model are estimated by minimizing the mean-
squared-error (MSE) between the network model outputs and training data:
MSE ¼ 1
N

XN
k¼1

e2k ¼ 1
N

XN
k¼1

yk � dkð Þ2 ð6Þ
where N is the number of training data, and dk; yk; and ek are the k-th training data, model output and corresponding output
error, respectively [30]. Levenberg-Marquardt (LM) learning algorithm is one of the earliest and the most commonly used
methods for the training algorithm [28,31].

There are different approaches of applying ANN in the prognostics. For example, An et al. [17] predicted the future degra-
dation using a number of recent degradation data in the previous time as inputs, from which the RUL is estimated. On the
other hand, Heimes [10] employed advance version of ANN called RNN and predicted the RUL of aircraft engine by training
neural network model trained by multiple sensor signals and their RUL as inputs and outputs, respectively. In this paper, the
latter is utilized where the RUL is directly estimated. For this purpose, this paper uses the current cycle (time) and degrada-
tion level as input nodes, while the output layer generates the RUL from the current cycle (time). The authors constructed a
simple ANN model with two input nodes, two hidden nodes and one output node.
3. Methodology

3.1. Data augmentation

In this section, the key idea of the proposed approach, namely data augmentation, is presented. As mentioned in the intro-
duction, utilization of preexisting data to be suitable for current operating condition is essential for successful data-driven
prognostics. For this purpose, a simple example is considered using two degradation data sets generated from the same
exponential model but with different rate as shown in Fig. 3. It is assumed that these two data sets represent degradation
for different operating conditions. The reference data (star markers) and target data (circular markers) are generated every
0.2 time interval from exponential function, exp(0.5 t) and exp(0.3 t), respectively. The reference data are available until the
failure occurs (i.e., RTF), whereas the target data are only available until the current time t = 4. The goal is to generate virtual
target data beyond the current time using the data augmentation method. If the generated virtual data are accurate, they are
supposed to follow the red dots, which is the exponential function, exp(0.3 t).

To perform data augmentation, DTW is applied between the reference and target data. First, the DTW finds the optimal
mapping path by matching the levels of degradation as close as possible between the two datasets. When the data show a
monotonic trend, which is the case for most degradation, it is better to use two datasets with the same range of degradation.
As shown in Fig. 4(a), a total of 20 target degradation data (filled circular markers) are given until the current time t = 4,
which has grown up to the level of 3.3, as shown by the dashed line. In order to match this with the reference data within
the degradation range, 13 reference data (filled star markers) below the dashed line are selected, which are called mapping
data here. The reference data (hollow star markers) above the dashed line will be used to generate the virtual target data
after finding the optimal warping path.

The 13 mapping data below the dashed line are mapped into the 20 target data using the DTW as described in Section 2.1,
with N = 13 andM = 20. Using these two sets of data, the optimal warping path, called current mapping, is generated as illus-
trated in Fig. 4(b), represented by the blue line with circular markers. Intuitively speaking, the mapping path between two
sequence data will show a linear relationship as the two sequence data have similar trend. In the figure, the true mapping
Fig. 3. Example data sets.



Fig. 4. Application of DTW to reference and target data: (a) Reference and target data, (b) mapping path plot between reference and target data.
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path is generated from the entire reference and true data in Fig. 4(a). As the time progresses, current mapping path generated
from the mapping and target data converges to the true mapping path. It is noted that the current mapping shows different
trend from the true mapping near the last points because the DTW algorithm searches optimal path between the reference
and target data given at different times.

The proposed data augmentation method is based on the assumption that the future mapping path will follow the same
trend as the one obtained by DTW up to the current time. The linear relationship indicates that the data points from two
curves can show one-to-one correspondence. Based on this assumption, the trend in the current mapping in Fig. 4(b) can
be fitted by a linear function to predict or extrapolate into the future mapping path:
Y ¼ aþ bX þ e ð7Þ
where X is the reference point, Y is the target point, and e represents the error in the estimation of Y. a and b are the fitting
parameters of linear regression, which are estimated by minimizing the mean-squared-error (MSE). For a linear regression
model, the prediction interval (PI) for individual response Yi at a given Xi can be calculated as follows:
PI Xið Þ ¼ Ŷ i � ta=2;n�2SYX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ

Xi � X
�� �2

Pn
i¼1

Xi � X
�� �2

vuuuuut ð8Þ
where bYi is the estimated response at Xi, �ta=2;n�2 are the values of Student’s t-distribution with n� 2ð Þ degree of freedom
evaluated at probabilities of 1� a=2ð Þ and a=2. SYX represents the standard error of estimation. Usually, the prediction inter-
val is expressed with the upper and lower bounds, which can be considered as two different paths. Since the objective of
proposed algorithm is to provide sufficient virtual data to train the data-driven model, the probability level a is varied
between 0.01 and 0.99 to produce many mapping paths. As a result, 199 mapping paths which consist of median and
198 prediction intervals are generated. Note that the actual mapping path shows a zigzag pattern as shown in Fig. 4(b), while
the virtual mapping paths are straight lines made by the regression in Eqs. (7) and (8).

Once virtual mapping paths are obtained, the next step is to generate the virtual target data by mapping the reference
data above the dashed line (hollowed star markers) in Fig. 4(a) using the virtual mapping paths. Fig. 5 illustrates this process.
In Fig. 5(a), three virtual mapping paths are generated, namely path 1, path 2 and path 3, which represent the upper 2.5%
prediction bound, the median, and the lower 2.5% prediction bound, respectively. Based on these mapping paths, reference
point 15, for example, is mapped into three different target points. That is, these three points have the same degradation
level with the reference point 15 based on the three different mapping paths. The corresponding times on the reference point
can be obtained by multiplying the predicted target point with the time interval (dt) of target data, whose results are
depicted in Fig. 5(b) as the three dashed curves. Table 2 gives an example of this process for reference point 15. In the table,
the degradation level is same for all paths, but the times to grow the degradation level to the specific threshold are different
for different paths. It is noted that the length of virtual data depends on that of original reference data because the proposed
algorithm focuses on stretching or shortening the time information of reference data.

By repeating this process, reference data is mapped into the current target data based on all 199 virtual mapping paths to
generate virtual data. Fig. 6(a) illustrates a total of 199 mapping paths, which are converted into the virtual data in Fig. 6(b).
These 199 sets of virtual data are used as the input data for the training of ANN model.



Table 2
Mapping example for reference point 15.

Reference Path 1 Path 2 Path 3

Point 15 25.64 23.97 22.29
Time 2.8 4.928 4.594 4.259
Degradation 4.055 4.055 4.055 4.055

Fig. 6. Data augmentation: (a) mapping path prediction and (b) virtual data generation.

Fig. 5. Virtual target mapping generation: (a) mapping path of 95% P. I and (b) mapped 95% P. I of reference data.
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3.2. Mapping performance measure

As mentioned before, the reference data is critical for performing data augmentation. Therefore, there is no doubt that the
selection of suitable reference data is an important step to generate virtual data. Inappropriate reference data may lead to a
poor mapping performance. In practice, when several different reference data exist, the user should decide which data are
suitable for mapping and augmenting into the current degradation problem. This paper proposes a mapping performance
measure calculated from the root-mean-squared-error (RMSE). For this purpose, the current target data set is divided into
training and validation data sets within itself. The training data set is used for mapping the reference data, while the vali-
dation data set is used to calculate the RMSE between the virtual data by the future mapping with the validation set. The
RMSE can be calculated based on this Eqs. (9).
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

e2k

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

yk � ŷkð Þ2
vuut ð9Þ
where N, ek, yk, and byk represent the number of samples, error, virtual data, and validation set, respectively. As shown in
Fig. 7, for a given length of current data up to time 4, the reference data with the same range of degradation which are those
under the dashed line is used for mapping. The training data is divided into training (circular mark) and validation (trian-
gular mark) sets. Then, the RMSE value is calculated between mapped data and validation data.

To verify the proposed RMSE measure, an example problem is presented where there are three reference data made from
different degradation functions, which may represent different failure scenarios or operating conditions. The objective is to
determine which reference data is the most suitable for mapping the current data. Fig. 8 illustrates several different degra-
dation trends by employing empirical functions that represent the degradation. As shown in Fig. 8(a), the function X = exp
(0.3 t) represents the current data, while Y1 = exp(0.5 t), Y2 = 2 t + 1, and Y3 = 2 t0.8 + 1 are the three reference data sets.

At a given time, the data before the time are used for the mapping, while the data after the time are used for calculating
RMSE. Fig. 8(b) shows the validation results of mapping of X to the three reference data sets as a function of time. It is shown
that the mapping results are not accurate for early time because of the lack of data. However, after time 3.5, the mapping
between X and Y1 outperforms other two mappings. Indeed, the other two mappings do not show the linear relationship
as was observed in Fig. 4(b), which means that they may represent different failure scenarios. Fig. 8(c) illustrates mapping
paths between reference data sets and current data. As mentioned above, X and Y1 which were simulated from exponential
function shows a linear relationship in the mapping path, whereas the other two reference data sets show a non-linear rela-
tionship [32].
4. Application

4.1. Dynamic time warping of fatigue crack growth

The crack growth example has been widely used in the field of prognostics. Paris law is well known physical degradation
model, which represents the future trajectory of crack growth under repeated loading condition [33]:
da
dN

¼ C DKð Þm; DK ¼ Dr
ffiffiffiffiffiffi
pa

p ð10Þ
where N is the number of cycles, a is half crack size, DK is the range of stress intensity factor, Dr is the stress range, C and m
are model parameters.

To verify the proposed dynamic time warping method, crack growth simulation data are generated at every dN ¼ 1000
cycles following Eq. (10) with the 10 mm initial crack size and true parameters: mtrue ¼ 3:5; Ctrue ¼ 6:4� 10�11. Reference
and current data are assumed to be operated under two different loading conditions, Dr ¼ 70MPa and 60 MPa. The reference
data are generated until crack size reaches predefined threshold (0.1 m), while the current data are generated up to 13,000
and 27,000 cycles to compare the accuracy and uncertainty of the mapping. Fig. 9 shows the data augmentation results using
reference data and their mapping path. Both cases show a linear relationship for the mapping path, and thus, the medians of
the virtual data agree well with the true crack growth curve. As the number of cycles increases, virtual data shows a nar-
rower interval of uncertainty. This is because the prediction interval in Eq. (8) is decreased as the number of mapping data
increases.
Fig. 7. Validation of mapping result.



Fig. 8. Performance measure: (a) various reference data, (b) RMSE trend and (c) mapping path of reference data sets.
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In the prognostics stage, three-layer ANN model with two input nodes (cycle and current crack size), two hidden nodes
and one output node (RUL of virtual data) is trained to predict the RUL of current data, which can be obtained by calculating
the residual cycle until crack size reaches the pre-defined threshold (0.1 m). Generally, optimal network structure of ANN
(e.g. number of neurons and number of hidden layers) is searched by implementing several validation processes, but it is
not the main scope of this paper. In addition, the ANN in this study employs only two input nodes which is not the complex
network structure. In the training phase, virtual datasets are randomly divided into training, validation, and test data with
the fractions of 0.7, 0.15, and 0.15, respectively. The model is first trained using the training data set to optimize the weights.
The model is then examined using the validation data set to evaluate the degree of overfitting. Finally, the accuracy of the
trained model is estimated using the test data set. The process is implemented by the ANN functions in MATLAB, in which
the accuracy is calculated by R-square between the test and model output. The prediction is considered good when the R-
square is close to one. In this study, R-squares of ANN in Fig. 9(b) and (d) are 0.9948 and 0.9998 respectively. ANN model
training is repeated 30 times with different subsets of the training data and different initial weights. Finally, 95% predictive
intervals are calculated from prediction results obtained by 30 outputs. RUL prediction results are illustrated in Fig. 10,
which shows that the median converges to the true RUL curve with very narrow prediction intervals.

To identify the robustness of the proposed DTW algorithm, three different levels of noise (u = 1 mm, 3 mm and 5 mm) are
considered for the crack growth example. Uniformly distributed random noise between�umm is added to crack growth sim-
ulation for both reference and mapping data. Fig. 11 shows the mapping result under the different levels of noise and RUL
estimations. The results show that a high level of noise slows the convergence of the RUL, but the noise effect is compensated
by increasing the number of mapping data. Based on this observation, once the target data shows a similar trend with the
reference data, the DTW mapping result shows a good performance. It is also possible that a data point might be distorted
due to measurement error. In such case, the standard outlier detection methods, such as the maximum normed residual test
[34], can be used to eliminate those data.



Fig. 9. Data augmentation of simulation crack growth data: (a) mapping path at 13,000 cycles, (b) mapping result at 13,000 cycles, (c) mapping path at
27,000 cycles and (d) mapping result at 27,000 cycles.

Fig. 10. Remaining useful life estimation of simulation crack growth data.
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Fig. 11. Comparison of prognostics performance between different level of noise: (a) mapping result at 29,000 cycles (u = 1 mm), (b) RUL prediction under
1 mm noise, (c) mapping result at 29,000 cycles (u = 3 mm), (d) RUL prediction under 3 mm noise, (e) mapping result at 29,000 cycles (u = 5 mm) and (f)
RUL prediciton under 5 mm noise.
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4.2. Real crack growth data

Speaker et al. [35] performed fatigue crack growth tests to provide databases needed to evaluate and to demonstrate the
durability analysis methodology. A large number of tests were performed using Al 7475-T7351 coupons with the 0.5-inch
thickness. The tests were performed under various configurations, such as different load spectra, specimen, fastener type
and load transfer. Among different configurations, this section uses two configurations, AFLR4 and AFHR4(A), and exploited
two data sets from each of them, with a crack size of 0.35 in. to determine the end of life. The characteristics of the selected
datasets are described in Table 3, and Fig. 12 shows the crack growth trend.

Among four data sets, AFLR4-6 data (yellow triangular marker) is regarded as the target data, while others are used for the
reference data. Fig. 13(a) shows the result of mapping validation, where AFHR4(A)-10 shows the best mapping result. As can
be seen in Fig. 13, RMSE of AFHR4(A)-9 and AFLR4-9 continuously grow after 6000 cycles, whereas that of AFHR4(A)-10 does
not. As a result, the performance of RUL estimation using data augmentation based on AFHR4(A)-10 scores the lowest RMSE
value. It is interesting to note that even if AFLR4-9 is close to AFLR4-6, DTW predicts that AFHR4(A)-10 is the optimal map-
ping. This is related to the fact that both AFLR4-6 and AFLR4-9 show almost identical crack growth in early cycles but deviate
Table 3
Test matrix [28].

Material Spectrum Transfer r(ksi) Fastener type Dia. (in.) Specimen type Data set designation

7475-T7351 F-16 400 HR BLOCK 0% 32.0 MS-90353 1/4 1A AFLR4
7475-T7351 F-16 400 HR BLOCK 0% 38.0 MS-90353 1/4 1A AFHR4(A)

Fig. 12. Real crack growth data.

Fig. 13. Comparison of RUL prediction performance between reference data: (a) mapping performances of reference data and (b) RUL prediction result.
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significantly by different growth rates, which indicates that the failure modes might be different. The accuracy in RMSE is
also reflected in the RUL prediction in Fig. 13(b). When the current target data, AFLR4-6, is augmented using AFHR4(A)-
10, the predicted RUL converges faster to the true RUL from the conservative side.

To verify the effectiveness of proposed algorithms, performance is compared with ordinary neural network based prog-
nostics [11,12] which uses all the existing RTF data as the input for the training without mapping or augmentation. Consid-
ering the uncertainty in the training phase, the process is repeated 100 times with different initial weights. The same process
is also applied to proposed approach which used AFHR4(A)-10 as the reference data. Fig. 14(a) shows the predicted RUL with
90% confidence intervals using the proposed method by augmenting with AFHR4(A)-10, while Fig. 14(b) shows the predicted
RUL using all three datasets without augmenting.

As shown in the figure, prognostics using mapping and augmentation results in a narrower interval of uncertainty and
higher accuracy in the RUL prediction. When all the RTF data are used as an input data for ANN without mapping and aug-
mentation, not only the median fails to converge, but also the level of uncertainty does not reduce. This phenomenon implies
that utilizing all the RTF may not always bring a good result.

4.3. Crack growth under variable amplitude loading

In practice, system is not always operated under constant loading condition. The proposed algorithm is also applicable to
predicting the crack growth under variable amplitude loading conditions. Since the real data under variable loading are dif-
ficult to obtain, synthetic data of crack growth are generated using Huang’s model that addresses variable loading condition,
which is defined as follows [36]:
Fig
da
dN

¼ C DKeq b;n;rYð Þm� �� DKthf gm	 
 ð11Þ
where,m, C, DKth, b, n and rY are model parameters. DKeq is the range of equivalent stress intensity factor, considering the
effect of crack tip plasticity and crack closure after overloading. Based on the above model, six crack growth data are gen-
erated under different loading spectrums with the threshold of 0.04 m to determine the end of life. As shown in Fig. 15, the
loading block consists of a fixed minimum and nominal load, 5 MPa and 65 MPa, respectively. The amplitude of overload and
the number of cycles vary for different loading conditions. In the following numerical example, five data sets are generated
based on the configurations given in Table 4.

The results of crack growth simulation under different loading conditions are illustrated in Fig. 16. Predicting the behavior
of crack growth is considered challenging because of crack retardation period when the magnitude of overload is decreased.
Among the five data sets, dataset 3 is considered as target data, while other four datasets are used for reference data. Note
that the target dataset is located not within the reference datasets, in which case the prediction may be inaccurate in the
ordinary ANN approach than when within the reference datasets [17]. Prior to applying the proposed algorithm, the perfor-
mance of an ordinary ANN is evaluated by training all four RTF data and applying to the target data, whose results are shown
in Fig. 17. Since the crack growth rates of all training data are higher than the target data, the ANN underestimates the RUL of
dataset 3. In addition, the level of uncertainty is not reduced even if the RUL is close to the true value near the end of life.

For the purpose of dynamic time warping, the RMSE is calculated as a function of time in order to find the best reference
dataset. As shown in Fig. 18(a), it turns out that dataset 2 has the lowest RMSE and the error does not increase as the number
. 14. RUL estimation performance comparison: (a) RUL prediction with mapping and augmentation and (b) RUL prediction without mapping.



Table 4
Five simulation data description (minimum load = 5 MPa, nominal load = 65 MPa).

Data 1 Cycles 5000 10,000 25,000
Overload (MPa) (# 45 cycles) 125 100 140

Data 2 Cycles 5000 10,000 25,000
Overload (MPa) (# 45 cycles) 125 100 120

Data 3 Cycles 5000 10,000 25,000
Overload (MPa) (# 45 cycles) 125 100 110

Data 4 Cycles 4000 10,000 25,000
Overload (MPa) (# 45 cycles) 120 90 120

Data 5 Cycles 4000 8000 25,000
Overload (MPa) (# 45 cycles) 140 100 130

Fig. 15. Crack growth simulation under variable amplitude loading.

Fig. 16. Five different crack growth data under variable amplitude loading.
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of cycles increases. Fig. 18(b) shows the RUL prediction results using four different reference data sets. Since dataset 2 shows
the smallest RMSE, it also predicts the RUL best. Comparing Fig. 18(b) with Fig. 17, the proposed augmentation technique
demonstrates that it can predict the RUL better and converges much faster.
4.4. NASA battery degradation

The lithium-ion battery is a very critical part for the performance of many engineering systems, whose unexpected failure
can lead to the failure of entire system. Therefore, predicting the RUL of battery is crucial for the system safety. The proposed



Fig. 17. RUL prediction of variable amplitude load case without mapping.

Fig. 18. RUL prediction using data augmentation: (a) RMSE trend of reference data and (b) results of RUL prediction using mapped reference data.
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approach is applied to battery degradation data sets, which were obtained from data repository of NASA Ames Prognostics
Center of Excellence (PCoE). Charging in a constant current (CC) mode at 1.5A was carried out until the battery voltage
reached 4.2 V and then continued in a constant voltage (CV) mode until the charge current dropped to 20 mA. Discharge
was carried out at a constant current (CC) level of 2A until the battery voltage fell to 2.7, 2.5 and 2.2 V for batteries 5, 6,
and 7, respectively. Impedance was measured through an electrochemical impedance spectroscopy (EIS) frequency sweep
from 0.1 Hz to 5 kHz. Repeated charge and discharge cycles result in accelerated aging of the batteries while impedance mea-
surements provide insight into the internal battery parameters that change as gaining progress. The experiments were
stopped when the batteries reached end-of-life (EOL) criteria, which was a 30% fade in rated capacity (from 2Ahr to
1.4Ahr) [37]. In the field of battery prognostics, State of Health (SOH) of battery is firstly estimated which is widely used
as a measure for the battery health condition and predict RUL until it reaches to pre-defined threshold. Among several
approaches determining battery SOH, this paper defines the battery SOH as follows [38]
SOH ¼ Ci

C0
� 100% ð12Þ
where, Ci and C0 represent the degenerated capacity at i-th cycle and the initial capacity, respectively. For a normal bat-
tery, the initial capacity was 2Ahr. Fig. 19(a) shows battery degradation data sets used in this paper. Among the three data-
sets, Batteries #5 and #6 are used as the past reference datasets, while Battery#7 is selected as the current target dataset.
Note that the target dataset is located out of the two reference datasets, which can cause a difficulty in prediction. First, the
two reference data sets are used to train ANN, from which the RUL of the target dataset is predicted without mapping, whose
results are shown in Fig. 19(b). As the two reference datasets show faster degradation, the predicted RUL is significantly
underestimated and failed to converge to the true RUL. On the other hand, after applying the proposed mapping method,



Fig. 19. Application to NASA battery data sets: (a) SOH trend of Battery data sets, (b) RUL prediction without mapping, (c) RMSE trend of the two reference
datasets, and (d) RUL prediction after mapping.
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Battery #6 shows a lower RMSE (see Fig. 19(c)) than that of Battery #5, and because of this, the predicted RUL using the map-
ping path of Battery #6 is much better than that of Battery #5 as shown in Fig. 19(d), which illustrates that the degradation
trend of #7 is closer to that of #6 than #5.
5. Conclusions

Data-driven prognostics requires a lot of run-to-fail (RTF) data, which is not easy to obtain in real applications. To over-
come this difficulty of ‘data deficiency’, this paper has proposed a data augmentation technique that searches the optimally
matching with the existing reference data available from several sources: (1) scarce RTF data, (2) accelerated life test data,
and (3) RTF data under different operating conditions. The algorithm generates virtual RTF data useful for the current oper-
ation condition using the reference data by searching for the closest match. ANN model is then trained using the virtual RTF
data to predict the RUL. We have also proposed RMSE-based performance criterion to find the best RTF data among different
sets, which might represent different failure modes or different degradation characteristics. Crack growth simulation data
that are generated from Paris law and Huang model are employed to verify the effectiveness of the proposed algorithm.
In addition, the real RUL of crack growth under F-16 loading spectrum has been successfully predicted by using proposed
algorithm. Furthermore, the proposed algorithm, has been applied to the NASA battery degradation data with good accuracy.
For more practical application, future works may include the quantification of uncertainty in the virtual data to find the opti-
mum size of virtual data. In addition, exploitation of the censored data may be another issue for the RUL prediction, since the
failure occurrence is rare in the real practice.
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