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Abstract

In design under uncertainty, random distributions are often determined by expensive sampling tests. A key question is
whether to invest in more samples or live with a reduced performance by fewer samples due to large uncertainty. The
question is particularly difficult to answer when the type of distribution is unknown. This paper investigates the tradeoff
between performance and conservativeness in estimating B-basis allowables, using experiments on composite plates with
holes. Two approaches that do not require a distribution type are examined: () bootstrap confidence intervals and (2)
Hanson-Koopmans non-parametric method. Based on the study, it is found that the Hanson-Koopmans method was
more conservative than the bootstrap method because the latter penalized allowables for small-size samples. For a small
number of samples (less than 29), conservative estimations are preferred over accuracy to account for the large
uncertainty. Based on this observation, the bootstrap-assisted Hanson-Koopmans method is proposed to enhance the
conservativeness. For the tested cases, the performance penalty using the bootstrap-assisted Hanson-Koopmans method

for a small number of samples is found to be substantial.
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Introduction

In design under uncertainty, the distributions of
random variables are often determined by expensive
samples. The uncertainty related to the material proper-
ties of a composite laminate is significant and has to be
modeled properly for reliable designs.' The manufac-
turing and testing process could be expensive and
time-consuming which makes the design process more
challenging. One remedy for limited tests is to introduce
analytical models/simulations.>® Vallmajo et al.’®
proposed an uncertainty quantification and manage-
ment (UQ&M) framework based on analytical models
to compute the B-basis design allowables of notched
configurations. However, the analytical models are
not always available, and this paper focuses on experi-
mental tests only. With limited tests, a key question is
whether to invest in more samples or live with the
reduced performance by fewer samples due to large
uncertainty. Identification of the distribution/uncer-
tainty forms for statistical analysis would be also chal-
lenging with few samples.* Conservative designs are

preferred when uncertainty exists especially for safety-
critical applications such as helicopter rotor blades.’
However, the reduction in performance can be substan-
tial because sampling uncertainty is epistemic uncer-
tainty, which is usually treated more conservatively
than aleatory uncertainty. Consequently, there has
been substantial recent interest in the tradeoff between
reducing sampling uncertainty and improving perform-
ance. Picheny et al.® studied the influence of sample
sizes and target probability of failure on the conserva-
tive estimate. Bae et al.”® showed a tradeoff between
making design conservative and using more samples to
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reduce sampling uncertainty. However, they assumed
that the samples are normally distributed.

Establishing the tradeoff between the increased
sample size and reduced performance is more challen-
ging when the type of distribution is unknown. This
paper presents a lesson learned from the regulations
governing the design of composite materials used for
aircraft structures. Composite materials are widely used
for the design of various mechanical systems due to the
outstanding capability to be tailored to specific load
paths and conditions, resulting in weight efficient
designs. For example, more than 50% of the Boeing
787 airframe and the Airbus A350XWB are made of
carbon fiber composites.”

To determine the conservative strength of composite
plates, multiple coupons at the same configuration
(design) are tested. Design allowables (e.g. A- or B-
basis allowables'®!'"), which are also termed as toler-
ance intervals/limits (TI), are usually obtained from the
confidence interval of a low percentile of measured
strengths. Various methods for computing the TI of
composite material are well documented in the litera-
ture.'>'? The calculation of TI depends on the type of
distributions (e.g. normal, lognormal, and Weibull).
Young'' summarized the statistical approaches for cal-
culation of TI for discrete and continuous distributions.
When there is no clear indication of a specific type of
distribution, MIL-HDBK-17-1F'* recommends the
non-parametric method such as the Hanson-
Koopmans (HK) method."”” The non-parametric
method compensates for the lack of knowledge of the
distribution by increasing conservativeness.

Conservative allowables imply more weight, but
Bhachu'® found that the non-parametric approach is
efficient in achieving conservativeness without excessive
increase in weight, compared to methods based on
assumed distribution. Still, the HK method can fail
when the sample size (number of the replicates) is smal-
ler than a critical value, which varies with distribu-
tions."> Besides the HK method, bootstrap confidence
bounds have been used to infer design allowables with-
out specifying a statistical distribution. Cross et al.'’
estimated the confidence intervals of the crack growth
model using bootstrap confidence bound. Bigerelle
et al."®!” quantified the uncertainty in Paris law mater-
ial constant using the bootstrap. Bhachu et al.'®?° com-
pared several common approaches for fatigue crack
growth problems. Romero et al.”!"* tested the perform-
ance of the TI method, kernel density method, Johnson
method, and non-parametric method.

The TI approaches are based on rigorous mathe-
matic assumptions and work well with high variability.
However, with too small number of samples, it is diffi-
cul to identify the distribution type to apply TI. The
non-parametric B-basis approach is invalid when the

sample size is smaller than a critical value. Besides the
effort to develop statistical tools for characterizing TI,
extensive experimental studies have been reported to
understand the variation of material properties. The
world-wide failure exercises®*** provided experimental
data and benchmarks for failure criteria of composites.
The Laminate Variability Method® was proposed to
incorporate the material properties at a lamina level
to mitigate the adverse effects of limited numbers of
test coupons while computing B-basis values.
Carlsson et al>® and the Composite Materials
Handbook-17 (CMH-17)"° provided an in-depth guide-
line for systematic experimental analysis.

The B-basis allowables are often estimated from
experimental test results on limited samples (e.g. less
than 29 samples). This paper investigates the estimation
of B-basis allowables, a typical TI, from limited sam-
ples using test results obtained from the composite
laminates with a hole.?” The tests were performed at
eight configurations with 18 samples per configuration.
The eight configurations are selected by changing two
design variables: the size of the hole and the fraction of
45-degree plies in the laminates. Experimental data
were collected on open-hole-tension (OHT) strength
tests®®? following ASTM standard?’ for this study.

Two issues are investigated in this paper: (1) Are the
B-basis allowables estimated from small-size samples as
reliable as those from large-size samples? (2) What is the
weight penalty when using the design allowables from a
limited number of samples? In order to address these two
issues, two approaches are evaluated in this paper: (1)
bootstrap confidence intervals and (2) HK method. The
former does not assume an underlying probability dis-
tribution, while the latter assumes log-concave CDF
class, which is good for the distribution of composite
failure strength.

One challenge for predicting B-basis allowables is
balancing conservativeness (for a safe design) versus
performance (weight penalty). Conservative prediction
is a necessary requirement for certification by regula-
tory bodies, like the Federal Aviation Administration.
B-basis allowables are sensitive to distribution form
and sample size, which complicates the calculation.
This paper utilizes a partial set of samples (out of 18
samples per configuration) to estimate B-basis allow-
ables, from which the conservativeness and weight pen-
alty are calculated. This paper also explores the
usefulness of combining the non-parametric estimation
with bootstrapping to account for the unidentified
uncertainty and ensure better conservativeness.

The paper is structured as follows: The following
section discusses the experiments of the benchmark
OHT tests and statistics of the experimental results.
Then, the estimation of B-basis at a given configuration
with samples is detailed. ‘Estimating B-basis allowables
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of the OHT tests’ section evaluates the B-basis estima-
tions using the experimental results. In the penultimate
section, the bootstrap-assisted HK is proposed to
enhance the conservativeness from limited samples. In
conclusion, we summarize the major outcomes and
future work on the estimation of design allowables.

OHT tests
Experiments

OHT test’®?! is a benchmark test to investigate the effect
of an unfilled hole on the tensile failure strength. In this
paper, it is used to investigate the approaches to estimate
B-basis allowables. The test specimen geometry is shown
in Figure 1. The composite laminates are made from
MTM45-1 PWC2 3K PW G30-500 fabric prepregs,
and the tests were performed according to ASTM
D5766.27 The width of the specimen and the diameter
of the hole were denoted by w and D, respectively.
Two design parameters varied in the tests: the ratio
w/D and layups measured by the fraction of £45° plies
(Rys). Eight configurations are examined in the 2D vari-
able space according to Table 1. Table 2 details the test
matrix for different w/D. Table 3 lists the test matrix
for different layups quantified by the fraction of +45°
plies. Each configuration was composed of three pre-
preg batches, with each batch containing six samples.

Statistics of the experimental strengths

The test results are first examined using boxplot (see
Figure 2) and statistics (see Table 4). The means of
strengths vary between 37 and 100 ksi in different config-
urations. For a fixed Rys fraction, the strength gradually
increases with w/D ratio. For a fixed w/D ratio, the
strength gradually decreases with Rys fraction. The Rys
fractionhasamoresignificantimpact on the strength than
the w/D ratio. Configurations 2 and 7 have the smallest
strength and variation (Rys = 0.8). The standard devi-
ation (SD) varies substantially from 1.33 to 5.41 (5.41/
1.33 =4.06), whereas the coefficient of variation (CoV)
varies between 0.033 and 0.059 (0.059/0.033 =1.78).
The variation of CoV reduces noticeably compared with
SD, which indicates that SD is highly correlated with the
mean. The strengths of some samples are far from the rest,
such as the lowest sample at configuration 4 or the highest
sample at configuration 5. The outliers of experiments
have a significant impact on the statistics.>* The max-
imum normed residual test’> was recommended by
CMH-17' to detect outliers. However, no outlier was
identified for the OHT tests. Details of the maximum
normed residual test are included in Appendix A.1.
Estimation of B-basis heavily depends on the type of
distributions. Figure 3 shows the histograms of the
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Figure 1. Open-hole tension test specimen configuration and
observed failure mode.

Table 1. The test configurations in two design variables.

Points | 2 3 4 5 6 7 8

(w/DRss) (3.02) (3.0.8) (40.2) (405) (60.2) (60.5) (6,0.8) (80.2)

Table 2. w/D test matrix at a given R45.

Batches/ No. of
w (in.) D (in.) w/D replicates specimens
0.75 0.250 3 3Ix6 18
1.00 0.250 4 3x6 18
1.50 0.250 6 3x6 18
2.00 0.250 8 3x6 18

samples at different configurations. Configuration 2
showed a pattern of Weibull distribution with a heavy
tail, configurations 1 and 7 follows a bimodal, and con-
figuration 6 is close to a uniform distribution. The
Kolmogorov—Smirnov (KS) test'” was used to quantify
which continuous distribution is the best fit. The KS
test is a non-parametric test to quantify the goodness-
of-fit between a given probability distribution and the
empirical distribution of samples. The OHT samples
are tested for a normal, uniform, and Weibull distribu-
tions, but there is no single distribution that fits all
samples the best. Details of the KS tests are provided
in Appendix A.2. The normal distribution fits best for
four configurations, uniform distribution fits best at a
configuration, and Weibull distribution fits best at three
configurations. Based on the histograms and KS tests,
the non-parametric approach was selected for calculat-
ing B-basis allowables.

Estimating B-basis allowables for unknown
distributions

A design allowable is determined such that it is less
than a large portion of the population with a high
level of confidence. The B-basis allowable is a bound
that is less than 90% of the population with 95% con-
fidence, as shown in Figure 4. Two mainstream meth-
ods are examined for calculating B-basis allowables
from unknown distributions.
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Table 3. Layup test matrix at a given w/D.

R4s Layup % 0°/45°/90° Ply stacking sequence Batches/replicates No. of specimens
0.2 40/20/40 [0/90/0/90/45/-45/90/0/90/0], 3x6 I8
0.5 25/50/25 [(45/0/—45/90),], 3x6 I8
0.8 10/80/10 [45/—45/90/45/—45/45/—45/0/45/—45] 3x6 I8
110 T T i T T _i—
100 53 — § E§
ol LT § i:l ) = |
=1 -
i‘— 80 - 1
Rl = § = | :
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50 =9 —
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(w/D,R45)

Figure 2. Boxplots of tensile strength using 18 samples at eight different configurations.

Table 4. Statistics of tensile strength using |8 samples at eight different configurations.

Configuration | 2 3 4 5 6 7 8

(w/D,Rys) (3,0.2) (3,0.8) (4,0.2) (4,0.5) (6,0.2) (6,0.5) (6,0.8) (8,0.2)

Tensile strength (ksi) Mean 87.35 37.68 91.45 67.62 97.43 71.06 50.29 100.11
SD 3.54 1.33 5.41 2.70 5.19 2.84 1.67 4.90
CoV 0.040 0.035 0.059 0.039 0.053 0.040 0.033 0.048

A non-parametric approach using order statistics

CMH-17" recommended a non-parametric
approach for calculating B-basis allowables when sam-
ples do not demonstrate a clear distribution pattern
(e.g. due to a limited number of samples). The non-
parametric approach is based on the order statistics
and varies with sample size. When more than 28 sam-
ples are available, the B-basis value is the rth lowest
sample, where r varies with sample size. For example,
r equals to one when 30 samples are available. The HK
method is suggested for non-parametric estimation of
B-basis allowables with less than 29 samples. We
adopt the HK method for the non-parametric estima-
tion (Byk).

First, strength samples are ordered by magnitude;
X1y is the lowest strength, and x is the rth lowest
sample. Then, B-basis is determined by

k

X

Buk = x¢ O (1)
X(r)

where k is a factor depending on sample size. The par-
ameters r and k are found in Table 5."

B-basis allowables using bootstrap confidence
intervals

Bootstrapping®**° is a data-driven approach for statis-

tical inference and commonly used for estimating bias
and variance of a critical statistic. Various methods
have been established for finding confidence bounds
from bootstrap sampling distributions. The percentile
method determines the confidence interval for the stat-
istic of interest (e.g. 10th percentile) from bootstrapped
distributions. The bias correction approach modifies
the estimated statistic of interest by a bias to account
for the small-size samples. The bias-corrected acceler-
ated method corrects for both bias and skewness in the
distribution of bootstrap estimates. Picheny et al.’
incorporated bootstrapping for reliability analysis of a
system response. Edwards et al.*® proposed an
approach to estimate the lower percentiles of material
properties using bootstrapping. Lee et al.>’% evaluated
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Figure 3. Histograms of samples at different configurations.(a) Configuration I, (b) Configuration 2, (c) Configuration 3,
(d) Configuration 4, (e) Configuration 5, (f) Configuration 6, (g) Configuration 7 and (h) Configuration 8.

Material
properties

Estimated 10th percentile

= B-basis allowable: lower 95% C.I.

—>
Specimen configuration

Figure 4. lllustration of B-basis allowables based on samples.

and improved the accurate coverage of the bootstrap
confidence interval.

A typical bootstrapping procedure resamples (with
replacement) from the available sample set without
assuming any probability model. The distribution is
approximated by the population of existing samples.
Samples with the same size are drawn (with replace-
ment) from the population multiple times. The existing
samples are resampled with an equal chance of being

Table 5. Parameters for the non-parametric B-basis allowables
with different number of samples.

Number of samples 6 8 10 18
r 5 6 6 9
K 3.064 2.382 2.137 1.354

selected. Then, a sample statistic (e.g. mean or variance)
is calculated from each bootstrapped sample. An
empirical distribution of the statistic is obtained to
define the uncertainty. The percentile for small-size
samples is computed according to Langford.*

We adopted the bias-corrected accelerated method
which corrects the B-basis estimation for both bias
and skewness (Bpoot). The one-sided lower confidence
bound is determined by

zo + Zy

_ A—1
Booor =@ (q’ (20 T Ao + ))>

where GA*I(-) is the inverse empirical CDF of the boot-
strap sampling distribution, z, is the z-score from the

2
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standard normal distribution, z, is the bias correction,
A is the acceleration parameter, and ®(-) is the standard
normal CDF. A detailed procedure for determining the
Bioot is described in DiCiccio and Efron.*® The bias
correction zq is used to modify the confidence bounds
and to account for a limited number of samples. A4 is
the adjustment to correct for the accelerating standard
error. We used the “bootci” function in MATLAB to
predict Bpoot-

Estimating B-basis allowables of the
OHT tests

Test plan to evaluate the estimations of B-basis
allowables

We resort to the experimental results to estimate
B-basis allowables with different sample sizes. The
resampling scheme®'*' is adopted to make the most
use of experiments and investigate the B-basis estima-
tion with varying sample size. The lower 10th percentile
of B! is used as the baseline for comparison. Out of
the full set of 18 samples at each configuration, partial
samples are selected (without replacement) to examine
the performance of estimated B-basis allowables. The
B-basis allowables with k partial samples are denoted as
B®, where k=6, 8, 10. Partial sampling is repeated
Ng = 1000 times to calculate their statistics. The emplr-
ical distributions from N sets of B(}/;K and Bg?ot
used to evaluate the mean and variance of estlmated
B-basis allowables.

Two metrics are used to evaluate the margin (weight
penalty) and conservativeness. The weight penalty is
based on the assumption that the weight of the laminate
is inversely proportional to the load it carries.
Therefore, it is defined as the relative difference between
the baseline and estimated B-basis. Since there are Ny
weight penalties, the weight penalty factor (WPF) is
defined as the mean of them, as

1 Y B(ls)_B(k)

(k) __ J

WPF =¥ § 1 (—B(lg) (3)
J:

where j is the index of the resampled set. The positive
WPF indicates how much the estimate is conservative
on average.

The estimated B-basis allowables B® from partial
samples is conservative if it is smaller than the base-
line B'®. The conservativeness fraction (CF) is the
fraction of conservative B® from Ny sets of partial

resamples
Nr B8 _ B(k)
*) _
< Z ( B0 @

where H(x < 0) =0 and H(x > 0)=1. CF=1 means
that all Ny sets are conservative. Note that a good
method will have a high conservative fraction with a
low weight penalty factor. CF and WPF are calculated

using BY{(K and Bg”o)ot

Estimation of B-basis allowables from experimental
replicates

We first compared the B-basis allowables estimated
from Bg‘K and Bg:))m The baseline B-basis allowables
from all 18 samples are summarized in Table 6. Bﬂf()

18
was more conservative than the Bgogl

ations. The differences between Bg?g and

within [0.78, 2.19] ksi.

The B-basis allowables estimated from Nz = 1000
sets of partial resamples are shown as boxplots in

at all configur-

BU®

boot Varied

Figure 5. The mean values of B(HK were conservative
by 4%-20%. Another inter-

esting observation was that the mean values of Bgi))ot

compared to that of B®

boot

remained almost the same, whereas that of Bg‘%
increased gradually by a few percents as k increases.
The performance of Bg‘om and Bg% with different
sample sizes is further compared using the normalized
mean value of the B-basis estimations from Ny sets of

the resampled dataset, as

mean(S) — mean(B%) 5

std(S) 5
where mean(S) and std(S) stand for the mean and stand-
ard deviation of 18 full-set strength samples at a glven
conﬁf?’uratlon and mean(B®) is the mean of either BY)
or B{jx from 1000 resample sets. NM®) is essentially a
measure of B-basis allowables scaled by standard devi-

ations below the population mean values, which is sum-
marized in Table 7. NM%). varied within [1.82, 5.36] and
was more conservative than ngot, which was within
[0.91,

1.84]. With an increasing number of samples,
NmP

boot
servative. In contrast, NM(}/{%( decreased noticeably with

NM® =

increased gradually and B®  became more con-

boot

mcreasig samples as Ly mcereased.

The tradeoff between WPF and CF for the estimated
B-basis allowables was examined next. The means of
WPF and CF from the 1000 sets of resamples are visua-
lized in Figure 6. It is noticeable that for ngot, WPFs
were non-positive at most configurations and CFs were
less than 0.55. Bgﬁ)ot became more conservative with an
increasing number of samples. For BHK, in contrast,
WPFs were all positive between 0.07 and 0.18 for six

samples and decreased with an increasing number of



Zhang et al.

2829

Table 6. Estimated baseline B-basis allowables (unit: ksi).

Configuration | 2 3 4 5 6 7 8
(W/D,Ras) (3,0.2) (3,0.8) (4,0.2) (4,0.5) (6,0.2) (6,0.5) (6,0.8) (8,0.2)
BU® 82.17 34.53 84.12 60.81 91.38 66.26 4671 95.25
B2 80.30 33.54 81.93 58.8 89.79 64.58 45.28 94.47
(a) T T T T T T T
| mmmmm HK(right-hand) 4
100 T s oot Ciefthand) " =3 £
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= 80 i — | e -
2 1 - + |
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Figure 5. Estimated B-basis allowables from the 1000 sets of resamples. B-basis allowables are estimated from Bk and Bpoor.

(a) k=6 samples, (b) k=8 samples and (c) k= 10 samples.

samples. It means that Bg& penalized the allowables for
small-size samples by increasing WPF. CFs were much
better than that of ngot. The overall trend of CF
decreased slightly with an increasing number of samples.

Bgﬁ( at configurations 2 and 4 were of interest, as
they have the smallest CF. Em}?irical cumulative distri-
bution function (ECDF) of Bm( for the two configur-

ations are summarized in Figure 7, which is basically

the potential price to pay because of using fewer sam-
ples to estimate a B-basis. In the case of configuration
2, for example, with k=6, it was very likely to have a
B-basis less than 30ksi, but with k=10, it was nearly
impossible for a B-basis to be less than 30 ksi. For con-
figuration 4, a jump is observed around ECDF =0.55,
which is more pronounced when using 10 samples. This
jump is due to the close-to-outlier sample at
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Table 7. Normalized mean values of the B-basis estimations from 1000 sets of the resampled dataset.

Configuration | 2 3 4 5 6 7 8
(w/D,Ry4s) (3,0.2) (3,0.8) (4,0.2) (4,0.5) (6,0.2) (6,0.5) (6,0.8) (8,0.2)
B(blgot k=6 1.28 |41 1.17 1.39 0.98 1.28 1.46 091
k=8 1.38 1.64 1.25 1.6l 1.04 .4 1.68 0.95
k=10 1.42 1.84 1.29 1.83 1.09 1.5 1.83 0.97
B(,_I;,)( k=6 4.83 5.21 4.38 5.19 3.67 4.97 5.36 3.59
k=8 3.74 441 333 433 2.68 3.92 4.56 2.52
k=10 3.14 3.93 2.69 3.91 2.11 3.28 4.21 1.82

Note: Mean values are subtracted from the mean strength of the 18 samples and then divided by the standard deviation of the 18 samples.
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Figure 6. Weigh penalty factor versus conservativeness fraction from the 1000 sets of resamples. Each set of selected data has 6,8,
or 10 samples. Bk and Byoo: are adopted for B-basis estimations. (a) Estimation from 6 samples, (b) Estimation from 8 samples and
(c) Estimation from 10 samples.
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2 and (b) at configuration 4.

configuration 4, which dominates the estimation of B-
basis allowables. In Figure 2, we can see a close-to-out-
lier sample far from the other samples, which results in
the jump. When compared to the close-to-outlier
sample at configurations 3 and 5, the sample at config-
uration 4 is at the lower end of the strength values and
leads to undesirable conservativeness.

A further study is performed to investigate the
trend of decreasing CF with an increasing number of
samples for Bﬁ} BYL)( strongly depends on the param-
eters  and k as shown in equation (1). The parameters
for estimating Bg& are given in Table 5 with different
numbers of samples. The magnitude of x() might
increase or decrease and does not show a clear trend.
If we assume the x(y and x() remain the same, Bgﬁ(
increases with decreasing k. By assuming the ratio
xXmy/x@ = 0.9, an exponential function with a 0.9 base
is plotted in Figure 8. The estimations using 8 and 10
samples are close to each other compared with that of six
samples. As expected, Bg‘i( increased and became less
conservative with an increasing number of samples.
With increasing samples, x(), X and k would be stabi-
lized and B} is expected to have a reduced variance.

Bootstrap-assisted HK method for
small-size samples

Bootstrap-assisted HK Method

The Byx was originally proposed for B-basis estima-
tions using a limited number of samples and proved
to be reliable when the sample size is larger than a
critical value.'® However, the critical sample size
varies with application and the Byg might not be con-
servative for limited tests. As shown in ‘Estimating
B-basis allowables of The OHT tests’ section, although
Bk provided conservativeness in WPF, CF was less

09
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Figure 8. Plot of an exponential function with a 0.9 base.

desirable at configurations 2 and 4. The estimated
B-basis allowables could be improved further to
account for the unidentified uncertainties, such as too
small sample size, to meet the threshold. We proposed
the bootstrap-assisted HK method By pux to make the
estimated allowables with small-size samples compar-
able to those with large-size samples.

A flowchart for calculating Bpoorgk 18 shown in
Table 8. Assuming r. test coupons are available from
tests, IV, sets of samples are bootstrapped from the r.
coupons. r. samples are included for each bootstrapped
dataset allowing replacement. The B-basis allowable is
calculated for each bootstrapped dataset and results in
N, estimations, from which ECDF is developed.
The modified B-basis allowables from Byoornk 1S
defined using the lower 5th percentile of the ECDF.
The number of bootstrapped estimations N, is chosen
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Table 8. Flowchart for the Bootstrap-assisted Hanson-Koopmans method from replicates.

Step Procedure

| Obtain failure strength samples from r. test coupons (data acquisition)

Bootstrap N, sets of samples from r. coupons.

3 Calculate the B-basis allowables for each bootstrapped dataset using HK method and obtain N, estimations of
B-basis allowables
4 Develop the ECDF of the N, estimations of B-basis allowables using interpolation
5 Define the modified B-basis allowables using the lower 5th percentile of the ECDF
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Figure 9. Weight penalty factor versus conservativeness penalty factor from the 1000 sets of replicates. Each set of selected data
has 6,8, or 10 replicates. Byk and Bpor Hk are adopted for B-basis estimations. (a) Estimation from 6, (b) Estimation from 8 and
(c) Estimation from 10.
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to be large enough, so that it does not affect the quality
of the results (relatively stable estimation).

B-basis allowables of OHT tests using the
bootstrap-assisted HK method

Bpootnk 1s compared with the Byg following the test
plan in ‘Test plan to evaluate the estimations of B-basis
allowables’ section. The means of the WPF and the CF
from the 1000 sets of resamples are visualized in
Figure 9. For the estimation from six samples, CF of
Bg;( varies between 0.82 and 1.00. CF of Bfoot'HK varies
between 0.86 and 1.00, which is slightly more conser-
vative. CF at configurations 2 and 4 increased notice-
ably from 0.85 to 0.95 with increased WPF around
0.05. For the estimation from eight samples, CF of
Bg;( varies between 0.59 and 1.00. The CF of BS?OLHK
at configuration 4 increased significantly from 0.59 to

0.81. For the estimation of 10 samples, the low CF of
B\}Y) was also observed at configurations 2 and 4. The
CF of BSOOJLHK increased significantly at configuration 2
but not at configuration 4. Based on the preliminary
check, we found that the B&?LHK improved CF at the
configurations with least CF. The exception for the
B9 at configuration 4 is further discussed.

The B!? at configurations 2 and 4 are of critical
interest because they have the least CF. ECDFs of
B19 for the two configurations are summarized in
Figure 10. With six samples, ECDF of Bfo)ot_HK is con-
servative than that of Bg(. In contrast, the ECDFs
showed a clear jump with 10 samples. For configur-
ation 4, the jump is around ECDF=0.55. This jump
is due to the close-to-outlier sample, which dominates
the estimation of B-basis allowables. Bgz)ot'HK seemed
invalid when a close-to-outlier sample dominates the
B-basis estimation in the lower end.
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Conclusions

Composite materials have been routinely used in load-
bearing structures due to their outstanding capability to
be tailored to specific load paths and conditions, result-
ing in weight efficient designs. Reliable stress limits,
called design allowables, are of critical interest to
designers to balance safety, performance, and economic
value. The properties of composite laminates usually
suffer from significant variation due to the complexity
and inherent variability of the manufacturing process.
Estimating the design allowables is challenging because
of complicated failure mechanisms and the limited
number of samples.

This paper examines the estimation of B-basis allow-
ables from a limited number of samples demonstrated
in OHT strength testing experiments. The conservative-
ness and weight penalty (margin of B-basis allowables)
are evaluated for the bootstrap confidence interval
(Bboot) and HK (Bygk) methods. The experiments are
thoroughly investigated by examining the effects of out-
liers, the goodness-of-fit on different assumed statistical
distributions, and data visualization. The B-basis
allowable estimation using 18 samples (large-size sam-
ples) is used as the baseline. Partial subsets of samples
(limited number of samples) are used for evaluating
different ways of calculating the B-basis allowables
and compared with the baseline.

Based on the study, it was observed that By was more
conservative than Bpeo. The former penalized B-basis
allowables for small-size samples and incorporated the
effect of sample size better than the latter. It was also
observed that Byx was sensitive to outliers which domi-
nated the estimations of B-basis allowables. In this paper,
the bootstrap-assisted HK method (Bpoor.nk) Was pro-
posed to enhance the reliability of B-basis allowables for
small-size samples. The proposed method was especially
beneficial when only a limited number of samples are
available, yielding the least amount of conservativeness
among the methods evaluated.
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Appendix |. Outlier detection and
identification of distributions in the
open-hole-tension tests

A.l Outlier detection

The outliers of samples have a significant impact on the
statistics.”> The maximum normed residual (MNR)
test>® was recommended by CMH-17"" to detect out-
liers. A sample is identified as an outlier if the absolute
deviation from the sample mean is too large. This pro-
cedure assumes that nominal samples follow a normal
population. The MNR is defined as

|x; — mean(x)|

std(x) ©)

MNR = max
1

where x; denotes the experimental strength of r. test
coupons. mean(x) and std(x) are the mean and stan-
dard deviation of samples, respectively. The MNR is
compared to a critical value depending on the sample
size with a specific significance level. The critical MNR
for 18 samples is 2.65 using a significance level of 0.05
(95% confidence). The MNR for the OHT tests is
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Table 9. Value of the maximum normed residual (MNR) tests for the detection of an outlier.

Points | 2 3 5 6 7 8
(W/D,Ras) (3.02) (3,0.8) (4,0.2) (4,0.5) (6,0.2) (6,0.5) (6,0.8) (80.2)
MNR 1.79 2.35 1.86 2.52 2.52 .69 2.13 227

Note: The critical value to detect the outlier is 2.65.

Table 10. The p-value of the KS tests against Normal, uniform and Weibull distributions.

Points | 2 3 4 5 6 7 8
(w/D,Rys) (3,0.2) (3,0.8) (4,0.2) (4,0.5) (6,0.2) (6,0.5) (6,0.8) (8,0.2)
Normal 0.79 0.94 0.96 091 0.60 0.97 0.21 0.39
Uniform 0.63 0.16 0.43 0.02 0.0l 0.99 0.0l 0.0l
Weibull 091 0.97 0.83 0.71 0.48 0.87 0.41 0.36
Best fit Weibull Weibull Normal Normal Normal Uniform Weibull Normal

provided in Table 9. The largest two MNRs are 2.52
from configurations 2 and 4, which are smaller than the
critical value 2.65. Therefore, no outliers are detected
for the OHT tests.

A.2. Kolmogorov—Smirnov tests

Kolmogorov—Smirnov (KS) test was adopted to iden-
tify the distribution of OHT tests. The KS test is a non-
parametric test to quantify the goodness-of-fit between
a given probability distribution and the empirical dis-
tribution of samples. The p-value of KS test indicates

the probability that samples do not reject the hypothet-
ical distribution. A high p-value denotes the high prob-
ability that samples are from the hypothetical
distribution. The OHT tests are examined against
Normal, uniform and Weibull distributions. The
p-values are summarized in Table 10. The Normal dis-
tribution fits best for 4 configurations, uniform distri-
bution fits best for 1 configuration and Weibull
distribution fits best for 3 configurations. No significant
indication favors a single distribution while assuming
the experiments follow the same type of distributions at
different configurations.



