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A B S T R A C T

By adopting a Multilevel Monte Carlo (MLMC) framework, this paper shows that only a handful of costly
fine scale computations are needed to accurately estimate statistics of the failure of a composite structure, as
opposed to the many thousands typically needed in classical Monte Carlo analyses. The paper introduces the
MLMC method and provides an extension called MLMC with selective refinement to efficiently calculated
structural failure probabilities. Simple-to-implement, self-adaptive algorithms are given, and the results
demonstrate huge computational gains for two novel, real world example problems in composites performance
analysis: (i) the effects of fibre waviness on the compressive strength of a composite material and (ii) the
uncertain buckling performance of a composite panel with random ply orientations. For the most challenging
test case of estimating a 1∕150 probability of buckling failure of a composite panel the results demonstrate a
speed-up factor of > 1000 over classical Monte Carlo. In absolute terms, the computational time was reduced
from 218 CPU days to just 4.4 CPU hours, making stochastic simulations that would otherwise be unthinkable
now possible.
. Introduction

Within the aerospace manufacturing sector, where safety is
aramount, risk is quantified and reduced by heuristic safety fac-
ors and expensive programmes of empirical testing over a variety
f length scales before new designs can enter production. The high
ost of certification and the inefficiency of general safety factors has
ed to new initiatives admitting numerical simulation and stochastic
ethods for certification [1], as well as to an increasing interest

n probabilistic design [2]. Both of which provided opportunities to
emonstrate structural integrity even when experimental or statistical
ata is incomplete, offering scope to challenge conservative failure
imits and reduce design-to-manufacture time.

In complex composite manufacturing processes, uncertainty arises
rom a number of different sources, for example material variability [3],
achine tolerance [4] and process-induced defects [5–8]. Therefore,

tructural performance of a real composite component is uncertain.
his uncertainty can be explored using stochastic simulation methods,
here the effect of introducing a distribution of uncertain material
roperties and/or structural configurations can pass through a model

∗ Corresponding author at: College of Engineering, Mathematics and Physical Sciences, Exeter EX4 4PY, UK.
E-mail address: t.dodwell@exeter.ac.uk (T.J. Dodwell).

to predict the distribution of part performance. However, such a sta-
tistical analysis typically requires a large number of complex model
evaluations, and thus quickly becomes prohibitively computationally
expensive. Various techniques have been developed to reduce the
computational cost of such stochastic studies.

The traditional engineering approaches of First and Second Order
Reliability Methods (FORM/SORM) [9, Sect. 4.4] can been applied to
substantially reduce the number of simulations required in stochastic
studies. Such methods have been applied to buckling of shells with
random imperfections [10] and to composite laminates [11]. However,
they do not capture the statistical correlation of multiple failure modes;
and their accuracy degenerates significantly when random variables
have complex non-Gaussian and/or multi-modal distributions [12]. In
such cases, Monte Carlo simulation is often the only choice to guar-
antee unbiased estimates [13], and therefore numerous methods have
been developed to reduce the cost of basic Monte Carlo sampling and
averaging. Importance sampling, e.g. [9, Sect. 3.4], reduces the number
of required simulations by preferentially focussing computations near
the boundary of the failure domain. However, to identify this boundary
using a prudent choice of the importance sampling density is often not
ttps://doi.org/10.1016/j.probengmech.2020.103116
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possible for complex engineering problems, or at least can be as difficult
as the original Monte Carlo simulation itself. Similarly, separable Monte
Carlo methods [14] take advantage of the independence of different
sources of uncertainty, and the two approaches can be combined for
additional savings [15]. Sampling points can be chosen in a structured,
deterministic or pseudo-random way, leading to Quasi-Monte Carlo
Methods [16,17]. Finally, surrogates [18] are often used, e.g. Gaussian
Process Regression [19] or Polynomial Chaos [20]. However, those
methods suffer (i) when the dimension of the uncertain parameter space
becomes even moderately large, (ii) when trying to predict uncertainty
in the tails of a distribution.

This paper chooses an alternative approach that sets out to optimise
the use of a hierarchy of finite element (FE) models for Monte Carlo
simulations of composites with defects. By adopting a Multilevel Monte
Carlo (MLMC) framework, it is shown that only a handful of costly
fine scale computations are needed to accurately estimate statistics of
structural failure loads, as opposed to thousands of fine scale samples
typically needed in classical Monte Carlo analyses. The missing explo-
ration of the variability, leading to sampling error, is taken care of by
a large number of coarse simulations. Multilevel techniques [21], were
first developed by Heinrich [22], and later popularised by Giles [23]
in the context of option pricing in financial mathematics. Its huge
potential in uncertainty quantification for engineering applications was
identified by Cliffe et al. [24] where it has been motivated via a
subsurface hydrology application. Since then it has been applied to a
range of other applications [25–27], it has been improved [28,29] and
extended to allow also for experimental data to be taken into account
in a Bayesian setting [30,31].

Importantly in many engineering applications, estimating the ex-
pected load of structural failure is of limited interest, instead in design,
often the probability that the failure load is less than a ‘safe’ value is
required. Such a model has a binary output, failure (1) or no failure (0).
Thus in this paper, an extension to MLMC originally proposed by
Elfverson et al. [29] is also pursued and refined. For most samples,
using a FE error estimator it is possible to conclude from a coarse,
computationally cheap model that further model refinements will not
change the binary output. It suffices that the coarse model predicts a
load sufficiently far from the failure boundary. This extension of MLMC
is referred to as Multilevel Monte Carlo with Selective Refinement (MLMC-
R). It delivers significant further computational gains over MLMC, as
ill be demonstrated.

The aim of this paper is to describe the multilevel Monte Carlo
ethod in an abstract way to show that it can be applied to a broad

lass of problems (Section 2), before making the following novel con-
ributions in the context of the composite applications:

1. to provide an extension of the MLMC framework that signifi-
cantly accelerates the estimation of failure probabilities using
MLMC-SR (Section 3);

2. to present simple-to-implement, self adaptive, practical algo-
rithms for both MLMC (Algorithm 1) and MLMC-SR (Algorithm
2);

3. to demonstrate the MLMC framework and its extension for com-
puting failure probabilities on two novel stochastic analyses of
classical problems in aerospace composites:

Example I (in Section 4), which explores the effects of random
fibre waviness on the compressive strength of composite
material, and makes new connections with Budiansky’s
classical (deterministic) kinking model [32].

Example II (in Section 5), which studies the buckling perfor-
mance of a skin panel with uncertain ply orientations —
as far as the authors are aware, this is the first study using
MLMC for a stochastic eigenvalue problem (see also [33]
for our original results).
2

The numerical results confirm the theoretically predicted gains for both
example problems with huge – up to 1000-fold – potential speed-ups
versus standard Monte Carlo simulation. This level of speed-up brings
stochastic simulations that would otherwise be unthinkable into the
feasible range.

2. The multi-level Monte Carlo methodology

In this section the Multilevel Monte Carlo (MLMC) method, origi-
nally proposed by Giles [23], is introduced and compared to classical
Monte Carlo simulation. The section is finished by providing a simple
to implement, self-adaptive algorithm.

To describe the multilevel uncertainty quantification method, it is
assumed that there is a finite element (FE) model of a composite struc-
ture that is subject to some uncertainty in its material properties, for
example due to a defect or the misalignment of fibres. The accuracy and
the computational cost of the model is directly linked to the number
of degrees of freedom (𝑀) and thus to the resolution of the FE mesh.

ypically, for a particular application an engineer is interested in some
calar quantity of interest 𝑄 ∶= (𝐮), where (⋅) is a (nonlinear) function
f the FE solution 𝐮. In the context of the two example problems, this
s for example the expected value of the failure stress or the critical
uckling load. In cases with random defects or uncertainty, engineers
re therefore interested in estimating the expected value of 𝑄, denoted
[𝑄], or perhaps the distribution of 𝑄.

.1. Standard Monte-Carlo

In a typical Monte Carlo (MC) analysis, a large number (𝑁) of in-
ependent random realisations (or samples) of the underlying random
arameters are created. For each sample, the FE solution is computed
n a mesh with 𝑀 degrees of freedom. From this solution, the quantity
f interest 𝑄(𝑗)

𝑀 for the 𝑗th sample is evaluated. Then, the average of
hese independent samples,

̂MC
𝑀,𝑁 = 1

𝑁

𝑁
∑

𝑗=1
𝑄(𝑗)
𝑀 , (1)

is the standard Monte Carlo estimator for the expected value E[𝑄𝑀 ] of
the random variable 𝑄𝑀 .

The error in the approximation 𝑄̂MC
𝑀,𝑁 can be quantified using the

oot mean square error (RMSE), given by

𝑒(𝑄̂MC
𝑀,𝑁 ) =

(

E[(𝑄̂MC
𝑀,𝑁 − E[𝑄])2]

)1∕2
. (2)

particular advantage of quantifying the error in this way is the fact
hat the mean square error can be expanded so that

(𝑄̂MC
𝑀,𝑁 )2 = E[𝑄𝑀 −𝑄]2 +

V[𝑄𝑀 ]
𝑁

, (3)

where V[𝑄𝑀 ] denotes the variance of the random variable 𝑄𝑀 .
From this expansion two sources of error in the estimator (1) can

be identified. The first term in (3) is the square of the bias error. This
arises since one is actually interested in the expected value E[𝑄] of 𝑄,
the (inaccessible) random variable corresponding to the exact solution
without any FE error. Assuming convergence of the FE method for each
sample, it follows that

|E[𝑄𝑀 −𝑄]| ≂𝑀−𝛼 , as 𝑀 → ∞, (4)

where 𝛼 > 0 is the order of convergence.1 The particular value of
𝛼 is problem dependent, and depends in particular on the dimension
of the problem, the choice of elements, the smoothness of the model
parameters and of the functional  that defines the quantity of interest

1 Here and below, the notation 𝑎𝑛 ≂ 𝑛−𝛼 for the sequence 𝑎𝑛 means that
there are constants 𝐶1 ≥ 𝑐1 > 0 independent of 𝑛, such that 𝑐1𝑛−𝛼 ≤ 𝑎𝑛 ≤ 𝐶1𝑛−𝛼 ,
i.e. the sequence decreases with a rate of −𝛼 as 𝑛→ ∞.
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(see e.g. [34]). Thus, the approximation error can be reduced below
any prescribed (bias) tolerance (𝜖𝑏) by making 𝑀 sufficiently large.

The second term in (3) gives the sampling error since E[𝑄] is only
approximated by averaging 𝑁 samples. To ensure this term is smaller
than a (sample) tolerance 𝜖2𝑠 , it suffices to choose

𝑁 ≈ 𝑉 𝜖−2𝑠 , (5)

where 𝑉 = V[𝑄] ≈ V[𝑄𝑀 ]. Finally, choosing

2
𝑠 = 𝜃𝜖2 and 𝜖2𝑏 = (1 − 𝜃)𝜖2, for some 0 < 𝜃 < 1, (6)

the total mean square error is less than 𝜖2, for any user-provided overall
error tolerance 𝜖 > 0. Thus, in order to reduce the total error in (2) it is
necessary to increase both the number of degrees of freedom 𝑀 and the
number of samples 𝑁 . This very quickly leads to an intractable problem
when the cost to compute each sample to a sufficiently high accuracy
is high.

The cost 𝑀 to compute one sample 𝑄(𝑗)
𝑀 of 𝑄𝑀 , in terms of floating

point operations (FLOPs) or CPU time, depends on the complexity of
the FE solver. Typically it will grow like

𝑀 ≂𝑀𝛾 , (7)

for some 𝛾 ≥ 1. The rate 𝛾 is again problem dependent and affected in
particular by the dimension, the choice of elements, the sparsity of the
stiffness matrix and the solver; it is typically somewhere between 1 and
2. Combining the bounds in (4), (5) and (7), the total cost to achieve a
root mean square error 𝑒(𝑄̂MC

𝑀,𝑁 ) ≤ 𝜖 with standard MC can be bounded
by

Cost(𝑄̂MC
𝑀,𝑁 ) ≂ 𝑁𝑀𝛾 ≂ 𝜖−2−𝛾∕𝛼 , (8)

where the hidden constants are again independent of 𝑀 , 𝑁 and 𝜖.

2.2. Multilevel Monte-Carlo simulation (MLMC)

Multilevel Monte Carlo simulation (MLMC) [23,24] seeks to reduce
the variance of the estimator in (1) and thus to reduce computational
time by recursively using a hierarchy of FE models as control variants.
The standard MC estimator in the previous section was too costly
because all samples were computed to the required level of accuracy to
guarantee a sufficiently small discretisation (or bias) error. A hierarchy
of FE models is introduced by refinement of a coarse mesh as shown
in Fig. 1. Each mesh corresponds to a level 0 ≤ 𝓁 ≤ 𝐿 in our multilevel
method with 𝑀0 < ⋯ < 𝑀𝓁 < ⋯ < 𝑀𝐿 degrees of freedom,
respectively. Typically, 𝑀0 is taken to be much smaller than 𝑀𝐿, yet
how small is problem specific.

By exploiting the linearity of the expectation operator E[⋅], the
MLMC method avoids estimating E[𝑄] directly on the finest, most com-
putationally expensive, level 𝐿. Instead it estimates the mean on the
coarsest level, and corrects this mean by successively adding estimates
of the expected values of the differences 𝑌𝓁 = 𝑄𝑀𝓁

− 𝑄𝑀𝓁−1
between

subsequent levels, using the identity

E[𝑄𝑀 ] = E[𝑄𝑀0
] +

𝐿
∑

𝓁=1
E[𝑌𝓁] . (9)

The MLMC estimator for E[𝑄] is then given by

𝑄̂ML
𝑀 = 𝑄̂MC

𝑀0 ,𝑁0
+

𝐿
∑

𝓁=1
𝑌 MC
𝓁,𝑁𝓁

(10)

where the numbers of samples 𝑁𝓁 on each level are judiciously chosen
to minimise the total cost of this estimator for a given prescribed
sampling error (see below). Note that samples 𝑌 (𝑗)

𝓁 of 𝑌𝓁 require the
FE approximations 𝑄(𝑗)

𝑀𝓁
and 𝑄(𝑗)

𝑀𝓁−1
on two consecutive mesh lev-

els, i.e. two solves, but crucially both with the same random input

parameters. b

3

The cost of the MLMC estimator is

Cost(𝑄̂ML
𝑀𝐿

) =
𝐿
∑

𝓁=0
𝑁𝓁𝓁 , (11)

where 𝓁 is the cost to compute a single sample of 𝑌𝓁 on level 𝓁 ≥ 1
or of 𝑄𝑀0

on level 0. By using statistically independent samples across
all the levels, the mean square error of 𝑄̂ML

𝑀 expands to

𝑒(𝑄̂ML
𝑀 )2 =

(

E[𝑄𝑀 −𝑄]
)2 +

𝐿
∑

𝑙=0
𝑁−1

𝓁 𝑉𝓁 , (12)

where 𝑉0 = V[𝑄𝑀0
] and 𝑉𝓁 = V[𝑌𝓁], for 𝓁 ≥ 1. This leads to a hugely

reduced variance of the estimator since both FE solutions 𝑄𝑀𝓁
and

𝑄𝑀𝓁−1
converge to 𝑄 and thus

𝑉𝓁 = V[𝑄𝑀𝓁
−𝑄𝑀𝓁−1

] → 0 as 𝑀𝓁 → ∞.

Again, it can be assumed that there exists a 𝛽 > 0 such that

𝑉𝓁 ≂𝑀−𝛽
𝓁 . (13)

As for the standard MC estimator, one can ensure that the bias error
is less than 𝜖𝑏 by choosing 𝑀 =𝑀𝐿 on the finest level sufficiently large
to satisfy (4). To choose the numbers of samples 𝑁𝓁 on each of the
levels and thus to ensure that the sampling error is less than 𝜖𝑠, there is
still some freedom that can be used to minimise the computational cost
of the overall MLMC algorithm. The samples per level are chosen by a
constrained optimisation problem which minimises Cost(𝑄̂ML

𝑀 ) in (11)
with respect to 𝑁0,… , 𝑁𝓁 , subject to the constraint that the sampling
error of the multilevel estimate (9) is equal to the required tolerance,
i.e.,
𝐿
∑

𝓁=0
𝑁−1

𝓁 𝑉𝓁 = 𝜖2𝑠 .

This leads to

𝑁𝓁 = 𝜖−2𝑠

( 𝐿
∑

𝓁=0

√

𝑉𝓁𝓁

)
√

𝑉𝓁
𝐶𝓁

(14)

Thus, the total cost of computing (9) can be shown (cf. [24]) to grow
like

Cost(𝑄̂ML
𝑀 ) = 𝜖−2

( 𝐿
∑

𝓁=0

√

𝑉𝓁𝓁

)2

≂ 𝜖−2−max
(

0, 𝛾−𝛽𝛼
)

as 𝜖 → 0, (15)

where 𝛼, 𝛽 and 𝛾 are as defined in (4), (7) and (13) and 𝜖 is again the
tolerance for the total root mean square error.2 The number of levels 𝐿
has to grow with log(𝜖−1).

There are three regimes for the behaviour of the computational cost
of the MLMC algorithm:

1. If the variance 𝑉𝓁 decays faster than the inverse cost −1
𝓁 (with

respect to 𝓁), i.e 𝛽 > 𝛾, then the work on level 0, which is
proportional to 𝜖−2, dominates the total cost as 𝜖 → 0.

2. If 𝑉𝓁 decays slower than −1
𝓁 , i.e 𝛽 < 𝛾. then the work on level

𝐿 dominates the total cost as 𝜖 → 0. This cost is proportional to
𝜖−2−

𝛾−𝛽
𝛼 .

3. If 𝑉𝓁𝐶𝓁 is bounded, i.e. 𝛽 = 𝛾, then the work is spread evenly
over all levels and the hidden constant in (15) grows with 𝐿2 ≂
(log(𝜖−1))2.

By estimating 𝛼, 𝛽 and 𝛾 from the samples, as they come in, a
user can determine which regime their problem will fall in. This then
indicates the expected speed-up of MLMC when compared to standard
Monte Carlo. In practice, it is irrelevant though.

2 In practice, the values for 𝑁𝓁 need to be rounded up to the nearest integer,
ut that has no impact on the asymptotic cost as 𝜖 → 0.



T.J. Dodwell, S. Kynaston, R. Butler et al. Probabilistic Engineering Mechanics 63 (2021) 103116

2

i

T
i
s

R
f
i
m

Fig. 1. Example hierarchy of two-dimensional, quadrilateral finite element meshes for the multilevel algorithm achieved through uniform refinement.
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.3. Implementation of MLMC

In this section, the practical implementation of the MLMC algorithm
s discussed, as well as a way to compute the (optimal) values of 𝐿,
𝑀𝓁 and {𝑁𝓁}𝐿𝓁=0 ‘on the fly’ from the sample averages and the sample
variances of 𝑌𝓁 . For ease of presentation, let 𝑌0 = 𝑄𝑀0

. The presentation
is also restricted to the case of uniform mesh refinement, where the
mesh size is simply halved each time, i.e. ℎ𝓁 = 2−𝓁ℎ0, but this is not
essential [35].

The aim is to estimate E[𝑄] under a prescribed tolerance 𝜖 on the
RMSE, which is made up of two parts, the bias error and the sampling
error (3). Firstly, to estimate the bias error, 𝑀𝓁 is assumed to be
sufficiently large, so that the FE method is in the asymptotic regime
where
|

|

|

E[𝑄𝑀𝓁
−𝑄]||

|

≂𝑀−𝛼
𝓁 (16)

and the ratio of the asymptotic constants 𝑟 = 𝑐1∕𝐶1 of the asymptotic
constants in ≂ (cf. Footnote 1) is close to 1 for 𝑀 > 𝑀𝓁 .

For uniform refinement, the number of degrees of freedom on level
𝓁 is given by 𝑀𝓁 ≈ 𝑚𝓁𝑀0. For the two-dimensional numerical examples
which follow below, domains are discretised by quadrilateral elements
and thus 𝑚 = 4. It follows by the reverse triangle inequality that
|

|

|

E[𝑌𝓁]
|

|

|

= |

|

|

E[𝑄𝓁 −𝑄𝓁−1]
|

|

|

= |

|

|

E[𝑄𝓁−1 −𝑄] − E[𝑄𝓁 −𝑄]||
|

≥ |

|

|

|E[𝑄𝓁−1 −𝑄]
|

|

|

− |

|

|

E[𝑄𝓁 −𝑄]|||
|

. (17)

By noting that due to (16) E[𝑄𝑙−1 −𝑄] ≥ 𝑟𝑚𝛼 E[𝑄𝑙 −𝑄] it follows that

|E[𝑌𝓁]| ≥ (𝑟𝑚𝛼 − 1)||
|

E[𝑄𝓁 −𝑄]||
|

(18)

In the numerical experiments, the choice 𝑟 = 1 was made. This is
equivalent to the assumption above that 𝑀𝓁 is sufficiently large and
that the FE error is in the asymptotic regime. For each test case, this
assumption is verified numerically in this paper. One can of course also
choose more prudent values, such as 𝑟 = 0.9 or 𝑟 = 0.7. Rearranging (18)
and replacing |E[𝑌𝓁]| by the Monte Carlo estimate 𝑌𝑀𝐶

𝓁,𝑁𝓁
, the bias error

on level 𝓁 can be estimated by

𝓁 ∶= |

|

|

E[𝑄𝑀𝓁
−𝑄]||

|

≤ 1
𝑟𝑚𝛼 − 1

𝑌 MC
𝓁,𝑁𝓁

. (19)

The sample variance is estimated in the standard way

𝑠2𝓁 =

(

1
𝑁𝓁

𝑁𝓁
∑

𝑗=1

(

𝑌 (𝑗)
𝓁

)2
)

−
(

𝑌 MC
𝓁,𝑁𝓁

)2
≈ 𝑉𝓁 . (20)

he adaptive method is summarised in Algorithm 1. Since each sample
s independent, Algorithm 1 can be readily parallelised by distributing
amples across many processors.

emark 1. In this paper, a hierarchy of levels is created by uniform re-
inement of a coarse mesh. In this case for each random sample, via FE
nterpolation and projection, there is a unique connection between the
odels at different levels. However, to implement the MLMC approach
 g

4

Algorithm 1: Multilevel Monte Carlo Algorithm
1: Set 𝜖, 𝜃, 𝑁⋆.
2: Set 𝐿 = 0, converged = false.
3: while converged == false do
4: Compute 𝑁𝐿 = 𝑁⋆ samples on level 𝐿.
5: for 𝓁 = 0 to 𝐿 do
6: Estimate 𝑉𝓁 from samples on level 𝓁 using (20).
7: Estimate optimal number of samples 𝑁opt

𝓁 on level 𝓁 using
(14).

8: if 𝑁𝓁 < 𝑁
opt
𝓁 then

9: Compute 𝑁opt
𝓁 −𝑁𝓁 additional samples on level 𝓁.

10: Set 𝑁𝓁 = 𝑁opt
𝓁 .

11: end if
12: end for
13: Estimate bias error 𝐿 on level 𝐿 using (19).
14: if 𝐿 < 𝜖𝑏 then
15: Set converged = true
16: else
17: 𝐿 = 𝐿 + 1
18: end if
19: end while

there is no constraint that the models must be nested, or have exactly
the same input variables. For example, in an engineering application
the coarse model could be a beam/shell model of a structure, whilst
the fine model could be a full 3D stress analysis. The only constraint
is that both models must output an estimate for the same quantity of
interest 𝑄, so that the difference can be computed.

3. Multilevel Monte Carlo simulation with selective refinement for
the computation of failure probabilities

For many engineering applications, estimating the expected value
of a specific quantity is of limited interest. Instead, often it is of greater
interest to compute the probability that the failure load 𝜆, e.g. through
buckling, is less than a ‘safe’ load 𝜆⋆. Within the MLMC framework, the
quantity of interest is then the binomially distributed random variable
𝑄 = 1(𝜆 < 𝜆⋆), which takes the value 1 if 𝜆 < 𝜆⋆ and 0 otherwise.

he failure probability can then be approximated by evaluating E[𝑄] =
(𝜆 < 𝜆⋆).

For aerospace applications these probabilities are necessarily small,
nd obtaining good estimates for such rare events is difficult since, by
efinition, a large number of samples are required to observe even a
ingle case of failure. One of the main issues is that a simple binomial
istribution (𝑄 ∈ {0, 1}) loses important information on how close a
iven sample is to failing. In particular, as a function of the failure load
, 𝑄 is a step function. One proposed method for improving conver-

ence is to ‘smooth’ the quantity of interest close to the critical value
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Fig. 2. Graphical representation of MLMC with selective refinement.

Algorithm 2: Selective refinement for one sample in a failure
robability calculation.
1: Given critical load 𝜆⋆, constant 𝑟, level 𝓁, and sample number 𝑗.
2: for levels 𝑖 = 0,… ,𝓁 do
3: Compute 𝜆(𝑗)𝑖 on level 𝑖.
4: if 𝑖 > 1 then
5: if |𝜆(𝑗)𝑖 − 𝜆⋆| > |𝜆(𝑗)𝑖 − 𝜆(𝑗)𝑖−1|∕(𝑟𝑚

𝛼 − 1) then
6: Set 𝜆(𝑗)𝓁 = 𝜆(𝑗)𝑖 .
7: Exit for loop
8: end if
9: end if

10: end for
11: Evaluate failure probability functional 𝑄(𝑗)

𝓁 = 1(𝜆(𝑗)𝓁 − 𝜆⋆)

𝜆⋆ and to allow it to take intermediate values between 0 and 1 [23].
ere, however, a different approach is proposed, which combines the
rror estimator in Eq. (19) and the multilevel framework presented in
ection 2.2, motivated from an approach proposed in [29].

Following a similar calculation to (19), but now sample-wise, it
ollows that the FE error for the 𝑗th sample on level 𝓁 can be estimated
y

𝜆(𝑗)𝓁 − 𝜆(𝑗)| ≤
|𝜆(𝑗)𝓁 − 𝜆(𝑗)𝓁−1|

𝑟𝑚𝛼 − 1
(21)

with 𝑟 ≈ 1 for 𝑀𝓁 sufficiently large. Then, using again the reverse
riangle inequality

𝜆(𝑗) − 𝜆⋆| ≥ |

|

|

|𝜆(𝑗)𝓁 − 𝜆⋆| − |𝜆(𝑗) − 𝜆(𝑗)𝓁 |

|

|

|

(22)

nd it suffices to check whether

𝜆(𝑗)𝓁 − 𝜆⋆| >
|𝜆(𝑗)𝓁 − 𝜆(𝑗)𝓁−1|

𝑟𝑚𝛼 − 1
(23)

to ensure that 𝑄(𝑗)
𝓁′

= 𝑄(𝑗)
𝓁 , for all 𝓁′ ≥ 𝓁, due to Eq. (22). Thus, there

exists a sample-dependent level 𝓁𝑗 ≥ 0, such that 𝑄(𝑗)
𝓁 = 𝑄(𝑗)

𝓁𝑗
, for all

𝓁 ≥ 𝓁𝑗 . This implies that especially on the finer levels 𝓁 ≫ 0 most
samples will not have to be computed with full accuracy, if they are
sufficiently far from 𝜆⋆ (as illustrated in Fig. 2).

This selective refinement technique for MLMC is summarised in
Algorithm 2. Each sample is first computed on level 0 and then the FE

esh is selectively refined until 𝓁𝑗 is reached. Subsequent refinements
will not change the value of 𝑄(𝑗)

𝓁𝑗
thus saving valuable computational

time. The key point is that this modification simply reduces the average
cost per sample on the finer levels, whilst the original multilevel
algorithm (as described in Algorithm 1) remains unchanged.

Elfverson et al. [29] formalised the gains of MLMC with selective
refinement (MLMC-SR) over MLMC and standard MC for computing
failure probabilities. They showed that, provided |E[𝜆𝓁 − 𝜆]| ≂ 𝑀−𝛼

𝓁
and  ≂𝑀𝛾 , where  denotes the cost to compute one sample 𝜆(𝑗) of
𝓁 𝓁 𝓁 𝓁

5

𝜆𝓁 , the expected cost to compute one sample of the failure probability
functional 𝑄𝓁 on level 𝓁 using the selective refinement method (as
presented in Algorithm 2) behaves like

E
[

Cost(𝑄𝓁)
]

≂ 𝑀𝛾−𝛼
𝓁 . (24)

The order of growth, with respect to degrees of freedom 𝑀𝓁 , is shown
to be significantly reduced from the corresponding cost per sample for
the basic MLMC simulation. This is due to the fact that only a fraction of
samples are solved on their highest refinement level, with work instead
concentrated on the lower (computationally cheaper) levels.

However, there are some significant practical challenges for MLMC
that are inherited by MLMC-SR: If 𝑝+ is the probability of observing a
failure on level 𝓁 and not on level 𝓁 − 1 (i.e. 𝑌𝓁 = 1) and 𝑝− is the
probability of failure on level 𝓁 − 1 but not on level 𝓁 (i.e. 𝑌𝓁 = −1),
then 𝑝+ and 𝑝− → 0 as 𝓁 → ∞, making it extremely challenging
to estimate the mean and variance of 𝑌𝓁 accurately; in particular,
E[𝑌𝓁] = 𝑝+ − 𝑝− and V[𝑌𝓁] = 𝑝+ + 𝑝− − (𝑝+ − 𝑝−)2. In [29], the following
family of estimators for the probabilities 𝑝± are proposed to mitigate
this problem:

𝑝±𝑘 = 𝑥± + 𝑘
𝑁𝓁 + 𝑘

, for 𝑘 ∈ N0, (25)

here 𝑥± denote the numbers of samples for which 𝑌𝓁 = ±1 across
𝓁 samples, respectively. These estimators are biased for 𝑘 ≥ 1. But
hile the relative variance of the standard, unbiased estimator 𝑝+0 for
+ (i.e., with 𝑘 = 0) explodes as 𝑝+ → 0, the relative variance of the
stimators for 𝑘 ≥ 1 can be bounded such that
V[𝑝+𝑘 ]

E[𝑝+𝑘 ]
2
≤

𝑝+𝑁𝓁

(𝑝+𝑁𝓁 + 𝑘)2
< 1 (26)

(cf. [29, Sect. 7]). Large values of 𝑘 give a large bias in the estimator,
but a smaller relative variance and thus higher accuracy. In particular,
the bias of the estimator is significant if 𝑝+𝑁𝓁 ≪ 𝑘 and there are too few
samples to estimate 𝑝+ accurately. However, 𝑝+𝑘 still acts as an upper
bound in that case. The same holds true for 𝑝−𝑘 . However, an additional
worry is the possible cancellation in the final estimates of E[𝑌𝓁] and
V[𝑌𝓁], which is critical here, since these estimates are used to bound
the numerical bias and sampling error and control the stopping criteria
for the MLMC algorithm.

Remark 2. The situation is less pronounced for stochastic eigenvalue
problems with a nested hierarchy of grids, as considered in Section 5.2
below. Due to the min–max principle for eigenvalue problems [36],
𝜆(𝑗)𝓁 ≤ 𝜆(𝑗)𝓁−1. This guarantees that 𝑝− = 0 and avoids cancellation errors.

4. Example I — compressive strength of fibre composites with
random fibre misalignment

It is well established that the compressive failure of undamaged
composites is primarily governed by plastic micro-buckling (or kinking)
of the fibres [32,37], and this failure is initiated in regions of local fibre
misalignment or waviness. The classical micro-mechanical model for
the compressive strength of a composite 𝜎 given by Budiansky [32] is

𝜎 = 𝐺
1 + |𝛷|∕𝛾𝑦

(27)

where 𝐺, 𝛷 and 𝛾𝑦 are the shear modulus, fibre misalignment angle and
shear strain at failure, respectively. This idealised model (often referred
to as kinking theory) assumes the misalignment or kink of known angle
𝛷. Observations of real fibre waviness show that the misalignment 𝛷
is not a single value, but a complex random field, as seen in Fig. 3
(left). In practical applications, it is then unclear what value of mis-
alignment 𝛷 to use in (27); possible options include the root mean
square or the maximum misalignment. In fact, the compressive strength
is also a random variable, with a distribution intricately coupled with
the statistical distribution of 𝛷. Here, the uncertainty in the angle is
modelled using a spatial random field, as shown in Fig. 3 (right) and
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Fig. 3. Left: CT image showing random fibre waviness within a composite laminate. Right: Sample of random waviness field 𝛷 with 𝑁KL = 400 and covariance parameters as in
(39) below.
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parameterised by observed statistics [3]. The computational savings of
the MLMC are demonstrated by estimating the expected compressive
strength of a composite E[𝜎] with random fibre waviness modelled in
his way.

.1. A two-dimensional random Cosserat continuum model

In this example problem, a square domain 𝛺 in the (𝑥, 𝑦) plane made
up of uni-directional composite pre-preg is considered. Individual fibres
are misaligned by an angle 𝛷(𝐱) to the 𝑥-axis. This misalignment is
modelled as a random field on 𝛺. The mean and the covariance struc-
ture of 𝛷 will be inferred from measurements of fibre misalignment of
carbon fibre pre-pregs available in the literature [3]. The random field
𝛷 is characterised by a two-point exponential covariance function

𝑐(𝐱, 𝐲) = 𝑠2𝛷 exp
(

−
|𝑥1 − 𝑦1|
𝜔1

−
|𝑥2 − 𝑦2|
𝜔2

)

. (28)

The parameters 𝑠2𝛷 and 𝜔𝑖 denote the variance and correlation length
(in each direction) of the misalignment field. To generate a single
realisation of this random field, the misalignment field is modelled
using a Karhunen–Loève (KL) expansion, an expansion in terms of a
countable set of basis functions 𝜙𝑛(𝑥), parameterised by a sequence of
independent standard Gaussian random variables {𝜉𝑛}𝑛∈N, given by

(𝐱) =
∞
∑

𝑛=1

√

𝜇𝑛𝜙𝑛(𝐱)𝜉𝑛. (29)

ere, {𝜇𝑛}𝑛∈N and {𝜙𝑛}𝑛∈N are the eigenvalues and associated (nor-
alised) eigenfunctions of the covariance function (28). Note that the

igenvalues {𝜇𝑛}𝑛∈N are positive and strictly decreasing which provides
natural ordering of the importance of the contribution of each term to
(𝐱). In a computational setting it is therefore natural to truncate the
L expansion (29) after 𝑁KL terms, giving a parameterisation of the
andom field by the set of variables 𝝃 = [𝜉1, 𝜉2,… , 𝜉𝑁KL ]. Fig. 3 (right)

shows a realisation of the random field generate using the approach
described with𝑁KL = 400. For further details on random fields and their
implementation within structural applications, the reader is referred to
the classical text by Spanos and Ghanem (2003) [20] or related arti-
cle [38]. Note that it is possible to implement more complex covariance
functions, and implement them on more complex geometries, see for
example [39].

A key consideration when modelling the mechanics of such a com-
posite, is that the shear stiffness parallel to the fibres is an order of
magnitude less than the orthogonal shear stiffness; and hence, in gen-
eral, the stress state is non-symmetric, i.e. 𝜎12 ≠ 𝜎21. As a result, a finite
size element of composite carries a coupled stress (a moment per unit
area), and the fibres bend to achieve moment equilibrium. A classical
approach to capturing these internal bending effects is to model the
6

composite as a Cosserat Continuum [37,40]. Here, under plane-strain
assumptions, each material point has the conventional displacement
degrees of freedom 𝑢1 and 𝑢2 (𝑢 and 𝑣 in global coordinates), as well as
an independent (Cosserat) rotational degree of freedom 𝜃3. Under the
assumption of small deformations and rotations, this gives the small
Cosserat strain and curvature measures

𝜀𝑖𝑗 =
𝑑𝑢𝑖
𝑑𝑥𝑗

+ 𝑒𝑖𝑗3𝜃3 and 𝜅𝑖𝑗 =
𝑑𝜃3
𝑑𝑥𝑗

, (30)

where 𝑒𝑖𝑗𝑘 denotes the permutation tensor. The permutation tensor is
defined as 𝑒123 = 𝑒312 = 𝑒231 = 1, 𝑒213 = 𝑒132 = 𝑒321 = −1 and 𝑒𝑖𝑗𝑘 = 0
if any indices are repeated, e.g. 𝑒112 = 0. These strain and curvature

easures are work conjugates to the Cosserat stresses 𝜎𝑖𝑗 and coupled-
tress 𝑚𝑖𝑗 , respectively. The linear Cosserat constitutive relationships
derived in [40, Sect. 2.3]) can be expressed in matrix form as

= 𝐶 𝜀 and 𝑚 = 𝐷𝜅.

The fourth-order tensors 𝐶 and 𝐷 – identified through the double
underline but here represented as matrices – can be rotated by the
misalignment angle 𝛷(𝐱) to the global coordinate system via the trans-
ormation matrices 𝑇 𝜀𝜙(𝐱) and 𝑇 𝜅𝜙(𝐱) so that the global tensors become

̃𝜙(𝐱) = (𝑇 𝜀𝜙(𝐱))
−1 𝐶 𝑇 𝜀𝜙(𝐱) and 𝐷̃𝜙(𝐱) = (𝑇 𝜅𝜙(𝐱))

−1 𝐷 𝑇 𝜅𝜙(𝐱). (31)

The force and moment equilibrium equations for a small element of
composite, in the absence of body forces and coupling are given by
𝑑𝜎𝑖𝑗
𝑑𝑥𝑗

= 0 and
𝑑𝑚𝑖𝑗
𝑑𝑥𝑗

+ 𝑒𝑖𝑗𝑘𝜎𝑗𝑘 = 0. (32)

In our model, these equilibrium equations are subject to the Dirichlet
boundary conditions

𝑢(𝐱) = 0 at 𝑥1 = 0, 𝑢(𝐱) = 𝛥 < 0 at 𝑥1 = 𝐿, (33)

and 𝑣(𝐱) = 0 at 𝑥2 = 0 and 𝑥2 = 𝐿. (34)

To solve (32) using the FE method, the differential equations are
recast as a variational problem: Find a solution (𝐮, 𝜃3) ∈ 𝑉 2 ×𝑊 , such
that for all test functions (𝐯, 𝜁3) ∈ 𝑉 2 ×𝑊 the variational equation

∫𝛺
𝐶̃𝜙(𝐱) 𝜀(𝐮, 𝜃3) ∶ 𝜀(𝐯, 𝜁3) + 𝐷̃𝜙(𝐱) 𝜅(𝜃3) ∶ 𝜅(𝜁3) 𝑑𝐱 = ∫𝛤

𝑡 𝐯 + 𝜇𝜁3 𝑑𝐱, (35)

holds. Here, 𝑡 denote the stress traction, and 𝜇 the coupled stress
traction on the boundary of the domain 𝛤 . The spaces 𝑉 and 𝑊 are
appropriate function spaces on which the components of 𝐮 and the
Cosserat rotation 𝜃 are defined. Here, an appropriate choice is the
3
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Sobolev Space 𝐻1; that is, the space of all square integrable func-
tions with square integrable first derivatives satisfying the boundary
conditions.

To approximate (35), the domain 𝛺 is uniformly discretised into a
et of 4-node quadrilateral elements

ℎ = {𝛺(𝑖)
𝑒 }𝑛el

𝑖=1,

here 𝑛el denotes the number of elements and ℎ is the side-length of
he elements. The solution is approximated by restricting (35) to the
inite dimensional subspace 𝑉 2

ℎ ×𝑊ℎ ⊂ 𝑉 2 ×𝑊 . In these examples 𝑉ℎ
and 𝑊ℎ are chosen to be the set of piecewise bi-linear functions on ℎ,
and the corresponding approximate solutions are denoted by 𝐮ℎ and 𝜃ℎ.
As for any standard FE analysis, substitution of the approximations 𝐮ℎ
and 𝜃ℎ allows (35) to be rewritten as a linear system of the form

K𝐝 = 𝐟 (36)

where K ∈ R𝑀×𝑀 is the global stiffness matrix and 𝐟 ∈ R𝑀 is the load
ector due to the prescribed boundary conditions. The vector 𝐝 ∈ R𝑀
ontains the coefficients of all degrees of freedom in the expansions of
ℎ and 𝜃ℎ above. If 𝑛node is the total number of nodes in the grid, then
≈ 3𝑛node (taking into account boundary conditions).
From the solution 𝐝, the objective is to calculate the compres-

ive strength 𝜎𝑐 of the composite using the quadratic failure criterion
n [32]. To this end, the effective stress 𝜏𝑒 is defined in terms of the
ransverse stress 𝜎22 and the shear-stress parallel to the fibres 𝜎12, such

that

𝜏𝑒 =

√

𝜎212 +
(𝜎22
𝑅

)2
. (37)

The material parameter 𝑅 is the ratio of the transverse and shear yield
trength of the material. Failure is said to occur when the effective
tress is equal to the shear strength 𝜏𝑦 of the material.

In the results which follow, the compressive strength is estimated
by first computing 𝐝 for a prescribed compressive end-shortening 𝛥. In
order to remove the influence of boundary conditions, the maximum
value 𝑓 ∗ of 𝑓 = 𝜏𝑒∕𝜏𝑦 is then found over all integration points within
elements contained in a central square subregion 𝛺int of 𝛺, which
has area |𝛺int|. As the problem under consideration is linear, the
compressive strength 𝜎𝑐 is then given by

𝜎𝑐 =
𝑓 ∗

|𝛺int| ∫𝛺int

𝜎𝑥 𝑑𝐱. (38)

.2. Results

For the experiments that follow, material parameters for unidirec-
ional pre-preg AS4/8552 are considered, with material constants taken
rom the Hexcel Data Sheet [41]; in particular:

𝑓 = 0.59, 𝐸𝑓 = 230 GPa, 𝐸𝑚 = 9.25 GPa, 𝐺𝑓 = 95.83 GPa,

𝑚 = 5.13 GPa, 𝑑 = 7 μm and 𝜏𝑐 = 114 MPa.

The stochastic model for random misalignment is parameterised
ased on data in the literature; in particular, the measurements of in-
lane waviness in pre-preg given by Sutcliffe et al. [3] which agree
ell with other values given in [37,42,43]. However, the correlation

engths 𝜔1 and 𝜔2 in (28) are defined differently to those in [3], which
ill be denoted 𝜔⋆1 and 𝜔⋆2 in the following. There, the correlations

engths were defined as the lag at which the auto-correlation function
quals 0.1, i.e. when 𝑐(𝐱, 𝐲)∕𝜎2𝜙 = 0.1. Therefore, 𝜔𝑖 = −𝜔⋆𝑖 ∕ log(0.1).
n summary, the following values for the parameters in the covariance
unction (28) are chosen:

1 = 229𝑑, 𝜔2 = 61𝑑 and 𝑠𝛷 = 0.035 rad . (39)

Fig. 3 (right) shows a random field generated with the above
arameters. Having fixed the correlation lengths of the wrinkles, the
omain size is chosen to be 𝐿 = 2.5𝜔1. Furthermore, 𝛺int (as introduced
n (38)) is chosen to be the square subdomain centred in 𝛺 with sides
7

f length 1.25𝜔1. The coarsest finite element grid (level 𝓁 = 0) has a
esh size of ℎ0 = 𝐿∕8 (i.e. with 64 elements and 𝑀0 = 243 degrees of

reedom), and subsequent grids are generated by uniform refinement
s shown in Fig. 1. The number of KL modes is also increased with the
evels, such that 𝑁KL,𝓁 = 50 + 50𝓁.

To compare the MLMC algorithm with standard MC, it is first useful
o study how the computational cost scales with 𝓁 and to estimate
he parameter 𝛾 in (7). Averaging the measured CPU times over 100
amples for 𝓁 = 0,… , 5 leads to an estimate of

𝓁 ≂𝑀1.3
𝓁 , (40)

nd hence, a value of 𝛾 ≈ 1.3, which is used in the calculations that
ollow.

For the quantity of interest, the compressive strength 𝑄 = 𝜎𝑐 defined
n (38), the parameters 𝛼 in (4) and 𝛽 in (13) can be estimated from

series of sufficiently accurate MLMC simulations. Fig. 4 shows the
og–log plots of the estimated means and variances of 𝑄𝓁 and 𝑌𝓁 =
𝓁 −𝑄𝓁−1, for 𝓁 = 0,… , 5, with respect to the total number of degrees
f freedom 𝑀𝓁 on each level. Looking first at the behaviour of the
xpectation of 𝑄𝓁 and 𝑌𝓁 (left), one can observe that

E[𝑌𝓁] ≂𝑀−0.786
𝓁

approximately, and hence 𝛼 ≈ 0.786. The variance plot (right) implies
𝛽 ≈ 0.740, i.e.,

V[𝑌𝓁] ≂𝑀−0.740
𝓁

rom those estimates, Eq. (15) allows to predict that the cost of the
LMC simulation is expected to grow proportionally to 𝜖−2.68, whilst

he cost of the standard MC simulation should grow like 𝜖−3.64, as the
verall tolerance for the estimator 𝜖 → 0.

Fig. 5 (left) compares the computational cost of the MLMC sim-
lation versus standard MC across a range of tolerance values from
= 42.13 MPa to 3.06 MPa, corresponding to relative errors of 3%

o 0.2%. The predicted cost estimates above are well matched by
he numerical experiments: Considering the gradients of the plots in
ig. 5 (left), the costs of MLMC and standard MC can be seen to
e approximately proportional to 𝜖−2.64 and 𝜖−3.22, respectively. More
etail about the numerical results can be found in Table 1, including
he optimal numbers of samples 𝑁𝓁 across the levels as given by (14),
s well as the actual CPU times and the speed-up factors for each of
he tolerances. In particular, it can be seen that for an absolute error
f 𝜖 = 3.06 MPa the MLMC algorithm reduces the computational cost
y a factor of more than 16 over standard MC; in absolute terms, this
educes the computational time from more than 28 hours to well under
hours.

Whilst the primary aim of this paper has been to demonstrate
he computational savings of the MLMC methodology, the results also
rovide an opportunity to compare the results to theoretical and ex-
erimental work in the literature. A parameter of particular interest
s the standard derivation 𝑠𝛷 of the misalignment field, and the effect
t has on the compressive strength of a composite material. Using
he multilevel methodology (with 𝐿 = 4), Fig. 5 (right) shows the
stimated means E(𝜎𝑐 ) (blue circles) and the estimated 10th percentiles
red stars), as well as the worst cases for 8,000 samples on level 4 (red
iamonds), as functions of the standard deviation 𝑠𝛷 of the misalign-
ent field. The results are compared to the classical Budiansky ‘kinking’
odel (27) and also the Hexcel data sheet value of 𝜎∕𝜏𝑦 = 13.43 for
S4/8552. The estimates for the 10th percentile agree very well the
udiansky model for 𝑠𝛷 ≥ 2. Both models predict a significant decrease

n compressive strength with increasing variance of fibre misalignment.
iscrepancies between the two models are observed at lower variances

n misalignment angles. This suggests that small misalignment angles
re not dominated by a shear failure, but by failure in the 𝜎22 direc-
ion. Through thickness tensile failures are not accounted for in the
udiansky model [32], and therefore this is expected.
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(

t
𝛤

Fig. 4. Expected value (left) and variance (right) of 𝑄𝓁 and 𝑌𝓁 = 𝑄𝓁 − 𝑄𝓁−1 against degrees of freedom 𝑀𝓁 for Example I. The dashed lines show 𝛼 ≈ 0.786 (left) and 𝛽 ≈ 0.740
right).
Table 1
Optimal sample sizes and detailed cost comparison for MLMC vs. MC (Example I).
𝜖 𝑁𝓁 Cost (in minutes) Saving Factor

0 1 2 3 4 5 MLMC MC

3.01% 513 237 34 8 – – 0.10 0.34 3.32
0.63% 22,014 6,191 1,449 337 123 – 6.65 42.26 6.36
0.22% 240,427 67,611 15,822 3684 1347 283 103.84 1685.50 16.23
5. Example II – buckling performance of a wing skin panel with
uncertain ply orientations

In this section, a model problem to test the multilevel Monte Carlo
method with selective refinement (MLMC-SR) as described in Section 3
is presented. Here, as an illustrative example for the new methodology,
the structural performance of a wing skin panel subject to a typical
in-service load is considered.

5.1. Model setup and mathematical description

Consider a rectangular composite plate of thickness 𝑡, length 𝐿𝑥 =
636mm and width 𝐿𝑦 = 212mm, with the un-deformed mid-plane of
he plate occupying the domain 𝛺 = [0, 𝐿𝑥] × [0, 𝐿𝑦] with boundary
. The laminate is made up of 8 identical, orthotropic, composite plies

characterised by the elastic tensor 𝐶, thickness 0.8 mm and arranged
in a fully uncoupled (Winckler) stacking sequence

𝝍 = [45◦,−45◦,−45◦, 45◦,−45◦, 45◦, 45◦,−45◦].
8

The elastic ply properties, are taken from the IM7-8552 data sheet, so
that 𝐸11 = 130.0 GPa, 𝐸22 = 9.25 GPa, 𝐺12 = 5.13 GPa, 𝜈 = 0.36 and
𝐺 = 5.13 GPa.

In this example problem, the as-manufactured ply orientations are
assumed to be uncertain due to angle tolerances in the laying machine.
Therefore, a small, spatially homogeneous, random perturbation 𝜙𝑖 is
added to each pristine ply angle 𝜓𝑖, for 𝑖 = 1,… , 8. In this way, a
new ‘‘defective’’ stacking sequence, 𝝍𝑑 = [𝜓𝑑1 ,… , 𝜓𝑑8 ], is obtained. The
random angle perturbations are assumed to be normally distributed
with 𝜙𝑖 ∼  (0, 32). The standard deviation of the perturbations has
been chosen to conform with the accuracy of automated fibre place-
ment (AFP) machines in the industry. Typically, machines have an
allowable error tolerance of 5◦. Hence, in order to obtain sample
perturbations 𝜙𝑖 satisfying this error tolerance with 95% confidence,
the required standard deviation is 5◦∕1.65 ≈ 3◦ (where 1.65 = 𝑧.05 is the
critical 𝑧 value for the one-sided 95% confidence interval of a normal
distribution).

The deformation of the plate is described by the vertical displace-
ment 𝑤(𝑥, 𝑦) and rotations of the mid-plane 𝜽(𝑥, 𝑦) = [𝜃1, 𝜃2]𝑇 . The
plate is subjected to uniform, uniaxial compressive stress, whilst being
Fig. 5. (Left) Computational cost (CPU time in minutes) against relative error for standard MC (cost ≂ 𝜖−3.22) and MLMC simulations (cost ≂ 𝜖−2.64) for Example I. (Right) Normalised
compressive strength 𝜎𝑐∕𝜏𝑦 against standard deviation 𝑠𝛷 of the misalignment field.



T.J. Dodwell, S. Kynaston, R. Butler et al. Probabilistic Engineering Mechanics 63 (2021) 103116
Fig. 6. (Left) Plot of the critical buckling mode corresponding to the critical buckling load of 278.59kN for the pristine panel in Example II. (Middle) Log–Log plot of the relative
FE error in the buckling load |1 − 𝜆𝑀∕𝜆| against 𝑀 showing a convergence with order 𝛼 ≈ 1. (Right) Log–Log plot of Cost (CPU-time in seconds) against 𝑀 showing a growth
with rate 𝛾 ≈ 1.17.
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simply-supported around all boundaries. The critical buckling load for
the plate is calculated using Reissner–Mindlin (RM) plate theory, since
the advantages over Kirchhoff Plate theory are well documented [44].
This reduces the problem to a 2D problem in 𝛺, by applying classical
laminate theory (CLT) [45], which gives the laminate stiffness tensors

𝐴 =
𝐾
∑

𝑘=1
𝐶 (𝑘)(𝑧𝑘−𝑧𝑘−1), 𝐵 = 1

2

𝐾
∑

𝑘=1
𝐶 (𝑘)(𝑧2𝑘−𝑧

2
𝑘−1) and 𝐷 = 1

3

𝐾
∑

𝑘=1
𝐶 (𝑘)(𝑧3𝑘−𝑧

3
𝑘−1),

(41)

where 𝑧𝑘 is the distance from the top edge of the 𝑘th ply to the neutral
axis of the plate and where 𝐶 (𝑘) is the elastic tensor of the 𝑘th ply in
global coordinates. These homogenised tensors connect in-plane strains
𝜀 and out-of-plane curvatures 𝜅(𝜽) = 1

2

(

∇𝜽 + ∇𝜽𝑇
)

, with in-plane stress
and plate bending moments. Under the additional assumption that the
in-plane and out-of-plane behaviour are decoupled, it follows that the
in-plane stress and the moment are then given by

𝜎 = 𝑡−1𝐴 𝜀 and 𝜇 = 𝐷∗ 𝜅, (42)

respectively. Here, 𝐷∗ = 𝐷 − 𝐵𝑇𝐴−1𝐵, which conservatively knocks
down the bending resistance of the panel to account for coupling
effects.

In the absence of body forces, a moment equilibrium for the RM
plate gives the linear eigenvalue problem

∇ ⋅ (𝐷∗𝜅(𝜽)) −𝑘𝐺13(∇𝑤−𝜽) = 𝜆∇ ⋅ (𝜎∇𝑤) such that 𝑤 = 0 and 𝜇 𝐧 = 0 on 𝛤 ,

(43)

where 𝐺(= 𝐺13 = 𝐺23 = 𝐺12) is the through thickness shear stiffness and
𝑘 = 5∕6 is the shear correction (both constants). This equation is solved
using a FE method, and therefore the weak form of the eigenvalue
problem is used, such that the problem becomes: Find the smallest
(positive real) eigenvalue 𝜆 and associated (buckling) eigenmode 0 ≠
(𝜽, 𝑤) ∈ 𝑉 2 × 𝑉 such that

∫𝛺
𝐷∗𝜅(𝜽) ∶ 𝜅(𝜻) 𝑑𝐱 + 𝑘𝐺13 ∫𝛺

(∇𝑤 − 𝜽) ⋅ (∇𝑧 − 𝜻) 𝑑𝐱

= 𝜆∫𝛺
𝜎∇𝑤 ⋅ ∇𝑧 𝑑𝐱 ∀(𝜻 , 𝑧) ∈ 𝑉 2 × 𝑉 . (44)

The solutions of (44) are again approximated using piecewise bilinear
FEs on a quadrilateral mesh ℎ, such that 𝜽 and 𝑤 are interpolated
with the same shape functions {𝜙𝑖(𝐱)}

𝑛node
𝑖=1 . The matrix form of the FE

approximation of (44) is

KB𝒅B = 𝜆KG𝒅B, (45)

where KB ∈ R𝑀×𝑀 is the global stiffness matrix (related to the LHS
of (44)) whilst KG ∈ R𝑀×𝑀 is the geometric stiffness matrix (related
to the RHS of (44)). Further details of the exact FE formulation for a
similar eigenvalue problem are provided in [46].
 l

9

5.2. Comparison between MC, MLMC and MLMC-SR

Before comparing MC, MLMC and MLMC-SR for the second example
problem, first the convergence rates for the FE approximation of the
critical buckling load 𝜆, as well as the associated computational cost
(Cost) are investigated, again using uniform mesh refinement. For the
pristine stacking sequence, the buckling load converges to a value of
278.59kN. The corresponding buckling mode is shown in Fig. 6 (left).
Fig. 6 (middle) shows the convergence of the relative error in 𝜆, which
converges at a rate of 𝛼 ≈ 1 with respect to the number of degrees of
freedom 𝑀 , i.e.,
|

|

|

1 −
𝜆𝑀
𝜆

|

|

|

≂𝑀−1

and agrees with the theoretically predicted convergence rate for buck-
ling modes for this element. The scaling of the cost (CPU-time in
seconds) with 𝑀 is shown in Fig. 6 (right). The gradient of the line
shows that

(𝜆𝑀 ) ≂𝑀1.17,

i.e., a value of 𝛾 ≈ 1.17. All computations were carried out using
Matlab’s inbuilt sparse eigensolver eigs(. . . ), which is a wrap-
per to the widely used package ARPACK [47], which implements an
implicitly restarted Arnoldi method and exploits UMFPACK [48] as the
default direct solver. For this implementation the computational cost
is made up of matrix assembly for (45) and of the calculation of the
smallest eigenvalue of (45). For the size of 2D problems considered
here (𝑀 ≤ 106), the CPU-time is dominated by the matrix assembly,
which scales linearly with 𝑀 . For larger problem sizes (𝑀 > 106), the
igenvalue solve dominates the CPU-time and the value of 𝛾 can be
xpected to increase.

In this example, the aim is to estimate the probability P(𝜆 < 𝜆⋆ =
72.47 kN), which corresponds to estimating the mean value of the
uantity of interest

(𝜆) =

{

1 if 𝜆 < 𝜆⋆,
0 if 𝜆 ≥ 𝜆⋆.

(46)

he coarsest mesh (𝓁 = 0) consists of 32 × 32 elements, created by
ive uniform refinements of a single rectangular element. This level of
efinement is necessary to ensure that some failures are observed on the
oarsest level and the bias error estimate is reliable, since buckling load
nly reduces with mesh refinement due to the min–max principle [36].

Fig. 7 (top) shows again the behaviour of the expected value and of
he variance of 𝑄𝓁 and of 𝑌𝓁 , with respect to the degrees of freedom
𝓁 . From this, approximate rates 𝛼 ≈ 𝛽 ≈ 1 can be estimate, such that

[𝑌𝓁] ≂𝑀−1
𝓁 and V[𝑌𝓁] ≂𝑀−1

𝓁 . (47)

The bottom two plots in Fig. 7 are related to computational cost. The
ower-left plot compares the expected cost per sample for basic MLMC
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Fig. 7. (Top-left and top-right) Expected values and variances of 𝑄𝓁 and 𝑌𝓁 for Example II, plotted against degrees of freedom 𝑀 , respectively. The dotted lines have gradient
1. (Bottom-Left) Comparison of expected cost per sample (CPU-time in sec) for MLMC and MLMC-SR; the observed gradients of the curves are 1.17 and 0.12, respectively.

Bottom-Right) Comparison of cost (CPU-time in sec) for MLMC-SR, MLMC and standard MC, against relative error tolerance 𝜖rel; the observed gradients of the curves are −2.03,
2.28 and −3.14, respectively.
r
T
f

P

nd for MLMC with selective refinement (MLMC-SR). While the rate of
rowth for MLMC is 𝛾 ≈ 1.17, as estimated above, using (24) the growth
f the cost per sample for MLMC-SR is expected to grow proportionally
o 𝑀𝛾−𝛼

𝓁 = 𝑀0.17
𝓁 , which is a huge gain. The numerical results confirm

his clearly. The numerically observed growth is proportional to 𝑀0.12
𝓁 .

The lower-right plot shows the computational cost of the MLMC-SR
imulation versus that of basic MLMC and standard (single-level) MC,
or a range of relative tolerances 𝜖rel ≥ 3.6%. In this regime, clearly
< 𝛾 < 2𝛼, for which the cost of the MLMC-SR simulation is predicted

o grow proportionally to 𝜖−2rel in [29]. This agrees exactly with the
bserved rate. The costs of the MLMC and standard MC simulations, on
he other hand, are predicted to grow like 𝜖−2.13rel and 𝜖−3.13rel , respectively,
nd again there is good agreement with the numerically observed rates.
able 2 lists the optimal numbers of samples 𝑁𝓁 across the levels
s given by (14) for each of the methods to achieve the required
rror tolerances. The total computational costs of the simulations are
lso included. For the smallest error tolerance considered, 3.6%, the
LMC-SR simulation reduces the computational cost by a factor of

.43 compared to the basic MLMC simulation, and by a factor of 90.32
ompared to standard MC. The error is again split equally between bias
nd sampling error (𝜃 = 1∕2).

It should be noted in Table 2 that MLMC-SR leaves more of the
amples on the finer levels than MLMC, but the samples are of course
uch cheaper. In Algorithm 2, failure for each sample is computed

daptively, always starting on the coarsest level and then refining the
esh level by level. For the majority of samples, failure can already be

onclusively detected or rejected on a coarse mesh, thus significantly
educing the average cost per sample.

.3. Estimation of rare events

Finally, this section considers a much smaller failure probability of
bout 1∕150. This will push the computational demand well out of the
each of standard Monte Carlo, and demonstrate the potential computa-
ional benefits of adopting the multilevel strategies for the estimation of
10
are events, especially by exploiting the selective refinement strategy.
he same setup as above is used in this section, but with the much rarer
ailure load of 𝜆⋆ = 268 kN. In that case

(𝜆 ≤ 𝜆⋆ = 268 kN) = 0.00645 ≈ 1∕150.

However, in this case the standard multilevel approach gives rise
to somewhat of a paradox. Its success is based on the telescoping sum
(9), which requires estimating the differences E[𝑌𝓁]. However, in the
stochastic eigenvalue problem 𝑌𝓁 = 1 only if failure occurs on level 𝓁
but not on level 𝓁−1. Of course, this conditional probability is a much
rarer event than just failure occurring on level 𝓁. Thus, for the higher
levels, many more simulations are necessary to see just one case where
the two adjacent levels differ and thus 𝑌𝓁 = 1. However, with the use of
selective refinement most samples are pre-screened by coarser/cheaper
model solves; so only very rarely, when there is a discrepancy at higher
levels, expensive solves are required. Since failure is rare, most samples
of 𝜆 are sufficiently far away from 𝜆⋆ so that (23) is satisfied for a
very coarse model. For example, in the calculations below the average
computational cost of 0.239 s to compute a sample on level 2 is little
different to the 0.244 s to compute a sample on level 5.

This highlights that significant computational gains for rare events
can be achieved by using MLMC-SR with just two levels, i.e., using the
estimator

E[𝑄] ≈ 𝑄̂0 + 𝑌𝐿,0, where 𝑌𝐿,0 = 𝑄𝐿 −𝑄0.

Note however, that all levels of refinement from 0 to 𝐿 are still used
to calculate 𝑄𝐿 via the selective refinement procedure. Because of the
plateau in cost for MLMC-SR for rare events, it is less efficient to
use all levels in the estimator, yet the two level method still provides
significant variance reduction in the results to follow. However, most of
the computational gains come from the selective refinement approach.

Because of the scale of the calculations, these simulations were
distributed over 1,024 cores of Isca, University of Exeter’s supercom-
puter with about 400 nodes, each with 8-core Intel Xeon E5-2650v2
Ivybridge processors running at 2.6 GHz. The computational savings
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Table 2
Comparison of optimal number of samples 𝑁𝓁 and computational cost for MLMC-SR, MLMC, and standard
MC simulations for Example II.
𝜖𝑟𝑒𝑙 Method 𝑁𝓁 Cost (h) Saving

0 1 2 3 4 5

3.6%
MLMC-SR 26,883 16,489 10,348 5345 2407 1,029 147 –
MLMC 73,226 44,365 14,382 3754 879 189 1,097 7.43
MC – – – – – 11,897 13,341 90.32

15%
MLMC-SR 1,610 988 620 320 145 – 8.50 –
MLMC 3,523 2,135 692 181 43 – 41 4.81
MC – – – – 744 – 162 19.24
Table 3
Number of solves on each level and total computational cost to estimate a rare event in Example II, demonstrating the huge
relative savings of MLMC-SR over standard MC for a range of tolerances. The computational cost is CPU time on 1,024 cores
of the University of Exeter’s supercomputer Isca. (⋆ indicates that this calculation was only estimated due to the excessive
computational cost.).
𝜖𝑟𝑒𝑙 Method Term Solves on level Cost Saving Factor

0 1 2 3 4

4.3% MLMC-SR 𝑄̂0 3.65e5 - – – -
35.7 s 69

𝑌2,0 2.54e5 2.53e5 348 – –

MC 𝑄̂2 – - 3.18e5 – - 41min –

1.4% MLMC-SR 𝑄̂0 3.32𝑒6 – - – -
5.46min 124

𝑌3,0 2.41𝑒6 2.40𝑒6 4,268 965 –

MC 𝑄̂3 – - – 2.93𝑒6 - 11.24h –

0.2% MLMC-SR 𝑄̂0 1.63𝑒8 – - – -
4.4h 1173

𝑌4,0 1.19𝑒8 1.18𝑒8 2.19𝑒5 5.61𝑒4 8,348

MC⋆ 𝑄̂4 – - – – 1.44𝑒8 218days⋆ –
of MLMC-SR over standard MC (without selective refinement) over
a range of tolerances are summarised in Table 3. In each case, bias
and sampling error are balanced (i.e 𝜃 = 1∕2). The results show huge
computational savings across the range of tolerances. Especially for the
finest tolerance of 0.2%, the estimated savings are such that MLMC-
SR would be 1173 times faster than standard MC. More importantly,
the scale of computations is such that standard MC would take 218
days of computation, even using 1,024 cores on a supercomputer, while
MLMC-SR reduces this to a very reasonable 4.4 h. From an engineering
perspective, this scale of savings opens the opportunity to new studies
of rare events.

6. Conclusions

In this paper, multilevel Monte Carlo (MLMC) simulation has been
successfully demonstrated on two typical aerospace example problems.
From the numerical results, the advantages of MLMC over standard MC
are apparent, with huge computational savings being observed.

MLMC simulation is not limited to easy problems, and in fact the
gains are more pronounced in cases where the discretisation error is
large. A particular aim was to demonstrate the versatility of the ap-
proach, showing that the method is not restricted to problems in which
the quantity of interest is a smooth functional of the PDE solution, but
that it can readily be applied to the estimation of failure probabilities
with significant computational speed-ups.

From an engineering viewpoint, whilst the example problems are
chosen to showcase the typical gains achieved with MLMC, the physical
insight and the engineering implications of parameter uncertainty are
of independent interest in both cases. In the buckling test problem, the
numerical results show that random variations in ply angles, perhaps
unsurprisingly, increase the risk of buckling failure significantly. With
ply angles of the order typically observed in an Automated Fibre
Placement (AFP) machine (±5◦) significant variability is observed in
buckling performance. As for our numerical results on the effect of
random fibre waviness on the compressive strength of composites,
high fidelity stochastic simulations show a remarkable agreement with
11
Budiansky’s classical kinking model [32] if the misalignment angle is
taken to be the standard deviation of the misalignment random field.

Current and future research is exploring the use of sample-
dependent adaptive grids, to exploit the computational gains offered
by adaptive finite elements [35]; as well as integrating the multilevel
framework with experimental data in a Bayesian setting to quan-
tify and reduce modelling uncertainties as proposed by theoretical
methodology introduced in [31]. From an engineering application
perspective the MLMC methods set out in this paper are being applied
to nonlinear analysis where the quantities of interest include non-
smooth functionals. One such application is the classical study of
imperfection sensitivity of thin cylindrical shells under compression.
Since the models for nonlinear analysis are orders of magnitude more
expensive the development of methods which optimise sampling like
MLMC are essential.
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