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Abstract: In this article, a generalized optimality criteria method is proposed for topology opti-
mization with arbitrary objective function and multiple inequality constraints. This algorithm uses
sensitivity information to update both the Lagrange multipliers and design variables. Different from
the conventional optimality criteria method, the proposed method does not satisfy constraints at
every iteration. Rather, it improves the Lagrange multipliers and design variables such that the
optimality criteria are satisfied upon convergence. The main advantages of the proposed method are
its capability of handling multiple constraints and computational efficiency. In numerical examples,
the proposed method was found to be more than 100 times faster than the optimality criteria method
and more than 1000 times faster than the method of moving asymptotes.

Keywords: optimality criteria method; topology optimization; Lagrange multiplier

1. Introduction

In topology optimization, three optimization algorithms have been commonly used:
the optimality criteria method [1], the method of moving asymptotes [2], and the sequential
linear programming method [3]. The main reason for the popularity of these methods is
not from their performance but from their convenience. Unique characteristics of topology
optimization are that (a) each iteration of optimization requires expensive finite element
simulations, and (b) most optimization problems have a handful of performances (objec-
tives and constraints) and numerous design variables. In the case of the solid isotropic
material with penalization (SIMP) method [4], in essence, the number of design variables
is the same as the number of finite elements. Accordingly, optimization algorithms are
adopted on the basis of these characteristics.

Gradient-free algorithms, such as genetic algorithm [5], particle swarm optimiza-
tion [6], simulation annealing [7], and Nelder–Mead simplex [8], have several advantages,
as they can handle non-differentiable functions, mixed design variables, discrete feasible
space, and disconnected feasible space. Many of them mimic mechanisms observed in
nature or use heuristics. The challenge is that improving an algorithm for one class of
problems is likely to make it perform poorly for other problems [9]. In the perspective of
topology optimization, the major limitation of gradient-free algorithms is a large number of
function evaluations. Most gradient-free algorithms require tens of thousands of function
evaluations, which is impractical for expensive finite element simulations. Due to this limi-
tation, most topology optimization problems rely on gradient-based algorithms [10], even
if they have difficulty associated with local optima and noisy and discontinuous functions.

Gradient-based algorithms are efficient in finding local minima for high-dimensions
with nonlinear constraints. The algorithms use function values and their gradients at the
current design to improve the design. In general, the gradient-based algorithms are more
efficient than the gradient-free algorithms in terms of the number of function evaluations.
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However, the key ingredient is how to calculate gradient information efficiently. Since
most topology optimization problems have a small number of performances with many
design variables, the adjoint sensitivity method [11] is predominantly used against the
direct differentiation method. Another important criterion for selecting an algorithm for
topology optimization is the requirement of the Hessian matrix, which is the second-order
derivative information. The Newton method and the family of quasi-Newton methods are
developed to use Hessian information [12] or approximate it. Even if Hessian information
can accelerate convergence, the challenge is that the Hessian information is expensive to
calculate and requires a huge amount of memory to store it, which is why most algorithms
in topology optimization do not use the Hessian information. The abovementioned three
algorithms—the optimality criteria method [1], the method of moving asymptotes [2], and
the sequential linear programming method [3]—have been popular in topology optimiza-
tion because they do not require Hessian information. All three methods only require
function values and gradients at the current design. They do not require information from
the previous iteration nor the Hessian information.

Since the 99-line MATLAB code for topology optimization [13] has been published,
the optimality criteria method (OCM) has been popular. This method is powerful in the
sense that the optimality criteria are met at every iteration. The only limitation of the OCM
is that it only works with minimizing compliance with the volume fraction constraint. This
is because the gradients for the compliance and volume fraction are “almost” free. On the
other hand, the method of moving asymptotes (MMA) is a general-purpose algorithm that
can support various types of optimization problems. It is based on convex approximation
suitable for topology optimization, but its efficiency strongly depends on asymptote and
move limits [14]. In addition, for a large-scale problem, solving the MMA subproblem
can be expensive especially when multiple constraints are active. The sequential linear
programming is the conventional nonlinear optimization algorithm by linearizing the
objective and constraints using their gradient information [15]. Even if the algorithm is
simple, the linearized problem tends to converge to the corner of move limits because those
corners have the largest design change. The effort to remove those corners of move limits
turns out to be the quadratic programming subproblem.

The goal of the present article was to generalize the OCM for general-purpose topology
optimization with multiple constraints. Researchers have attempted to extend the OCM
for structural parameter optimization where the objective is to minimize the weight with
constraints on displacements, stresses, and natural frequencies [16,17]. The present article
is the extension of conventional OCM with arbitrary objectives and constraints. The key
ingredient of OCM is to iteratively update both the design variables and the Lagrange
multipliers. Due to the updating procedure, the proposed generalized optimality criteria
method (GOCM) does not satisfy the optimality criteria at every iteration; it is satisfied
when the optimization converges.

The article is organized as follows. In Section 2, the generalized optimality criteria
method is presented in the context of topology optimization. Section 3 shows the computa-
tional efficiency of the proposed method compared with the OCM and MMA, followed by
conclusions in Section 4.

2. Generalized Optimality Criteria Method
2.1. Review of Optimality Criteria Method

In this section, the conventional OCM [1] is reviewed for the purpose of developing
the GOCM in the following section. In the SIMP method, the topological density of each
element, xe, e = 1, . . . , Ne, is considered as a design variable. Then, the optimization
problem can be stated as



Appl. Sci. 2021, 11, 3175 3 of 14

Minimize c(x) =
Ne
∑

e=1
(xe)

p{de}T[ke]{de}

subject to V(x)
V0

= f
[K]{D} = {F}
xmin ≤ x ≤ xmax

(1)

In Equation (1), x =
{

x1 x2 · · · xNe

}T is the vector of design variables, c(x)
is the compliance, p is the penalization power (typically p = 3) in the SIMP method,
V(x) = ∑Ne

e=1 xeve is the material volume with ve being the volume of the element, V0 is the
design domain volume, and f is the volume fraction. [ke] is the stiffness matrix of element
e and nodal degrees of freedom (DOFs) {de}. The assembly of the element stiffness matrix
yields the global stiffness matrix [K], and that of nodal DOFs yields the global vector of
DOFs {D} [18]. The topological densities have the upper and lower bounds, xmin and xmax,
respectively. Many topology optimization problems are defined in the rectangular grid of
mesh, i.e., pixels in 2D and voxels in 3D. However, the optimization problem in Equation
(1) can also be applied to irregular grids.

In Equation (1), since the structural equilibrium [K]{D} = {F} is solved first for
given design variables, it is automatically satisfied at each design iteration. Moreover,
the side constraints, xmin ≤ x ≤ xmax, can be satisfied directly when design variables are
determined. Therefore, the optimization problem has a single compliance objective function
and a single constraint of the volume fraction. The particular optimization problem is
attractive because the sensitivity comes almost free of computation. The sensitivities of the
compliance and the volume fraction can respectively be calculated as

∂c
∂xe

= −p(xe)
p−1{de}T[ke]{de} (2)

∂V
∂xe

= ve (3)

The sensitivity of the compliance is so-called self-adjoint, which means that the adjoint
response is identical to the structural response. Therefore, no additional calculation is
required for the adjoint response. The sensitivity of the volume fraction is nothing but the
element volume itself.

The OCM can be derived by converting the constrained optimization problem in
Equation (1) into an unconstrained one by defining the following Lagrange function:

L(x, λ) = c(x) + λ(V(x)− f V0) (4)

The Karush–Kuhn–Tucker first-order optimality condition becomes{
∂L
∂x = ∂c

∂x + λ
∂V(r)

∂x = 0
∂L
∂λ = V(x)− f V0 = 0

(5)

The procedure of OCM in Bendsøe [1] is composed of two-level loops. In the inner
loop, the design variable xe is updated to satisfy the first condition in Equation (5) for a
given Lagrange multiplier λ. In the outer loop, the Lagrange multiplier is updated to satisfy
the volume fraction constraint. More specifically, the OCM changes the design variable
in such a way that the first equation in Equation (5) becomes zero. For that purpose, the
following scale factor is defined for each element:

De = −
∂c(x)
∂xe

λ
∂V(x)

∂xe

(6)
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Since the optimality condition is satisfied when the objective sensitivity is equal and
opposite of constraint sensitivity multiplied by the Lagrange multiplier [15], the first
equation in the optimality condition is satisfied when De = 1. The idea of OCM is to
change design variables based on the scale factor as

xnew
e = xold

e
√

De, xmin
e ≤ xnew

e ≤ xmax
e (7)

The design would not be changed when De = 1 because the optimality condition
is already satisfied. When De < 1, it means that increasing design xe is less efficient
in decreasing the compliance than increasing the volume. In this case, therefore, it is
better to reduce xe. When De > 1, the opposite is true, and the design variable should
increase. In addition, since it is not preferred to change a design significantly in one
iteration, the maximum change in design ∆xmax is also imposed. Figure 1 illustrates the
possible ranges of design change. Starting from the current design xe, the first case is when
[xe − ∆xmax, xe + ∆xmax] ⊂ [xmin, xmax]. In this case, the design can be changed within the
maximum change. The second case is when xe − ∆xmax < xmin. In this case, the design can
be changed in [xmin, xe + ∆xmax]. When xe + ∆xmax > xmax, the design can be changed in
[xe − ∆xmax, xmax].
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In the outer loop, the Lagrange multiplier is determined to satisfy the volume fraction
constraint. The Matlab implementation of the 99-line topology optimization code [13] used
a bisection method to find the Lagrange multiplier. Starting from the lower and upper
bounds [0, 100,000] of the Lagrange multiplier, the range is halved every iteration of the
outer loop, and the Lagrange multiplier takes the value in the middle of the range. With
the current Lagrange multiplier, if the constraint is positive, V(x) − f V0 > 0, then the
upper half of the range is used in the next iteration; otherwise, the lower half is used. This
bisection process is repeated until the range becomes less than a convergence tolerance.

For the purpose of generalizing the OCM, three obstacles must be overcome. The first
obstacle is the compliance objective and the volume fraction constraint. First, the sensitivity
of volume in Equation (3) is constant and independent of design. In addition, the sensitivity
of compliance in Equation (2) can be calculated once the structural equilibrium is solved for
{D}. Therefore, this particular combination of the objective and constraint has the almost
free computation of sensitivities. However, the procedure cannot be generalized when
there is more than one constraint.

The second obstacle is the assumption of sensitivities. In Equation (6), the OCM
algorithm assumes that the objective derivative is negative and the constraint derivative
is positive. This is true with the compliance objective and the volume fraction constraint.
From Equation (2), the quadratic form {de}T[ke]{de} of a positive semi-definite stiffness
matrix is always non-negative. Therefore, the compliance sensitivity in Equation (2) is
always negative or zero. On the other hand, the volume fraction sensitivity in Equation (3)
is constant and positive. In general optimization problems, it is possible that the objective
may have a positive sensitivity for some designs, while a negative sensitivity for others. In
particular, when there exists a design-dependent load, such as gravity, the sensitivity of
compliance can be negative for some elements. Therefore, the design update formula in
Equation (7) cannot be used as it is.
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The third obstacle is the computational cost related to finding the Lagrange multiplier.
As mentioned before, the Lagrange multiplier is determined through the bisection method,
which requires hundreds of outer-loop iterations. When the number of design variables is
large, this process can take a lot of computational time. The same is true for the method
of moving asymptotes (MMA), where solving the MMA subproblem can be expensive
especially when multiple constraints are active.

2.2. Generalized Optimality Criteria Method

The generalized optimality criteria (GOCM) method for topology optimization extends
the capability of the OCM to multiple inequality constraints, possibly with improved
computational efficiency. The general idea of OCM has been available for a long time in
parameter optimization, albeit it was limited to minimizing weight with displacements,
stresses, and natural frequencies [16,17]. The basic idea is to solve the Karush–Kuhn–Tucker
condition, which is the necessary condition for optimization. The general optimization
problem can be defined as

Minimize f (x)
subject to gi(x) ≤ 0, i = 1, . . . , NC

[K]{D} = {F}
xmin ≤ x ≤ xmax

(8)

Even if a single objective function and only less-than-or-equal-to-type inequality con-
straints are used, it can easily be generalized to multiple objective functions with weighted
sum and other types of constraints. In the following derivations, it is assumed that both
the objective and constraints are normalized using the initial value and constraint bounds.
For example, in the case of stress constraint given as σ(x) ≤ σmax can be normalized as
g(x) = σ(x)/σmax − 1 ≤ 0. In the case of the objective function, it can be normalized using
the initial value.

In general, the constrained optimization problem can be converted into an uncon-
strained optimization problem using either the Lagrange multiplier method or penalty
method. In the Lagrange multiplier method, the Lagrange function is defined by combining
the objective function and constraints using Lagrange multipliers as

minimize L(x, λ, s) = f (x) +
NC

∑
i=1

λi(gi(x) + s2
i ) (9)

where λi is the Lagrange multiplier corresponding to constraint gi. si is called a slack
variable, which is not zero when the constraint is inactive (i.e., less than zero).

The necessary condition for optimum is when the Lagrange function is stationary, i.e.,
its derivatives are zero. Since the Lagrange function has three variables, it is differentiated
by all three variables as

∇x f (x) +
NC
∑

i=1
λi∇xgi = 0

gi(x) + s2
i = 0, i = 1, . . . , NC

λisi = 0

(10)

where ∇x = ∂/∂x is the column vector of gradients. Due to the complementary slackness
(i.e., switching condition), λisi = 0, only the active constraints need to be considered in the
necessary condition.

Since the second and third equations in Equation (10) are satisfied by identifying
active constraints, the process of GOCM is to solve the first part of Equation (10). At
an optimum design, the objective sensitivity can be represented by a linear combination
of active constraint gradients. The coefficients in the linear combination are indeed the
Lagrange multipliers. Since the Lagrange multipliers, λi, and design variables, x, are
coupled, they have to be solved simultaneously. The challenge is that solving the nonlinear
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equation is computationally intensive and difficult due to numerical instability. The initial
implementation of OCM by Sigmund [13] has a double-loop method, where the inner
loop calculates the design variable, while the outer loop calculates the Lagrange multiplier.
When multiple constraints are active, however, it would require multiple levels of loops to
calculate the coupled equations.

The novel idea of the proposed GOCM is that the Lagrange multipliers do not have
to satisfy Equation (10) at every iteration. Therefore, no iterative bisection is required to
find the Lagrange multipliers. Instead, the Lagrange multipliers are updated at every
optimization step so that when the optimization is converged, the necessary condition in
Equation (10) is satisfied. Patnaik et al. [16] proposed several methods of updating the
Lagrange multiplier. Table 1 summarizes the three updating schemes. In the table, p0 is the
initial value of an update parameter, and α is an acceleration parameter used to modify the
update parameter. Patnaik et al. [16] suggested p0 = 0.5 and α = 1.0.

Table 1. Lagrange multiplier update formulas.

Updating Methods Updating Formulas

Linear form λk+1
i = λk

i (1 + αk p0gi)

Exponential form λk+1
i = λk

i (gi)
αk p0

Inverse form λ = [∇xgT∇xg]−1{∇xgT∇x f
}

In this article, the updating algorithm of the Lagrange multiplier is composed of
two steps: (a) initial estimate and (b) update during iteration. First, the initial values of
Lagrange multipliers are estimated using the inverse form in Table 1. However, it would be
computationally complicated to calculate the inverse of the constraint gradient matrix, and
it would be unnecessary as it provides the initial estimate. Instead, the uncoupled version
of the inverse form is used for the initial estimate as

λi = −
∇x f T∇xgi

∇xgi
T∇xgi

(11)

The above estimate works well in most cases except when either the objective gradient
or constraint gradients are zero or too small. In the optimization problem formulation, the
objective function and constraints are normalized to the initial value and/or constraint
limit. Therefore, the initial value of λi = 1 is a good starting point when ∇x f + λ∇xg ≈ 0.

The basic concept of GOCM is when the constraint is violated, the Lagrange multiplier
needs to increase, while it is decreased when the constraint is inactive. Therefore, a simple
updating formula would be λk+1

i = λk
i (1 + gk

i ). In this simple formula, the Lagrange
multiplier increases when the constraint is positive (i.e., the constraint is violated) or it
decreases when the constraint is negative (i.e., the constraint is inactive). This simple
algorithm can cause some problems when the constraint violation is not recovered quickly,
or the constraint is inactive for many steps. For example, if the constraint is violated a
lot and stays violated for many steps, then the Lagrange multipliers can increase too fast.
Therefore, it would be necessary to include the effect of change in constraint. In the article,
the following updating rule is proposed for the Lagrange multiplier:

λk+1
i = λk

i [1 + p0(gk
i + ∆gk

i )] (12)

where p0 is the update parameter similar to those used in Table 1. The update parameter
can have a positive value when both the sign of gk

i and ∆gk
i are the same. A more complex

scheme can also be used, as shown in the Matlab code in Section 3.
The updating algorithm in Equation (12) is applied (a) when the current constraint is

violated and the constraint increases from the previous step or (b) when the current con-
straint is inactive and the constraint continues to decrease. In order to make the updating
process stable, the maximum change of the Lagrange multipliers is used. Moreover, the
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Lagrange multipliers are limited to change within the lower- and upper-bounds. Since all
constraints are normalized by their bounds, the magnitudes of the Lagrange multipliers
are in a similar order of magnitude.

In the theory of Lagrange multiplier, it is well known that it is zero when the constraint
is not active, while it is positive when the constraint is active. That means, it is unnecessary
to consider the Lagrange multiplier for inactive constraints and only active constraints are
considered in the optimization. However, from a practical point of view, it is difficult to
turn on and turn off constraints during optimization. Therefore, in the implementation,
all constraints and Lagrange multipliers are retained. Then a constraint is inactive, the
corresponding Lagrange multiplier will converge to its lower bound, which reduces its
effect on the optimality criteria.

Once the Lagrange multipliers are updated, the next step of GOCM is to update design
variables. When the optimization problem is composed of the compliance objective and
volume fraction constraint, the scale factor De in Equation (6) is used to update design
variables. This updating algorithm is based on the assumption that that the objective
sensitivity is negative, while the constraint sensitivity is positive. Similar algorithms for
design variable update were available in Patnaik et al. [16], which are summarized in Table
2. All the formulas are based on the scale factor defined as

De = −

NC
∑

i=0
λi

∂gi
∂xe

∂ f
∂xe

(13)

Table 2. Design variable update formulas.

Methods Formulas

Linear form xk+1
e = xk

e [1 + (De − 1)/(βkq0)]

Exponential form xk+1
e = xk

e D1/(βkq0)
e

Reciprocal form xk+1
e = xk

e /[1− (De − 1)/(βkq0)]

Making De = 1 is equivalent to the stationary condition of Karush–Kuhn–Tucker
condition in Equation (10). The two acceleration parameters in Table 2 are suggested to be
q0 = 2.0 and β = 1.0.

In order to consider the general objective and constraints, we need to modify the
scale factor in Equation (13). For a given design variable (i.e., element), the scale factor is
calculated on the basis of the sign of sensitivities. The numerator has all terms with negative
sensitivities, while the denominator has all terms with positive sensitivities. Accordingly,
the scale factor is calculated as

De = −

〈
∂ f
∂xe

〉
−
+

NC
∑

i=1
λi

〈
∂gi
∂xe

〉
−〈

∂ f
∂xe

〉
+
+

NC
∑

i=1
λi

〈
∂gi
∂xe

〉
+

(14)

where 〈a〉− = min(0, a) and 〈a〉+ = max(0, a). When De = 1, this formula will also satisfy
the stationary condition of the Lagrange function. The only difference is that the original
formulation calculates the scale factor on the basis of the ratio between objective sensitivity
and the weighted sum of constraint sensitivities, while the proposed method uses the ratio
between the positive and negative sensitivities. In the case of compliance objective and
volume fraction constraint, Equations (6), (13), and (14) yield the identical scale factor.

In some special situations, the scale factor needs to be modified. If the numerator
and/or the denominator are zero, the scale factor needs to be limited so that it stays close to
one. Moreover, De is scaled such that the design change in each iteration is less than ∆xmax.
Once the scale factor is determined, Equation (7) is used to update the design variable.
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3. Numerical Comparisons

In this section, the performance of the proposed GOCM algorithm is compared with
the conventional algorithms, OCM and MMA. The first example is a direct comparison
with the OCM using Sigmund’s 99-line Matlab code. The other examples are numerical
comparisons with OCM and MMA using Autodesk Nastran.

3.1. Comparison with OCM

Since GOCM is directly related to OCM, it would make sense to compare the perfor-
mance between the two. In this section, GOCM is implemented in the 99-line Matlab code.
Although GOCM can handle different objectives and multiple constraints, this comparison
is purely based on the compliance objective with volume fraction constraint.

In order to have an objective comparison, we modified the function OC (optimality
criteria) to GOC for the purpose of GOCM.

%%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%%%%%%%%%
function [lmid,gl,xnew] = GOC(nelm,volfrac,lmid,gl,x,dc)
eps = 0.05; move = 0.2;
g = sum(sum(x))/(nelm*volfrac) − 1;
dg = g − gl; gl = g;
if (g > 0 && dg > 0) || (g < 0 && dg < 0), p0 = 1.0;
elseif (g > 0 && dg > −eps) || (g < 0 && dg < eps), p0 = 0.5;
else, p0 = 0;
end
lmid = lmid*(1 + p0*(g + dg));
xnew = max(0.001,max(x −move,min(1.,min(x + move,x.*sqrt( − dc./(lmid/nelm))))));

In the code, lmid is the Lagrange multiplier with an initial value of 1.0, and gl is the
normalized volume fraction constraint at the previous iteration, with an initial value of 0.0.
These values are calculated in the GOC function and returned to the main program. The
algorithm calculates the scale factor p0 using the normalized constraint, g, and its change,
dg. In the main code, the sensitivity is scaled by the initial value of the compliance as
dc = dc/f0, where f0 in the initial value of the compliance. In the same way, the sensitivity
of the normalized volume fraction constraint becomes 1/nelm, where nelm is the number
of design variables or the number of elements.

Figure 2a shows half of the MBB-beam that was used in Sigmund [13]. The design
domain size is 100 × 50, with the volume fraction constraint of 0.5. Accordingly, the
following Matlab command-line is used to launch the topology optimization solver:

top(100,50,0.5,3.0,1.5)

Figure 2b,c show the optimum designs from the OCM and GOCM algorithms, respec-
tively, starting from the design domain and boundary conditions given in Figure 2a. Even
if the two optimum designs are slightly different, they are very similar. The optimum objec-
tive functions (compliances) were found to be 79.18 (OCM) and 79.05 (GOCM). Therefore,
GOCM found slightly smaller compliance than OCM. The number of optimization itera-
tions is significantly different in that the OCM converged in 375 iterations, while GOCM
in 166 iterations. However, this was the case in the specific example; other examples may
have a different outcome. The major difference comes from the computational time for
solving the optimality criteria. In order to have a fair comparison, we used Matlab tic and
toc commands before and after calling the OC function. Since OCM takes more iterations,
only the time up to 166 iterations were calculated. It turned out that the computational time
of OCM took 10 times longer than that of GOCM. This is expected because OCM needs the
bisection method to find the Lagrange multiplier, which normally requires hundreds of
iterations, while the GOCM does not have any iteration.
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Figure 2. Design domain and optimum designs of a cantilevered beam.

Figure 3 shows the optimization histories for OCM and GOCM for the first 80 iterations.
Both methods showed a similar convergence trend, but the OCM showed smooth variation
because it enforced the equality constraint at every iteration. The OCM maintained g(x) = 0
throughout all iterations, while the GOCM oscillated the positive and negative values until
it was stabilized after the 50th iteration. The Lagrange multiplier was converged to 0.6166
(OCM) and 0.6126 (GOCM). This example shows that GOCM and OCM showed a similar
optimization trend. However, the GOCM showed oscillation in early design but converged
much faster. In addition, the design updating process of GOCM was 10 times faster than
that of OCM.
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It is noted that the volume fraction constraint allows only 9% of the material; there-
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3.2. Performance Comparison with OCM and MMA

The next example is the gripper-arm model, as shown in Figure 4a. The design domain
of 127.6 × 43.1 × 10.3 mm3 was modeled by 135× 46× 11 ≈ 68, 000 elements. All nodes
on the two holes were fixed, and a total of 222.41 N force was uniformly distributed on the
upper-right edge as shown in the figure. For material, stainless steel 426 L was used with
Young’s modulus of 193 GPa and Poisson’s ratio of 0.25.
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In order to have a comparison using all three optimization algorithms, the optimization
problem still uses the minimization of the compliance with volume fraction constraint, i.e.,
single objective and single constraint. Therefore, the optimization problem is defined as

Minimize c(x) =
Ne
∑

e=1
(xe)

p{de}T[ke]{de}

subject to V(x)
V0
≤ 0.09

[K]{D} = {F}
xmin ≤ x ≤ xmax

(15)

It is noted that the volume fraction constraint allows only 9% of the material; therefore,
most materials will be removed. The OCM uses the equality constraint, but both MMA and
GOCM use the less-than-or-equal-to type constraint. Since the volume fraction constraint
is active at the optimum design, both formulations would be identical.

The optimization problem was solved using Autodesk Nastran 2020 (Autodesk Inc.,
San Rafael, CA, USA) [19]. At each optimization iteration, using the current design
variables, Autodesk Nastran calculated the structural responses, adjoint loads, adjoint
responses, and sensitivity of objective and constraints. Then, using this information, the
optimization algorithm calculated new design variables. This iteration was repeated until
the convergence criteria were satisfied.
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Figure 4b–d shows the optimum designs using three algorithms. Even if the optimum
designs were slightly different, the objective and constraint were close to each other,
as shown in Table 3. The MMA algorithm tended to make smaller features than other
algorithms, but this could be different if the optimization problem started from different
initial densities. This was the fundamental limitation of gradient-based optimization,
wherein only local optima could be found. An important distinction could be observed
in computational times in the last two columns of Table 3. The total time is the time in
seconds to solve the optimization problem, while the algorithm time is the time that is
used in the optimization algorithm. While the MMA took 21% of computational time, the
OCM and GOCM took 6% and 0.02%, respectively. The history of the compliance objective
displayed in Figure 5 shows that the OCM showed a smooth variation of the objective,
but none of the methods provided a monotonic change of the objective. In this particular
example, both OCM and MMA converged to the optimum design from the feasible domain,
while GOCM converged from the infeasible domain. It is also noted that the optimization
history of MMA and GOCM showed a saw-tooth type pattern, which was not related to
the optimization algorithm. Rather, it was related to the progressive increase of the penalty
parameter in the SIMP algorithm.

Table 3. Comparison of optimum designs using different optimization algorithms.

Algorithm Iteration Compliance Volume Fraction Total Time (s) Algorithm Time (s) Algorithm/Total Time (%)

OCM 102 1.728 × 10−2 0.09 554 33.16 6.0
MMA 102 1.710 × 10−2 0.09 788 166 21.0

GOCM 102 1.741 × 10−2 0.09 566 0.10 0.02
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3.3. Performance Comparison for Multiple Constraints

In this section, an optimization problem with multiple constraints is used to compare
the performance of different algorithms. As mentioned before, when multiple constraints
are present, the OCM cannot be used. Therefore, only MMA and GOCM algorithms can be
used. The same gripper-arm model in the previous section was used for the comparison of
MMA and GOCM when there were multiple constraints. The design optimization problem
is defined as
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Minimize c(x) =
Ne
∑

e=1
(xe)

p{de}T[ke]{de}

subject to V(x)
V0
≤ 0.09

(σvM)max ≤ 4.5× 107

umax ≤ 0.0001
vmax ≤ 0.0001
wmax ≤ 0.0001

[K]{D} = {F}
xmin ≤ x ≤ xmax

(16)

The compliance objective and volume fraction constraint are identical to the previous
example. In addition, the maximum von Mises stress and the maximum displacement
constraints were added. For the maximum von Mises stress, the aggregated P-norm stress
was used [20]. For the displacement constraints, a similar P-norm was used to calculate the
maximum displacement in each coordinate direction.

Figure 6a,b shows the optimum geometry using GOCM and MMA algorithms, re-
spectively. Both methods took 102 iterations to converge, as shown in Table 4. In this
optimization problem, GOCM found an optimum design whose compliance was about 8%
less than that of MMA. Among five inequality constraints, the volume fraction, maximum
y-displacement, and maximum von Mises stress were active at the optimum design. The
MMA algorithm took 32% of the total time. Considering that the remaining 68% of the time
was used for calculating structural response, adjoint load, adjoint response, and adjoint
sensitivity, the optimization algorithm took a significant portion of the time. Compared to
the MMA, the GOCM algorithm took a fraction of a second, which provides a significant
advantage over MMA. It is interesting to note that the MMA algorithm became compu-
tationally expensive when constraints became active. As shown in Figure 7, initially the
MMA algorithm took about 1.5 s for each iteration, but after the 40th iteration, it took
about 15 s for each iteration, where constraints became active. This is because the MMA
subproblem can be expensive when multiple constraints are active.
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Table 4. Comparison of optimum designs with multiple constraints.

Algorithm MMA GOCM

Iteration 102 102
Compliance 1.855 × 10−2 1.709 × 10−2

Volume fraction 0.09 0.09
Displacement (y) 1.0 × 10−4 0.96 × 10−4

Stress 4.5 × 107 4.3 × 107

Total time (s) 2541 1580
Algorithm time (s) 820 0.15

Algorithm/total time (%) 32.3 0.01
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4. Conclusions

In this article, a new topology optimization algorithm, the generalized optimality
criteria method (GOCM), was proposed. It is based on the conventional optimality criteria
method (OCM), wherein both Lagrange multiplier and design variables are updated. The
main difference is that the proposed method can have multiple inequality constraints,
while the OCM can only support a single constraint (e.g., volume fraction). The Lagrange
multipliers were updated on the basis of the constraint violation and constraint change.
Then, the design variables were updated toward the direction to satisfy the optimality cri-
teria. Therefore, constraints may not have been satisfied during the optimization iteration,
but they were satisfied upon convergence. Numerical examples showed that the proposed
method was faster than the OCM and the method of moving asymptotes (MMA). In the
case of a MATLAB-based 2D model with 5000 design variables, GOCM was 10 times faster
than OCM. In the case of the gripper-arm model (68,000 elements), GOCM was more than
1000 times faster than MMA and 330 times faster than OCM. When there were multiple
constraints, the optimization time became comparable with that of finite element simu-
lation times. In the case of MMA, the optimization algorithm time was about 35% of the
total time, while the optimization time of GOCM was negligible. Therefore, the proposed
method was versatile to handle multiple constraints, while computationally efficient.

For future research, it would be beneficial to handle active and inactive constraints
separately. The current implementation updated the Lagrange multipliers for both active
and inactive constraints, but it would be necessary to remove the effect of inactive con-
straints completely from optimality criteria. In GOCM, it is possible that constraints are
consistently violated during iterations and only the final converged design satisfies the
constraints. In order to make un-converged designs useful, it would be beneficial that
designs are updated in the feasible region.
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