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Modeling gas–particle interaction in an Eulerian–Lagrangian frame involves many approximate models. Hence,

understanding themodel form error is essential to improve the prediction capability. Often, a model by itself consists

of several submodels where each submodel is subject to potential error. The potential errors can superimpose

or compensate for each other over time, which makes it difficult to find a possible source of model form error. This

study aims to quantify, rank, and isolate the contribution of error in each submodel to the error in the model

prediction. The concept of global sensitivity analysis is extended by using it as a tool to isolate the most influential

potential error in drag force submodels of a transient multiphase dispersed flow on particle cloud position. The

possible errors of the submodels are modeled as uniformly distributed epistemic uncertainty, and their contributions

to the quantity of interest are calculated in terms of sensitivity indices. We found that the most influential potential

submodel error depends on time and the characteristic of the particle cloud.

Nomenclature

CM = added-mass coefficient

dpi = particle diameter

E = expected value
eam = added-mass potential error
eip = interparticle collisional potential error

epg = pressure gradient potential error

eqs = quasi-steady potential error

F = perturbed force
fam;i = added-mass force per unit mass

fip = interparticle collisional force model

fpg;i = pressure gradient force per unit mass

fqs;i = quasi-steady force per unit mass

fgpi = aerodynamic force from gas to particle per unit mass

fp = total particle force
M = error sample matrix
Mi = particle Mach number
P1 = atmospheric pressure
P2 = postshock gas pressure
P2r = postreflected shock gas pressure
P2t = post-transmitted shock gas pressure
Rei = particle Reynolds number
r = variable index
Si = first-order effect of Xi

Sij = second-order effect index

T1 = atmospheric temperature
T2 = postshock gas temperature
T2r = postreflected shock gas temperature

T2t = post-transmitted shock gas temperature
u1 = atmospheric gas velocity
u2 = postshock gas velocity
u2r = postreflected shock gas velocity
u2t = post-transmitted shock gas velocity

ugi = gas velocity at particle location

upi = particle velocity

Var = variance
Vi = first-order partial variance
Vij = second-order partial variance

VX−i
�:� = variance due to all input variables except for Xi

Vy = model output variance

Vy = model output variance

Vp
i = particle volume

Xi = random variable
x�i = ith realization of random variable Xi

x�N�
r

= Nth sample of the rth variable

Y = model output for a random variable
y = realization of model output
y = realization model output vector

μgi = dynamic viscosity at particle location

ρgi = gas density at particle location

τppi = particle–particle stress

ϕp
i = particle volume fraction at particle location

ϕp
i = particle volume fraction at particle location

I. Introduction

P REDICTING the interaction of a shock with a moderately
dense distribution of particles is a challenging problem. The

shock–particle interaction is essential for understanding the compress-
ible multiphase physics, which applies to many environmental, indus-
trial, and medical applications. To predict the behavior of a system
involving shock–particle interaction, numerical simulations are often
used. Typical simulations employpoint-particle force and heat transfer
models to couple the particle momentum and energy with those of
the surrounding gas. The models employed in these complex systems
often consist ofmultiple submodels.Hence, themodelsmaybe subject
to many sources of error from the submodels. It is difficult to identify
the dominant source of error since the predicted quantity of interest
(QOI) includes the effect of all the submodels errors. For the shock
interaction with particle cloud (curtain) problem, the time evolution
of a particle curtain (its center of mass and width) depends on the
hydrodynamic force exchange between particles and gas and on the
interparticle collision force [1,2], and thus serves as a good candidate
for evaluating the accuracy of these force models.
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In this paper, we used global sensitivity analysis (GSA) to identify
the potential influential sources of error. GSA has been used to
decompose the uncertainty or variance of the model output into the
different sources of uncertainty in themodel inputs [3,4]. GSAbelongs
to variance-based sensitivity methods. These methods are formulated
based on the conditional variance, and sensitivities can be obtained
by Monte Carlo simulation or Latin hypercube sampling (LHS) [5].
The Fourier amplitude sensitivity test indices [6,7] and the Sobol
indices [8–10] are commonly used to compute the sensitivity indices,
and we chose the latter for this study. We use GSA to identify the
possible contribution of the epistemic errors in submodels to the total
error in QOI. In this study, we model the possible error of individual
submodels as a probability distribution and calculate the contribution
of individual errors on the error in QOI. Therefore, this can be consid-
ered as an extension of the conventional usage of GSA. There has been
much research on the effect of the uncertainty and modeling errors on
the model prediction. For instance, Matsumura et al. [11] and Matsu-
mura andHaftka [12] investigated the conservative treatment of model
epistemic uncertainty and its reduction using additional knowledge
(test data) using the Bayesian framework. They demonstrated that
incorporating the effects of future redesign provides significantly better
accuracy of the probability of failure estimation. Similarly, Zhang
and Mahadevan [13] applied Bayesian failure probability analysis to
update the crack growthmodels with presence of the uncertainty in the
model parameters. They illustrated the combination of two competing
crack growth models and considered the uncertainty in the statistical
distribution parameters for each model.
Another strand of research for error and uncertainty is propaga-

ting modeling errors when a system is composed of several models,
and each one contributes to the prediction error. In some cases, the
interest is also to evaluate the contribution of each propagated error or
uncertainty to the finalmodel output variation. The sensitivity analysis
is one of the popular methods to quantify the effect of each contribu-
tion. Sankararaman et al. [14] investigated the uncertainty quantifica-
tion andvalidation of amodel for fatigue crackgrowth. They classified
the uncertainties into different types: variability (e.g., material proper-
ties), measurement errors, modeling uncertainty and errors, and dis-
cretization error. They propagated the uncertainties into the model;
then, they quantified the contribution of each source of uncertainty to
the overall prediction uncertainty usingGSA. They demonstrated that
they could use GSA to select the effect of combined uncertainties and
errors in the crack growth rate model parameters, the model error by
itself, the error in the surrogate model, and the discretization error on
themodel output variation. Similarly, Burt and Josyula [15] employed
GSA for the uncertainty quantification involving mixed aleatory
and epistemic uncertainties to compare the impact of multiple input
parameters and modeling parameters for a hypersonic shock interac-
tion flow problem. So, they can identify the most responsible param-
eter for discrepancies between the numerical and experimental data.
Youn et al. [16], Jung et al. [17], and Sankararaman et al. [18]

proposed a hierarchical model calibration procedure with a statistical
model calibration technique where a system can be decomposed into
components. Each component has error or uncertainty. They classified
the errors and uncertainties as known and unknown random variables.
The known variables can be characterized by observed data or other
information such as a product catalog. The unknown variables cannot
be directly quantified. Their variability is unknown. However, they can
be estimated, i.e., from the expert opinion.Thisprocess canbe followed
by sensitivity analysis and calibration that can reveal the unmodeled
phenomena or unknown unknowns.
Three possible methods of quantifying the model error in the

literature can be summarized as 1) propagating the error and using
the information to redesign the future tests; 2) propagating the model
error when the system is composed of differentmodels and observing
the output variability, which is often followed by sensitivity analysis
to quantify the contribution of an individual component to the output
variation; and 3) treating the error as known and unknown variables,
propagating it into the model, and observing the response variability,
followed by sensitivity analysis and calibration. The method of GSA
was previously applied for prioritizing the effect of varying inputs
on model output. Sankararaman et al. [14] extended the method and

applied it to investigate the effect of data uncertainty, model param-
eter error, and surrogate error all together on the model output. In this
paper, GSA is applied to a problem where the overall model consists
of several submodels. Each submodel is subject to a potential error
where the model prediction error comes from the combined effect of
the potential error in each submodel.
A complex physical model may include several submodels, each

of which has its own potential model error. In dynamic systems, the
interaction between these submodel errors can evolve over time and
make it more difficult to quantify the effect of individual errors on the
prediction of QOI. That is, the errors can superimpose or compensate
one another over time. The aim of this paper is to isolate the dynamic
effect of each potential submodel error on the prediction of QOI and
rank them using GSA. The errors on each submodel are propagated
simultaneouslywith the assumption that there is a known error bound
for each submodel.
The rest of the paper is organized as follows: Sec. II introduces the

background information about the problem of shock–particle inter-
action, followed by the multiphase shock tube experiment and the
numerical simulation. Section III discusses the potential error in the
submodels and the need to perform a GSA study on the submodels;
followed bySec. IV, wherewe discuss themathematical expression of
the submodels. In Sec. V, the ranking of the potential force submodels
error usingGSAwill be discussed, followed by details about applying
GSA in the shock–particle interaction problem and the method used
to perform GSA. Section VI presents the results, followed by the
conclusions in Sec. VII.

II. Physics of Shock–Particle Interaction

This paper deals with the physics of shock interaction with a
moderately dense curtain of particles. This problem involves a wide
rangeof length and time scales.For example, the thicknessof a shock in
the air is of the order of 100 nanometers, whereas particle diameter can
bemicrometers tomillimeters, and the size of theparticulate curtain can
range from centimeters to meters. Correspondingly, the time scale of
shock passage over a particle can be less than 1 μs, whereas themotion
of the particulate curtain itself may occur over milliseconds. Given this
wide range of length and time scales, with the current computational
capability, it is impossible to simulate a fully resolved shock interaction

with more than O�103� particles [19–21]. Simulations involving a
much larger number of particles must resort to Euler–Euler or Euler–
Lagrange techniques, where the details of the flow around each particle
will not be fully resolved, andmust therefore bemodeled appropriately.
Typical simulations thus employ point-particle force and heat trans-

fer models to couple the particle momentum and energy with those of
the surrounding gas. To validate the applicability of these models for
the problem of shock–particle interaction, the results from a multi-
phase shock tube (MST) experiment have been used, where a normal
planar shock wave passes through a planar curtain of a moderately
dense mixture of gas and particles. The time evolution of the curtain
(the center of mass and width) depends on the hydrodynamic force
exchange between the particles, the gas, and the interparticle collision
forces [1,2], and thus serves as a good candidate for evaluating the
accuracy of these force models. Therefore, the simulation calculates
the time evolution of the particle curtain and compares it against the
experiment to evaluate the accuracy of the numerical models. The
discrepancy between the experimental measurements and simulation
predictions can be translated into the model form error. The length
and time scales of our interest in this study are limited to the order
of millimeters and microseconds, which is within the limit of MST
capability. In the problem of shock–particle interaction, the drag force
model is decomposed into several submodels where each submodel is
subject to a potential error. The effective error is the combined effect of
the possible error on each submodel.
Figure 1 shows the schematic of theMSTexperiment conducted by

Wagner et al. [2,22] at Sandia National Laboratories. The shock tube
consists of a driver section, where the high-pressure gas is kept; and
the driven section, which is kept under atmospheric conditions. The
driven section is separated from the driver section via a diaphragm.
When the diaphragm is burst, a planar shock wave is created and
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propagates toward the test section due to the pressure difference
between the driver and driven sections. The test section is located
at the end of the driven section, where the particle curtain can be
observed through the glass window. The particle curtain is formed by
dropping particles from a reservoir through a slit. Figure 1b shows
the schematic zoomed-in view of the particle curtain. Upon the
diaphragm burst, the shock wave propagates toward the test section,
hits the particle curtain, and passes over them. The particle curtain
starts moving and expanding due to the hydrodynamic and interpar-
ticle collisional forces. Figure 2 shows the computational schematic
of the MST [2]. Figures 2a and 2b show the schematic of the particle
curtain before and after the shock impact.P, T, and u indicate the gas
the pressure, temperature, and velocity, respectively. The preshock
(atmospheric), postshock, postreflected shock, and post-transmitted
shock conditions in Figs. 2a and 2b are defined by subscripts 1, 2, 2r,
and 2t, respectively. The contact surfaces are not presented in Fig. 2.
A detailed figure including the contact surfaces is provided in
Ref. [23]. Theupstreamparticle front position (UFP) anddownstream
particle front position (DFP) are being used to validate the numerical
force models in the simulation. Figure 2c shows the time evolution of
the UFP and DFP for the particle curtain with the initial thickness of
2 mm, where the particle curtain expanded after being hit by the
shock wave.
A one-dimensional (1-D) numerical simulation is used to predict

the motion of particles and the evolution of the curtain. The code is a

simplified version of a computational fluid dynamics simulation pro-
gram Rocflu, developed at the Center for Simulation of Advanced
Rockets [24]. The Eulerian–Lagrangian approach is used where
the underlying flowfield is treated as a continuum and solved on an
Eulerian framework, whereas particles are considered as discrete
points that move due to interactions with the flowfield and with each
other. The simulation is four-way coupled since it includes the effect of
particles on the gas aswell as the effect of particle–particle interaction.
Since the mass or volume loading of particles is significant, the effect
of particles on the carrier fluid flow cannot be ignored. In addition,
since the particle volume fraction is considerable in our study, the
interparticle collision between particles becomes significant. In this
study, the particle volume fraction is 21%, and 5000 computational
point particles are used where each particle is a sphere with a 115 μm
diameter. More details about the particle volume fraction are provided
in the Appendix. The locations of averaged leftmost 0.5% and right-
most 0.5%particles are defined as theUFP andDFP, respectively. The
details of the numerical method are outlined in Ref. [25].
In evaluating the accuracy of the force models by comparing

the simulation results against corresponding experiments, it must
be noted that the shock tube experimental results involve unavoidable
uncertainties in measurement, such as quantification of experimental
conditions, shock Mach number, time of shock arrival, particle size
distribution, curtain thickness, particle volume fraction variation
within the particle curtain, and measurement of particle front

Diaphragm

High-pressure
driver section

Low-pressure
driven section

Test section
with particle 

curtain

2 mm

a) b)

Fig. 1 Schematic of the multiphase shock tube: a) Sandia multiphase shock tube, and b) particle curtain before impact.
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Fig. 2 Schematic of particle curtain a) before impact, and b) after impact. Note the particle curtain moves toward the shock tube downstream after the
impact. Figure 2c shows the time evolution of the particle curtain.
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positions. Similarly, numerical simulations suffer from errors such
as discretization errors in addition to errors in the point-particle force
model used to couple the particles and the surrounding gas. If
experimental and numerical uncertainties are large, then any attempt
to evaluate the performance of the force model will be meaningless.
Hence, to enhance the reliability of experimental results and predic-
tive capability of numerical simulations, an elaborate effort of uncer-
tainty reduction is essential.
Park et al. [26,27] performed a rigorous effort of uncertainty reduc-

tion of the problem of shock–particle interaction to reveal the model
error of the simulation by comparing it to the experimental measure-
ment. Figure 3 shows the time evolution of the numerical simulation of
the UFP and DFP after the shock passed over the particles, compared
against the experimental measurement. The thickness of the simula-
tion curves shows the effect of the propagated uncertainties within a
95% confidence interval (CI) on the UFP and DFP via 10 simulations.
The thickness of the experiment curves inFig. 3 represents a 95%CIof
sampling uncertainty out of four repetitions.
After uncertainty quantification, the remaining discrepancy between

the simulation and experiment needs to be explained in terms of errors
in forcemodels. Tounderstand thepossible sources of error, the effect of
these potential errors on the QOI needs to be investigated. Here again,
attentionwill be focused on the forcemodel since heat transfer does not
play an important role in this problem. Since important contributors to
particle motions and, hence, to the particle curtain motion are quasi-
steady, unsteady aerodynamic forces and interparticle collisional forces,
quantifying and ranking the influence of the errors in these models on
the uncertainty in the UFP and DFP calculations is essential toward
improving prediction capability.Nili et al. [28] performed a preliminary
version of this study for a different configuration of the problem of
interaction of the shock with the particle curtain.

III. Potential Error in the Force Models and Global
Sensitivity Analysis

The sensitivity of the particle front motion to the potential force
model error is investigated for the problem of interaction of a planar
shock wave with a moderately dense particle curtain. The sensitivity
analysis is performed in the Euler–Lagrange point-particle approach,
where the motion of individual computational particles is traced in
a Lagrangian framework, and the particle forcemodels that depend on
the volume fraction are used to model the shock–particle interaction.
The force model consists of several contributions: quasi-steady, pres-
sure gradient, added-mass, and interparticle collisional force contri-
butions. The expressions of these force models (called submodels
here) arewell established in the limit of a zeroReynolds number, a zero
Mach number, and for an isolated particle: both in the incompressible
flow [29] and, more recently, for a compressible flow [30–32].

However, for the present application of compressible flow (at finite
Reynolds and Mach numbers) over a distribution of particles at a
moderate volume fraction, the force models are subject to substantial
epistemic uncertainty. This is because neither the model form nor the
values of any associated coefficients of the quasi-steady, added-mass,
and collisional force models are fully understood or settled for this
flow regime. The range of uncertainty of the submodels must be
estimated. A variance-based global sensitivity analysis allows us not
only to rank the effect of potential error in each submodel on the
variation of predicted QOI (chosen to be UFP and DFP) but also
provides us with valuable information toward reducing these model
uncertainties.GSAallowsus an efficient uncertainty quantification for
errors in the force submodels. GSA quantifies the importance of error
in each force submodel on thevariation of the front particlemovement
as a function of time.

IV. Point-Particle Force Models

As discussed earlier, there have been different modeling options
that have been pursued in the simulation of shock–particle interaction
with a curtain of particles [25,33,34]. In the work, the force coupling
formulation outlined by Ling et al. [35,36] is employed. The aero-
dynamic force per unit mass on the ith particle, which is denoted by
fgpi , can be decomposed into the contribution of individual force
models as

fgpi � fqs;i � fpg;i � fam;i (1)

where fqs;i, fpg;i, and fam;i denote, respectively, the quasi-steady,

pressure gradient, and added-mass forces. This method of force
decomposition is accurate for an isolated particle in the limit of zero
Reynolds and Mach numbers, where the explicit derivation of each
term is available in Refs. [30,31]. Parmar et al. [37] and Ling et al.
[35] introduced the importance of the unsteady forces of a planar
shock tube by extending these models to a finite Reynolds andMach
numbers. Thesemodels were extended to a shock–curtain interaction
by Ling et al. [25]. The following three equations represent the
expression for quasi-steady, pressure gradient, and added-mass force
models, respectively [38,39]:

fqs;i � 3πμgi d
p
i

�
ugi − upi

�
Φ
�
Rei;Mi;ϕ

p
i

�
(2)

fpg;i � −Vp
i

�
∂pg

∂x

�
i

(3)

fam;i � Vp
i CM

�
Mp

i ;ϕ
P
i

���
ρg

Dug

Dt

�
i

−
d

dt

�
ρgi u

p
i

��
(4)

In the point-particlemodel, all the fluid properties are to be interpreted
as the undisturbed flow quantities evaluated at the particle center.

Gas properties with subscript i, such as ugi , ρ
g
i , and μ

g
i , denote the gas

velocity, density, and dynamic viscosity interpolated to the particle
center location. Quantities such as �∂pg∕∂x�i and �ρg�Dρg∕Dt��i
with subscript i indicate that these gas-related quantities have been

evaluated and then interpolated to the particle center. In addition,dpi is
the diameter and Vp

i is the volume of the ith particle. Here, Φ is the
empirical quasi-steady drag correction that is a function of particle
Reynolds Rei and Mach numbers Mi. CM is the added-mass coef-
ficient that is a function ofMach number. In addition, bothΦ andCM

are functions of the particle volume fraction, whose dependencies can
be found in the work of Ling et al. [25]. The particle–particle colli-
sional force is modeled in terms of an interparticle collisional force
model. The model proposed by Harris and Crighton [40] is used for
the interparticle interaction as

Fpp
i � −

Vp
i

ϕp
i

∇τppi (5)

where τppi represents the interparticle stress, which can be found in the
work of Enwald et al. [41].

Fig. 3 The effects of input uncertainties and experimental variability
on the UFP and DFP. (Sim. denotes simulation, and Exp. denotes
experiment.)

1752 NILI ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
FL

O
R

ID
A

 o
n 

Ju
ne

 3
0,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
86

57
 



V. Prioritization of thePotential Force Submodel Errors

Asdiscussed inSec. III, the remainingdiscrepancybetween experi-
ment and simulation results shown in Fig. 3 needs to be explained in
terms of errors in the forcemodels. Hence, the effect of these potential
errors on theQOI needs to be investigated. The forcemodel calculates
the applied force per unit mass of a particle as the sumof all submodel
forces as

fp � fqs � fpg � fam � fip (6)

Note that the interparticle force is also included along with the
aerodynamic forces due to the finite particle volume fraction. The
force model consists of several submodels where there is a model
error associated with each submodel. The pressure gradient and the
added-mass forces are dominant when the particles are subjected to
a strong pressure gradient, which in turn induces a strong relative
acceleration between the particle and the surrounding fluid. The net
of the interparticle collisional forces is expected to be dominant
in regions where the particle volume fraction is large and shows large
variations (i.e., at sharp particle fronts). These submodels have been
developed under dilute conditions of low volume fraction, and there-
fore their errors increase at a higher volume fraction. Furthermore,
both the quasi-steady and added-mass forces depend on the Mach
number, which has been calibrated for postshock flowMach numbers
less than the critical value (i.e., less than 0.6). Thus, at higher post-
shock flow Mach numbers, there is increased error, especially at
the higher volume fraction. Since these force submodels do not have
a linear relationship with the particle motion, the combined errors on
individual submodel over time affect the time evolution of the UFP
and DFP. The errors can add up or compensate for one another over
time. The goal is to isolate the dynamic effect of each submodel error
on the prediction of the particle front position.

A. Global Sensitivity Analysis and its Applications

Sensitivity analysis is often named as one of the essential tools
for uncertainty quantification. Sensitivity analysis is used to relate
the uncertainty in the input variables to the prediction uncertainty. In
many cases, researchers are interested in the assessment of the varia-
tion in the model output with respect to an input variable, whereas all
other input variables are fixed. This method of evaluating the output
derivative at the vicinity of an input value is called local sensitivity
analysis, where the sensitivity information is only available at a fixed
point [42–44].When the input variables are defined over awide range,
the local derivative at a fixed point may not be accurate and the
evaluation of the local derivative over the entire range for all variables
may not be practical. Global sensitivity analysis is capable of decom-
posing the variation of model output in terms of variation or uncer-
tainty of the input variables defined over a range. GSA has a wide

range of applications in uncertainty analysis in the field of combus-
tion, reliability analysis, fluidmechanics, and error analysis. Ganguly
et al. [45] used GSA to obtain the sensitivity of the periodic input
errors for the heterodyne interferometry model. Hosder and Bettis
[46] ranked the effect of the uncertainty in the boundary condition on
the heat-flux prediction usingGSA for a reentry flowmodel. Pei et al.
[47] performed GSA on a spray of engine combustion networks
to understand the influence of differences in boundary conditions
on specific targets of interest. Liang and Mahadevan [48] used both
local and global sensitivity analyses to rank the effect of uncertainties
and error from multiple sources, including the model parameters on
the final results. Higdon et al. [49] usedGSA to identify the important
reaction rate on the simulation of high-temperature hypersonic flow.
Jiang et al. [50] used both global and local sensitivity analyses for a
multidisciplinary aircraft design problem. They identified the impor-
tant design variables and disciplinary models that need epistemic
uncertainty reduction to achieve a better design solution. Huan et al.
[51] conducted GSA on a nonreactive jet in crossflow to identify the
influential uncertain input parameters to reduce the system stochastics
dimension as well as identified the influential model parameters
for the calibration. In this study, GSA is used for a model that consists
of several submodels with error associated for each submodel. It is
of interest to rank and isolate the effect of potential error of each
submodel on the overall behavior of themodel output over time. Each
error varies within a bound estimated by expert opinion.
For this study, it is assumed that each force submodel is subject to a

potential epistemic error within a constant range of�10%. Note that
the actual error range of each submodel is unknown, and the goal is to
understand how the 10% epistemic error on each force submodel
affects the motion of the front particle position for a problem of
shock–particle interaction. There are various methods to perform
GSA. In this study, the variance-based sensitivity analysis is used
where the Sobol indices [8] are used for estimating the influence of
individual variables or groups of variables on the model output.
Figure 4 shows the schematic time evolution of particle front position
due to the propagation of the potential force submodels errors. In this
figure, each curve (dashed, solid, and dotted) represents three random
realizations of particle front position due to the randomly chosen
errors within the error ranges of the force submodels. The shadow
band represents the particle front position for a very large number of
realizations that represent possible front positions concerning the
force submodels errors.

B. Global Sensitivity Indices

According to Sobol [10], the variance of model y can be decom-
posed as

Vy �
X
i

Vi �
X
i

X
j>i

Vij � : : : � V12 : : : n (7)

Fig. 4 Schematic of variation in front particle position due to error potential in force submodels.
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where Vi and Vij are expressed as

Vi � Var�E�yjxi�	 and Vij � Var�E�yjxi; xj�	 − Vi − Vj (8)

Vi is the first-order partial variance that quantifies the effect of
variable xi on themodel output varianceVy, whereas the contribution

of the second-order interaction between xi and xj to Vy is charac-

terized by the second-order partial varianceVij. Similarly, the higher-

order interaction effect is measured by higher-order partial variances.
In this study, the variable xi denotes the potential error on the drag
force submodels and y represents theQOI, which is themodel output,
i.e., UFP or DFP. By dividing both sides of Eq. (7) by Vy,

1 �
X
i

Si �
X
i

X
j>i

Sij � : : : � S12 : : : n (9)

where Si � Vi∕Vy is called the first-order effect of xi, and Sij �
Vij∕Vy is called the second-order effect index between xi and xj.
Saltelli et al. [3] demonstrated a simple and yet practical approach to
compute the sensitivity indices for a nonlinear system by taking
advantage of statistical sampling.
There are a variety of methods to sample the individual errors

on each submodel, including random sampling and the Latin hyper-
cube sampling. For this study, we employ the LHSmethod. Themain
advantage of LHS over random sampling is its space-filling charac-
teristics. To perform GSA on the force submodel, the following
perturbation is introduced in Eq. (6):

F��1−eqs�fqs��1−epg�fpg��1−eam�fam��1−eip�fip (10)

where eqs, epg, eam, and eip are potential errors related to the corre-
sponding force submodel. Since the errors are unknown, they are
modeled as epistemic uncertainty, which represents the lack of knowl-
edge about the force submodels. The uncertain errors are propagated
through the numerical simulation to the uncertainty in the particle
front positions; that is, potential contributions of the errors in the
submodels to the errors in the particle front positions. The potential
contributions are measured by their variances. The step-by-step pro-
cedure adopted to calculate the sensitivity indices follows the method
of Saltelli et al. [3].
First, samples are generated for the potential drag force submodel

errors. The variable x�N�
r denotes the Nth error sample of the rth

submodel. The following matrix of samples defined

M �

2
66666664

x�1�1 x�1�2 · · · x�1�r

x�2�1 x�2�2 · · · x�2�r

· · · · · · . .
.

· · ·

x�N�
1 x�N�

2 · · · x�N�
r

3
77777775

(11)

Each row of the matrix M represents an error sample. By using
each error sample, the particle front position (i.e., the model output)
can be obtained by running the corresponding model. Since there are
N samples, the same number of model outputs are obtained as

y �

2
66664

y�1�

y�2�

..

.

y�N�

3
77775 (12)

The variance of the model output is going to be decomposed accord-
ing to the variance of all input variables and independently from their
degree of linearity ormonotonicity.According toSaltelli et al. [3], this
approach is model free. First, a reduced conditional variance must be
obtained, which is the output variance when one of the variables is
fixed; that is, the uncertain input is fixed at Xi � x�i as

V�YjXi � x�i � (13)

In the equation, V�Yjx� represents the conditional variance of Y for a
given value of x. The uppercase letters (e.g., X and Y) represent the
random variables, and their corresponding realizations are indicated
by the lowercase letters (e.g., x and y). Since x�i can take any value

within the range of Xi, it is possible that V�YjXi � x�i � ≥ V�Y� for
a nonlinear model. Therefore, the conditional variance in Eq. (13)

is averaged over the distribution of the uncertain variable Xi. The
averaged conditional variation is denoted as

E�V�YjXi�	 or EXi
�VX−i

�YjXi�	 (14)

In the equation, VX−i
�:� means the variance due to all input variables,

except for Xi. Equation (14) has the property that E�V�YjXi�	
≤ V�Y� and, in particular,

Xr
i�1

fE�V�YjXi�	 � V�E�YjXi	�g � V�Y� (15)

where E�V�YjXi�	 is called a residual, and V�E�YjXi	� is denoted as
the first-order effect ofXi onY. The first-order sensitivity index can be
defined as

SXi
� V�E�YjXi	�

V�Y� (16)

The first-order effect is large when a variable is influential. The first-

order sensitivity indices satisfy the condition of
P

SXi
≤ 1, and it is

valid for both the linear and nonlinear systems. When the sum of the

first-order sensitivity indices is less than one, it means that the remain-
ing variance is due to the interaction between input variables. The

contribution due to the interaction between input variables is identified

as higher-order indices:

SXi;j; : : : ;n
� V�E�YjXi; Xj; : : : ; Xn	�

V�Y� (17)

Global sensitivity analysis requiresmany simulations.For this study,

there are four potential errors or variables for submodels, where each
possesses an error bound. The number of simulations to evaluate the

sensitivity index is proportional to its sample population. Each error
bound is assumeduniformlydistributedwith�10% range, fromwhich

1000 samples are generated. The computer wall time required for a

single simulation, on a single core of a standard Intel E5-2698v3
processor with 2.5GHz clock speed, is about several hours. Therefore,

it is necessary to construct a surrogate model to approximate the front
particle positions as a function of possible errors in the submodels. A

kriging surrogate model [52,53] of front particle position was built
based on 42 samples generated using LHSwithin�10% error bounds.

The numberof sampleswas found tobe enough to cover the entire error
space. The constructed surrogate model predicts the particle front

position for an equal number of time steps in a fraction of a minute.
We examine the accuracy of the surrogate using a cross-validation

technique. We performed the cross validation by leaving one point

(sample) out at a time and fit the surrogate to the remaining points
(e.g., 41 points); then, we checked the error at the left-out points. We

repeated the process for all the points (e.g., 42 points), and so we
ended up with a cross-validation error at each data point. Table 1

shows the surrogate accuracy of the particle front for a few selected

Table 1 Surrogate accuracy

Time, μs

10 50 100 300 600

UFP PRESS error, mm 1.8e − 5 8.2e − 5 6.1e − 4 2.2e − 3 8.4e − 3

DFP PRESS error, mm 2.4e − 5 3.7e − 4 1.2e − 3 4.0e − 3 2.1e − 2
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times. The numbers in Table 1 are expressed as the root mean squares
(RMSs) of the cross validation. The termPRESS stands for prediction
error sum of squares.
Comparing the PRESS error to the particle front position in Fig. 3

shows that the relative PRESS of the surrogate prediction does not
exceed the order of 0.05%.

VI. Results and Discussion

The global sensitivity indices are calculated for both the UFP and
DFPat early times and later times. Considering that the shock speed is
about 580 m∕s, traveling over the entire particle curtain takes less
than 4 μs. Therefore, early times are defined as those take up to 10 μs,
whereas later times are defined as those that take up to 200 μs.
To provide a better insight into the submodel error behavior at

the UFP, we first track the time evolution of each submodel for the
particles initially located at the leftmost 0.5% of the particle curtain.
Note that the order of the particles may change as the particle curtain
moves and expands. Thus, the forces on the particle initially sitting
on the UFP do not necessarily represent the forces on the particle
located at the UFP over time. Figure 5 shows the time evolution of
the force submodels (quasi-steady, pressure gradient, added-mass,
and interparticle collisional forces) for the particle initially located at
the leftmost 0.5% of the curtain during and after the shock interacts
with the particle curtain at early times. The sudden change in the quasi-
steady, pressure gradient, and added-mass force submodel during
the first 2 μs is the result of crossing the shock over the particle. The
interparticle collisional force submodel is small since the particle
volume fraction (Fig. A1) stays small in the UFP region. The pressure
gradient and added-mass force gradually diminish shortly after the
shock leaves the UFP region.
Figure 6a shows the sensitivity indices of the UFP at early times,

whereas Fig. 6b shows the same at later times. In the figure, four curves
(quasi steady, pressure gradient, added mass, and the interparticle
collisional) represent the first-order sensitivity indices, and the high-
order terms’ curve is the interaction effect between the model errors.
For the first 2 μs, when the shock just passed the UFP, the potential

errors in the pressure gradient and added-mass forces dominate the
variation in UFP. Shortly after that, however, the UFP variation is
mostly affected by the potential error in the quasi-steady force. The
initialmagnitudeof the pressure gradient and added-mass forces at the
UFP during the first 10 μs is not negligible. However, the variation of
the UFP is a cumulative effect of the errors over time. The combined
effect of the pressure gradient and added-mass forces is negligible
compared to the quasi-steady force because thevalues of the forces by
themselves alter from positive to negative (Fig. 5) during the period.
The effect of potential error in the interparticle collisional force on
the variation of the UFP remains negligible for the entire simulation
because the local particle volume fraction is generally small at the
UFP. The initial distribution of the particle volume fraction follows a

Gaussian-shaped curve. Hence, a small local particle volume fraction
corresponds to a negligible interparticle collisional force. The particle
curtain expands over time, especially in theUFP region. The effects of
pressure gradient and added-mass forces are gradually diminished
after 150 μs, and the only error contribution that affects theUFP is the
error in the quasi-steady force submodel.
Similar to the UFP, to provide a better insight into the submodel

error behavior at the DFP, we track the time evolution of each
submodel at the particles initially located at the rightmost 0.5% of
the particle curtain. Figure 7 shows the time evolution of the force
submodels for the particle initially located at the rightmost 0.5%of the
curtain during and after the shock interacts with the particle curtain at
early times. The sudden change in the quasi-steady, pressure gradient,
and added-mass force submodels during the first fewmicroseconds is
the result of crossing the shock over the particle. Unlike the UPF, the
interparticle collisional force is not negligible. A sudden fluctuation
of the interparticle collisional force indicates a relatively largevolume
fraction due to the accumulation of the particles at the DFP (Fig. A1).
Figure 8 shows the sensitivity indices of theDFP in early times. The

added-mass force sensitivity index suddenly spikes right after the
shock crosses over theDFPbecauseof the relatively large acceleration
of the flow comparedwith the adjacent particles at the DFP. However,
the initial rise in the pressure gradient force sensitivity index is small
compared with that of the added-mass force because of the effect of
two-way couplingwhen the particles try to push back the flow.Hence,
the pressure drops at theDFP.As soon as the shock passes theDFP, the
added-mass force drops, and its potential error contribution to theDFP
variation becomes small. After the shock passes the DFP, the con-
tribution of the potential error in the quasi-steady force submodel

Fig. 5 Time evolution of the force submodels for the particle that is
initially located at the UFP.

a)

b)

Fig. 6 Force submodel sensitivity indices for UFP a) at early times, and

b) at later times.

NILI ETAL. 1755

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
FL

O
R

ID
A

 o
n 

Ju
ne

 3
0,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
86

57
 



dominates the variation in theDFP. The contribution of the error in the
quasi-steady force remains dominant until around t � 55 μs, where
two interesting and related effects influence the particle forces and
their sensitivity:
1) As can be seen in the particle volume fraction plots shown

in Fig. A1, the particle volume fraction rapidly increases at the DFP.
This increase in volume fraction is associated with an increase in

pressure at the DFP and contributes to a substantial increase in the
pressure gradient and the added-mass forces (Fig. 7).
2) As a result of the increased volume fraction, the interparticle

collisional force starts rising rapidly aswell (Fig. 7). The local particle
volume fraction increases at the DFP because of instability driven by
the volume fraction dependence of the force model in Eq. (2), which
has been well established in the fluidized bed literature [54]. As the
local particle volume fraction starts increasing, the effect of error in
interparticle collisional force on the DFP variation slightly rises for a
short time. Note that the rise of the interparticle collisional submodel
sensitivity index is due to the cumulative effect of its variation onDFP.
Thus, a slight sudden increase in the interparticle collisional submo-
del is a consequence of a relatively large fluctuation of the submodel
(Fig. 7). Since the interparticle collisional force submodel in Eq. (5)
heavily depends on the particle volume fraction, the increase in
particle volume fraction at t � 55 μs leads to a drastic change in
the interparticle collisional force. The force becomes weaker because
the particle volume fraction decreases as the curtain expands, and the
particle volume fraction becomes smaller. Simultaneously, the error
contribution of the added-mass force and pressure gradient increases.
The flow accelerates because of the increase in local particle volume
fraction at the DFP. As a result, this increases the relative acceleration
of the flow compared with the particles at the DFP, as well as the
pressure gradient. Unlike the UPF, this effect of error in the pressure
gradient and added-mass force does not disappear in a short time. As
the particle curtain expands and the particles decelerate, the pressure
gradient and added-mass force become smaller. Despite a very small
pressure gradient and added-mass force magnitude after t � 150 μs,
their effect remains nonzero for a much longer duration because the
cumulative effect of the force submodels dictates the behavior of the
sensitivity indices.
The potential error in the quasi-steady force is identified as the

main contributor to the variation of the UFP. The UFP is not sensitive
to the potential error in the pressure gradient and added-mass force.
The variation in the early motion of the DFP is mainly dictated by the
potential error in the pressure gradient and added-mass force,
whereas the long-time variation in the DFP depends on the potential
error in the quasi-steady, pressure gradient, and added-mass forces.
Figures 9a and 9b illustrate a hypothetical scenario where the quasi-
steady, pressure gradient, and added-mass force submodels aremodi-
fied as −10, 50, and 50%, leading to compensation for the potential
errors in the original model.
The solid and the dashed–dotted lines in Figs. 9a and 9b represent

the average values for the experimental measurement and the simu-
lation prediction, respectively, which have already been shown in
Fig. 3. The dashed line is the predictedUFPandDFPwhen the possible
submodel errors are corrected. It is noted that the numerical simulation
is more agreeablewith the experimental measurement after the correc-
tion. Note also that this correction simply gives us a clue in identifying
the most important error contributors. The preceding illustration does
not mean that the force submodels necessarily have these precise error
bounds. Simply, theGSA results in rank and isolates the contribution of
error in each submodel to the error in the model prediction.

VII. Conclusions

This paper studied the potential epistemic drag force model error in
the context of one-dimensional numerical simulation of compressible
multiphase dispersed flow.The drag forcemodel is composed of several
submodels (quasi-steady, pressure gradient, added-mass, and interpar-
ticle collisional forces), where each submodel processes a potential
epistemic error. Themodel output error comes from the combined effect
of the possible error on each submodel. Since the submodel errors can
add up or compensate for one another over time, it is difficult to identify
the major source of errors. The contribution of this paper is to quantify
the contribution of each submodel error to the model output error. For
this purpose, a constant error bound was assumed for each submodel
and global sensitivity analysis was used as a tool to prioritize the
importance of the potential error on each submode.
It was found that if looking forward to reducing the uncertainty

of the UFP, investment in the improvement of the quasi-steady force

a)

b)

Fig. 8 Force submodels sensitivity indices for DFP a) at early times, and
b) at later times.

Fig. 7 Time evolution of the force submodels for the particle that
initially is located at the DFP.

1756 NILI ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
FL

O
R

ID
A

 o
n 

Ju
ne

 3
0,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
86

57
 



submodelmust bemade. If interested in improving the accuracy of the
DFP prediction for a very short time, again, the improvement on the
quasi-steadymodel is essential. For a long-termprediction of theDFP,
the improvement of quasi-steady, pressure gradient, and added-mass
forces is needed. The effect of the error in the interparticle collisional
force model cannot be neglected because this force mainly dictates
the particle clustering effect, and it plays a vital role on the long-term
effect of the pressure gradient and added-mass force. Otherwise,
unrealistic results for the long-term effect of the pressure gradient
and added-mass force on the DFP variation might occur due to the
poor interparticle collisional force model. Nili et al. [28] performed a
preliminary version of this study with a top-hat initial particle volume
fraction profile. The different values of the initial particle volume
fraction resulted in a different trend for the potential influence of the
interparticle collisional force submodel on the particle front variation.
Consequently, they changed the possible long-term effect of error in
the other force submodels.

Appendix: Distribution of Particle Volume Fraction

The initial particle volume fraction that we use for the simulation
follows a Gaussian distribution. We constructed the input particle
volume fraction profile based on a linear regression model with
correlated noise using a Gaussian process, which developed by Park
et al. [55]. The model is inspired by the experimental x-ray measure-
ment conducted by Wagner et al. [22]. Figure 8 shows the time
evolution of particle volume fraction in different timeframes after
the shock hits the particle curtain. The solid line represents the initial
particle volume fraction, whose maximum value is 21%. The particle

curtain moves and expands because of aerodynamic and interparticle
collisional forces. Shortly after the shock passes over the curtain, the
particles start to form a cluster at the DFP. Each spike on the particle
volume fraction profile represents a particle cluster. For example, the
line marked with a square symbol in Fig. A1 shows a spike (cluster)
that already formed at theDFPabout 40 μs after the shockpassed over
the UFP. At the downstream particle front, the cluster is formed in the
following manner: The local particle volume fraction increases at the
DFPdue to an instability driven by thevolume fraction dependence of
the force model in Eq. (2). Consider a narrow layer of higher volume
fraction within the curtain sandwiched between regions of the lower
volume fraction. The particles within this region of higher volume
fraction experience a higher drag and move faster. As they run over
the slower-moving particles, a region of yet higher volume fraction
results. This leads to a further increase in velocity and further absorp-
tion of particles from upstream. The number of the clusters increases
as the particle curtain expands andmoves, and it propagates upstream
into the main body of the particle curtain. Further details about this
behavior are available in the work of Nili [23].
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